JPS61248507A - Method for improvement in magnetic properties of amorphous alloy stacked core - Google Patents
Method for improvement in magnetic properties of amorphous alloy stacked coreInfo
- Publication number
- JPS61248507A JPS61248507A JP60088847A JP8884785A JPS61248507A JP S61248507 A JPS61248507 A JP S61248507A JP 60088847 A JP60088847 A JP 60088847A JP 8884785 A JP8884785 A JP 8884785A JP S61248507 A JPS61248507 A JP S61248507A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous alloy
- thin plate
- iron core
- iron loss
- local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は主として電カドランス、高周波トランスなど
の電力変換器に用いられる非晶質合金よりなる積み鉄心
の磁気特性を改善する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for improving the magnetic properties of stacked iron cores made of amorphous alloys used primarily in power converters such as cadence transformers and high-frequency transformers.
(従来の技術)
溶融状態から急冷凝固することによって作製される非晶
質合金薄板あるいは帯は種々の優れた性質を示し、応用
上注目されている。なかでも、Fe基非晶質合金は飽和
磁束密度が高く、鉄損が低いため配電トランスなど各種
鉄心の材料として利用されつつある。(Prior Art) Amorphous alloy thin plates or strips produced by rapid solidification from a molten state exhibit various excellent properties and are attracting attention for their applications. Among these, Fe-based amorphous alloys have high saturation magnetic flux density and low iron loss, and are therefore being used as materials for various iron cores such as power distribution transformers.
上述のように非晶質金属は本来鉄損の低い材料であるが
、ざらに鉄損を改善する方法も提案されている。As mentioned above, amorphous metals are inherently low core loss materials, but methods have also been proposed to roughly improve core loss.
鉄損を低減する方法としては従来から方向性けい素鋼板
に用いられている方法の適用がまず考えられる。たとえ
ばスクラッチ法である。これは硬い材質の尖った先端で
けい素鋼板の表面を罫書くもので、磁区が細分化され鉄
損が低減する。The first possible method for reducing iron loss is to apply the method conventionally used for grain-oriented silicon steel sheets. For example, the scratch method. This uses a sharp tip made of hard material to score the surface of a silicon steel plate, dividing the magnetic domains into smaller pieces and reducing iron loss.
また、他の方法として局部結晶化の方法が提案されてい
る。これは特開昭57−97808号公報にて開示され
る方法で、薄板の幅方向に線状あるいは点列状の結晶化
領域を形成させるものである。ここで結晶化の手法はレ
ーザ光や電子ビームを照射するか、あるいは金属針、金
属エツジの何れかを薄板表面に近接ないし接触させなが
ら通電加熱する方法を採用している。Additionally, a local crystallization method has been proposed as another method. This is a method disclosed in Japanese Unexamined Patent Publication No. 57-97808, in which crystallized regions are formed in the form of lines or dots in the width direction of a thin plate. Here, the crystallization method employs irradiation with laser light or electron beam, or heating with electricity while bringing either a metal needle or a metal edge close to or in contact with the surface of the thin plate.
ところで、上記スクラッチ法を非晶質合金薄板にこれを
適用しても必ずしも良好な結果を得なかった。たとえば
、NaritaらはProceedings of4t
h International Conferenc
e on RapidlyQuenched Meta
ls(1982)P 1001NP 1004において
、Fe基非晶質合金薄板に焼鈍を施した後ダイヤモンド
針で薄板の表面を罫書いて導入した線状の歪が鉄損にお
よぼす効果を報告している。それによれば歪の効果は5
kHz以上の高周波数域で表われるが、電カスランス等
で重要な100Hz以下の低周波数域では鉄損はむしろ
増大している。この理由としてけい素鋼板に比べて板厚
の薄い非晶質合金では低周波数域において元来、渦電流
損が小さいため磁区細分化による鉄損低減効果はわずか
であること、むしろヒステリシス損の増大によって全鉄
損が増大するためと推定される。By the way, even when the above-mentioned scratch method was applied to an amorphous alloy thin plate, good results were not necessarily obtained. For example, Narita et al.
h International Conference
e on RapidlyQuenched Meta
ls (1982) P 1001NP 1004 reports the effect of linear strain introduced by annealing an Fe-based amorphous alloy thin plate and then scribing the surface of the thin plate with a diamond needle on iron loss. According to this, the effect of distortion is 5
Iron loss appears in a high frequency range of kHz or more, but it actually increases in a low frequency range of 100 Hz or less, which is important for electric cast lances and the like. The reason for this is that in amorphous alloys, which are thinner than silicon steel sheets, the eddy current loss is originally small in the low frequency range, so the effect of reducing iron loss by magnetic domain refinement is small, and on the contrary, the hysteresis loss increases. This is presumed to be because the total iron loss increases.
また、前記特開昭57−97f108号公報で開示され
た局部結晶化領域を導入する方法は、磁区の細分化に有
効な手段ではある。しかし、低周波数域での鉄損低減に
対して必ずしも一定の効果を示さない欠点がある。すな
わち、この公報には商用周波数で効果を表わすと記載さ
れている。しかし、Naritaらの前記論文によれば
スクラッチ法に比べると低周波数側まで効果のある領域
は広がっているが、200Hz以下では無効あるいはむ
しろ劣化している。Further, the method of introducing local crystallized regions disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 57-97F108 is an effective means for subdividing magnetic domains. However, there is a drawback that it does not necessarily show a certain effect on reducing iron loss in a low frequency range. That is, this publication states that the effect is exhibited at commercial frequencies. However, according to the paper by Narita et al., although the effective range extends to the low frequency side compared to the scratch method, it is ineffective or rather deteriorates below 200 Hz.
以上のように非晶質合金とくにFe基非晶質合金薄板の
鉄損を改善するために従来試みられてきた方法はいずれ
も商用周波数帯域では効果を示さないことが多かった。As described above, all the methods conventionally attempted to improve the core loss of amorphous alloys, particularly Fe-based amorphous alloy thin plates, have often been ineffective in commercial frequency bands.
低周波数帯域で鉄損低減効果の大きな方法として、本発
明者らはすでに特願昭59−89347号に記載される
方法を提案している。その方法は非晶質合金薄板の表面
を局部的かつ瞬間的に溶解し、次いで急冷凝固させて再
び非晶質化させる方法である0局所溶解部の導入形態は
第3図に例示するように並列する線または点列状である
。線および点列の方向は第3図に示したように、薄帯の
幅方向が最もよく、30°程度以内の傾きは許容される
。The present inventors have already proposed a method described in Japanese Patent Application No. 59-89347 as a method that has a large iron loss reduction effect in a low frequency band. The method involves melting the surface of an amorphous alloy thin plate locally and instantaneously, and then rapidly solidifying it to make it amorphous again.The introduction mode of the zero local melting part is illustrated in Figure 3. It is like a series of parallel lines or dots. As shown in FIG. 3, the direction of the lines and dots is best in the width direction of the ribbon, and an inclination within about 30° is permissible.
また線または点列の平均間隔は商用周波数に対して1〜
20mmとするものであった。−さらに局所溶解部を導
入する具体的手段および溶解部の形態に関する詳細につ
いて、同様に本発明者らによる特願昭59−14858
9号に記載がある。Also, the average interval of lines or dots is 1 to 1 for commercial frequencies.
It was to be 20 mm. - Further details regarding the specific means for introducing the local dissolution part and the form of the dissolution part are also disclosed in Japanese Patent Application No. 59-14858 by the present inventors.
It is stated in No. 9.
それによれば、非晶質合金薄帯の表面を局所的に溶解す
る手段は、ビーム径が0.5mmφ以下に絞ったレーザ
光、好ましくはビーム径が0.3+sraφ以下で単一
パルス当りのエネルギ密度が0.02〜1.OJ/mm
2であるパルスレーザを照射するものである。According to this report, the means for locally melting the surface of an amorphous alloy ribbon is to use a laser beam focused to a beam diameter of 0.5 mmφ or less, preferably a beam diameter of 0.3 + sraφ or less, and with a high energy per single pulse. Density is 0.02-1. OJ/mm
It irradiates with a pulse laser of 2.
これらの照射条件の下でレーザ照射された薄帯は、通常
、巻き鉄心に形成され、その後熱処理を施される。非晶
質合金は、板厚が20〜30μ腸で薄いために鉄心形状
はほとんど巻き鉄心に限られていた0巻き鉄心の場合用
いられる薄帯は、全長に亘すレーザが照射されるのが一
般的である。The ribbon irradiated with a laser under these irradiation conditions is usually formed into a wound core and then subjected to heat treatment. Amorphous alloys are thin, with a plate thickness of 20 to 30 μm, so the core shape is mostly limited to wound cores.The thin ribbon used in the case of zero-wound cores is difficult to irradiate with the laser over the entire length. Common.
ところが最近板厚が50μmを越え100μmにおよぶ
厚手の材料も製造可能となり、積み鉄心へ非晶質材料の
適用が検討されるようになった。However, recently it has become possible to manufacture thick materials with a thickness exceeding 50 μm and even up to 100 μm, and the application of amorphous materials to laminated iron cores has been considered.
積み鉄心の場合にも局所溶解によって局部歪を導入する
ことによって鉄損の低減が図れることは+−じ@4旧!
l−1へ40旧長に塊示されている。Even in the case of stacked iron cores, it is possible to reduce iron loss by introducing local strain through local melting.
A block of 40 old lengths is shown to l-1.
(発明が解決しようとする問題点)
このように非晶質材料を積み鉄心に使用することは有効
な手段であるが、積層した場合、単板における測定値に
比較して特性が劣化することが認められた。すなわち占
積率(ビルディングファクター)が大きいことが認めら
れた。(Problems to be Solved by the Invention) Although it is an effective means to use an amorphous material in the laminated core as described above, when laminated, the characteristics deteriorate compared to the measured values of a single plate. was recognized. In other words, it was recognized that the space factor (building factor) was large.
本発明は積み鉄心において局部歪導入の効果を従来より
高め鉄損を大幅に低減する方法を提供しようとするもの
である。The present invention aims to provide a method of increasing the effect of introducing local strain in a stacked core compared to the conventional method and significantly reducing iron loss.
(問題点を解決するための手段)
この発明の方法は、板厚が50μ厘以上のFe基非晶質
合金を積み鉄心に構成したときの磁束方向に間隔をおき
、かつ磁束方向に対し80@〜120°の傾きをもって
延びる線に沿い、非晶質合金薄板を局部的かつ瞬間的に
溶解し、次いで急冷凝固させることによって、局所的に
歪を導入する。なお溶解部および周辺部は実質的に非晶
質状態を保持しなければならない。(Means for Solving the Problems) The method of the present invention is such that when a Fe-based amorphous alloy with a plate thickness of 50 μm or more is constructed into a laminated iron core, spaces are placed in the direction of magnetic flux, and Strain is introduced locally by locally and instantaneously melting the amorphous alloy thin plate along a line extending with an inclination of ~120°, and then rapidly solidifying it. Note that the melting zone and the surrounding zone must maintain a substantially amorphous state.
導入される局所溶解部の形状および分布は、単相変圧器
鉄心では第1図(a)に例示するように、脚部およびヨ
ーク部では、幅方向に並列する線状または点列状であり
、コーナー部は局所溶解処理をしないままにしておく。The shape and distribution of the introduced local melting portions are linear or dotted in parallel in the width direction in the leg and yoke portions of a single-phase transformer core, as illustrated in FIG. 1(a). , the corner portions are left without local dissolution treatment.
また三相変圧器鉄心においては、脚部およびヨーク部で
は単相変圧器鉄心の場合と同様の条件で局所溶解部を導
入するが、コーナー部およびT形波合部に該当する部分
には第2図(a)に例示するように局所溶解処理を施さ
ないままにしておくことが好ましい。In addition, in the three-phase transformer core, local melting parts are introduced in the leg parts and yoke parts under the same conditions as in the case of the single-phase transformer core, but in the corner parts and the parts corresponding to the T-shaped wave combination part. It is preferable to leave the local dissolution treatment as is, as illustrated in FIG. 2(a).
側々の溶解部の面積および深さは、加熱中あるいは溶解
後の再凝固過程において、溶解部および周辺部が結晶化
しないことを条件、に決められる。The area and depth of the lateral melting parts are determined on the condition that the melting parts and the surrounding parts do not crystallize during heating or during the resolidification process after melting.
照射強度、ビーム径、掃引速度、周波数(パルスモード
の場合)などが制御すべきパラメータである。The parameters to be controlled include irradiation intensity, beam diameter, sweep speed, and frequency (in the case of pulse mode).
溶解部の線幅は0.3mm以下、点列の場合には1つの
スポットの径は0.51層以下が好ましい、これら範囲
を越えると結晶化を生じることがあり、磁気特性の向上
も認められなくなる。The line width of the melted part is preferably 0.3 mm or less, and in the case of a dot array, the diameter of one spot is preferably 0.51 layers or less. Exceeding these ranges may cause crystallization, and improved magnetic properties are also observed. I won't be able to do it.
導入する局所溶解部の線または点列りの方向は第3図に
示したように薄板lの磁束方向Rに対して直角方向がよ
いが、この直角方向に対し前後に30”程度までならば
傾いた方向でもよい。The direction of the line or dot array of the locally melted part to be introduced is preferably perpendicular to the magnetic flux direction R of the thin plate l, as shown in Fig. It may be in a tilted direction.
隣り合う線または点列りは平行である必要はなく、また
直線である必要もない、上記直角方向に対する平均傾角
が所定数値以下で、隣り合う線または点列りの平均間隔
dが所定の範囲内であれば鉄損低減に効果をあられす、
したがって、第4図に示す正弦曲線りに沿って導入され
る溶解部も本発明の範囲に含まれる。 商用周波数に対
して効果を示す線または点列の平均間隔dは1〜20m
m、上記直角方向に対する平均角度は30°以下が好ま
しい。Adjacent lines or series of dots do not need to be parallel or straight; the average inclination angle with respect to the perpendicular direction is less than or equal to a predetermined value, and the average interval d between adjacent lines or series of dots is within a predetermined range. If it is within the range, it will be effective in reducing iron loss.
Therefore, the scope of the present invention also includes a dissolving portion introduced along the sinusoidal curve shown in FIG. The average interval d of lines or dots showing the effect on commercial frequencies is 1 to 20 m.
m, the average angle with respect to the above-mentioned perpendicular direction is preferably 30° or less.
本発明において、局所溶解部を導入する時期は非晶質合
金薄板lを熱処理する工程の前、中、後のいずれでもよ
い、ただし、最適条件は溶解部を導入する時期によって
異なる0例えばYAGレーザのパルスモードを用いて幅
方向に局所溶解部を導入する場合、第5図および第6図
に示すように導入の時期によって宥効な溶解一部の径が
異なっている。すなわち、熱゛処理後に導入する場合に
は最適なスポット径は50〜100μmであるが、熱処
理前に導入する場合は200〜250μmの付近で最も
効果的であった。この理由は溶解部導入の影響が熱処理
によって緩和することによると考えられる。導入の時期
による効果の違いは励磁特性にも現われる。In the present invention, the timing of introducing the local melting zone may be before, during, or after the step of heat treating the amorphous alloy thin plate l.However, the optimum conditions vary depending on the time of introducing the melting zone.For example, YAG laser When a local dissolution part is introduced in the width direction using the pulse mode, the diameter of the effective dissolution part varies depending on the time of introduction, as shown in FIGS. 5 and 6. That is, when introduced after heat treatment, the optimum spot diameter is 50 to 100 μm, but when introduced before heat treatment, the most effective spot diameter is around 200 to 250 μm. The reason for this is thought to be that the effect of introducing the melted zone is alleviated by heat treatment. Differences in effectiveness depending on the timing of introduction also appear in excitation characteristics.
熱処理後に導入したものは、磁界10eにおける磁束密
度が数2〜1ozの低下を示すのに対して、熱処理前に
導入したものでは磁束密度の低下はほとんどなかった。Those introduced after heat treatment showed a decrease in magnetic flux density of several 2 to 1 oz in the magnetic field 10e, whereas those introduced before heat treatment showed almost no decrease in magnetic flux density.
非晶質合金薄板の表面を局所溶解するために、急速加熱
すべき具体的手段はすでに述べてきたように細く絞った
レーザ光を短時間照射するのが最適である。その他の手
段では効果がないか、むしろ悪影響をもたらす、電子ビ
ームの照射や高温物体を接触させたり局部的に通電した
りする方法によって溶解しようとすると、入射エネルギ
密度が小さいために熱影響が拡がり結晶化が生ずるので
好ましくない。In order to locally melt the surface of the amorphous alloy thin plate, the best way to rapidly heat it is to irradiate it with a narrowly focused laser beam for a short period of time, as described above. If melting is attempted by methods such as electron beam irradiation, contact with high-temperature objects, or localized electrical current, which are otherwise ineffective or even have negative effects, the thermal effect will spread due to the small incident energy density. This is not preferred because crystallization occurs.
本発明を適用するときの鉄損改善効果は材料の板厚に依
存し、第7図のように板厚が大きくなるほど改善効果が
大きい(図中0印は照射前、・印は照射後)、板厚80
μ閣で40〜50にの鉄損低減効果を示すのに対して、
304g厚以下では10〜20%程度である。この理由
は非晶質合金は一般に板厚が大きくなるほど磁区幅が大
きくなり、異常渦電流損の絶対値および全鉄損に占める
割合が増大するためである1本発明の局所溶解部の導入
によって磁区幅は板厚80usの場合、局に細分化され
ることが走査型電子顕微鏡による観察によって検証され
た。The iron loss improvement effect when applying the present invention depends on the thickness of the material, and as shown in Figure 7, the larger the plate thickness, the greater the improvement effect (0 mark in the figure is before irradiation, ・ mark is after irradiation) , plate thickness 80
While μ-kaku shows an iron loss reduction effect of 40 to 50,
When the thickness is 304 g or less, it is about 10 to 20%. The reason for this is that the magnetic domain width of amorphous alloys generally increases as the sheet thickness increases, and the absolute value of abnormal eddy current loss and its proportion to the total iron loss increase. It was verified by observation using a scanning electron microscope that the magnetic domain width is subdivided into regions when the plate thickness is 80 us.
本発明においてレーザ光照射された部分が一旦溶解した
後再凝固したか否かは照射部を光学顕微鏡あるいは走査
型電子顕微鏡で観察することによって明瞭に区別できる
。パルスで照射した場合溶解した部分の中心部はくぼみ
となり、周辺はやや盛り上っている。急激な熱エネルギ
の入射により溶解された合金は周辺に溢れ出すためと考
えられる。In the present invention, whether or not the portion irradiated with the laser beam has once melted and then resolidified can be clearly distinguished by observing the irradiated portion with an optical microscope or a scanning electron microscope. When irradiated with pulses, the center of the melted part becomes a depression, and the periphery becomes slightly raised. This is thought to be because the alloy melted by the rapid incidence of thermal energy overflows into the surrounding area.
なお、本発明においてレーザ照射によって局部溶解され
再凝固した部分およびその周辺部が結晶化していないこ
とはx&!回折、透過型電子顕微鏡、光学顕微鏡などに
よって確認された。In addition, in the present invention, the area locally melted and resolidified by laser irradiation and the surrounding area are not crystallized. This was confirmed by diffraction, transmission electron microscopy, optical microscopy, etc.
また、本発明方法は薄板表面に絶縁または目的とした表
面処理を施す前または後に適用しても同様の効果を示す
。Further, the method of the present invention exhibits similar effects even when applied before or after applying insulation or targeted surface treatment to the surface of a thin plate.
(作用)
この発明では非晶質合金薄板を積み鉄心に構成したとき
に、そのコーナー部、T形波合部を除く部分の薄板の表
面を局部的かつ瞬間的に溶解し、次いで急冷凝固させて
再び非晶質化する。(Function) In this invention, when amorphous alloy thin plates are formed into a stacked iron core, the surfaces of the thin plates except for the corners and T-shaped corrugations are locally and instantaneously melted, and then rapidly solidified. It becomes amorphous again.
このとき、局所溶解処理は磁束方向に対し6o−120
′″の傾きをもって伸びる線に沿って行なわれる。この
結果、非晶質合金薄板の溶解処理部の磁区が細分化され
るとともに、磁壁が磁束方向に配列する。また、磁束が
湾曲するコーナー部およびT形波合部は溶解処理を行な
わずに非晶質の等方性を残すことによって、鉄損の増加
を防止できる。したがって、鉄心全体の鉄損を有利に低
減できる。At this time, the local dissolution treatment is 6o-120 in the magnetic flux direction.
This is carried out along a line extending with an inclination of By leaving the T-shaped corrugated portion in an amorphous isotropic state without performing melting treatment, an increase in iron loss can be prevented.Therefore, the iron loss of the entire core can be advantageously reduced.
(実施例) 次に実施例をあげて説明する。(Example) Next, an example will be given and explained.
実施例1
単ロール法で作製された、組成Fe5o、 5si6.
5B+ 2CI、板厚75μm1幅50層厘の鋳造まま
の非晶質合金薄板の自由面に、YAGレーザを用いて局
所溶解部を導入し、引き続き 380℃で60分間N2
ガス中で磁場焼鈍した薄板の磁性の単板特性および単相
の積層鉄心の特性を比較する実験を行なった。レーザ照
射条件は1周波数400Hzのパルスモード、ビーム径
0.15mm、パワー5111.掃引速度10cII/
sec、照射部の形態は、単板の場合は第3図(b)の
ように板の全面が、幅方向に平行で5mm間隔の点列か
ら成り、積み鉄心においては第1図(a)のようにコー
ナー部を除く部分すなわち脚部、ヨーク部に単板と同じ
条件で局所溶解部を導入した板を積み上げたもの(本発
明)と第2図(b)のように全面に局所溶解部を導入し
た板を積み上げたもの(比較例)の磁気特性を測定して
、それらを比較した。Example 1 Compositions Fe5o, 5si6. produced by a single roll method.
A local melting zone was introduced into the free surface of an as-cast amorphous alloy thin plate of 5B+ 2CI, thickness 75 μm, width 50 layers, using a YAG laser, and then N2 was heated at 380°C for 60 minutes.
An experiment was conducted to compare the magnetic properties of a thin plate annealed in a gas atmosphere with a single-phase laminated core. The laser irradiation conditions were a pulse mode with a frequency of 400 Hz, a beam diameter of 0.15 mm, and a power of 5111. Sweep speed 10cII/
sec, the form of the irradiation part is as shown in Figure 3 (b) in the case of a single plate, where the entire surface of the plate consists of a row of dots parallel to the width direction and spaced at 5 mm intervals, and in the case of a stacked core, as shown in Figure 1 (a). As shown in Figure 2(b), there is a stack of boards in which locally melted parts are introduced in the legs and yoke parts except for the corners (the present invention) under the same conditions as the veneer, and as shown in Figure 2 (b), there is a stack of boards with locally melted parts introduced in the legs and yoke parts under the same conditions as the veneer. The magnetic properties of a stack of plates in which the compound was introduced (comparative example) were measured and compared.
ただし、いずれも端層方法は一枚積みである。磁気特性
の測定結果を第1表に示す。However, in both cases, the end layer method is one-layer stacking. Table 1 shows the measurement results of magnetic properties.
第1表から明らかにように、本発明の方法によって処理
された積層鉄心は、比較例に比べて鉄損したがってビル
ディングファクタが小さく、積層したときの特性がすぐ
れていることが分かる。As is clear from Table 1, it can be seen that the laminated cores treated by the method of the present invention have lower core loss and therefore lower building factor than the comparative example, and have superior characteristics when laminated.
第 1 表
鉄損は50Hz、 1.3丁eslaにおける鉄損ビル
ディングファクタは(me鉄心の鉄損)/(単板の鉄損
)
実施例2
実施例1で用いた同一ロットの非晶質合金薄板を用いて
三相の積層鉄心の特性を比較する実験を行なった。照射
の形態は第2図(a)−(本発明)および(b)−(比
較例)のごとくで、照射条件は実施例1のそれと同一で
あった。Table 1 The iron loss is 50Hz, and the iron loss building factor at 1.3 tesla is (me core iron loss)/(single plate iron loss) Example 2 Amorphous alloy of the same lot used in Example 1 An experiment was conducted to compare the characteristics of three-phase laminated cores using thin plates. The mode of irradiation was as shown in FIG. 2(a)-(present invention) and FIG. 2(b)-(comparative example), and the irradiation conditions were the same as those of Example 1.
各々の磁気特性の測定結果を第2表に示す。Table 2 shows the measurement results of each magnetic property.
第2表から明らかなように本発明の方法によって処理さ
れた三相積層鉄心は、比較例に比べて鉄損したがってビ
ルディングファクタが小さく積層したときの特性がすぐ
れていることが分かる。As is clear from Table 2, it can be seen that the three-phase laminated core treated by the method of the present invention has a smaller core loss and thus a building factor than the comparative example, and has excellent characteristics when laminated.
第2表
(発明の効果)
以上説明したように本発明の方法に従えば、非晶質合金
薄板を積み鉄心に構成したときの鉄損の劣化を最小限に
抑え、効率を高めることが可能になる。Table 2 (Effects of the Invention) As explained above, by following the method of the present invention, it is possible to minimize the deterioration of iron loss and increase efficiency when stacking amorphous alloy thin plates into a core. become.
第1図(a)および第2図(a)は本発明の方法を適用
した単相変圧器鉄心および三相変圧器鉄心を示す説明図
、第1図(b)および第2図(b)はそれぞれ単相およ
び三相変圧器鉄心の比較例を示す説明図、第3図および
第4図は局所溶解部の導入形態を例示する説明図、第5
図および第6図は導入する溶解部の径と鉄損の関係を示
す図、ただし第5図は熱処理後に溶解部を導入する場合
を示し、第6図は熱処理前に導入する場合を示す。第7
図は非晶質合金薄板の板厚と鉄損の関係を示す図。
白丸は溶解処理なし、黒丸は処理後の特性を示す。Figures 1(a) and 2(a) are explanatory diagrams showing a single-phase transformer core and a three-phase transformer core to which the method of the present invention is applied, and Figures 1(b) and 2(b) are explanatory diagrams showing comparative examples of single-phase and three-phase transformer cores, respectively; FIGS. 3 and 4 are explanatory diagrams illustrating the introduction form of local melting parts;
6 and 6 are diagrams showing the relationship between the diameter of the melted part to be introduced and iron loss, however, FIG. 5 shows the case where the melted part is introduced after heat treatment, and FIG. 6 shows the case where it is introduced before heat treatment. 7th
The figure shows the relationship between the thickness and iron loss of an amorphous alloy thin plate. White circles indicate properties without dissolution treatment, and black circles indicate properties after treatment.
Claims (1)
心に構成したときの積み鉄心のコーナー部および三相変
圧器積み鉄心のT形接合部を構成する部分を除く部分の
該薄板の表面に局部的溶解処理を施すことを特徴とする
非晶質合金積み鉄心の磁性改善方法。When a stacked iron core is composed of Fe-based amorphous alloy thin plates with a plate thickness of 50 μm or more, the surface of the thin plate in the parts other than the corner parts of the stacked iron core and the parts that constitute the T-shaped joint of the three-phase transformer stacked iron core. A method for improving the magnetism of an amorphous alloy laminated iron core, characterized by subjecting it to local melting treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60088847A JPS61248507A (en) | 1985-04-26 | 1985-04-26 | Method for improvement in magnetic properties of amorphous alloy stacked core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60088847A JPS61248507A (en) | 1985-04-26 | 1985-04-26 | Method for improvement in magnetic properties of amorphous alloy stacked core |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61248507A true JPS61248507A (en) | 1986-11-05 |
Family
ID=13954367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60088847A Pending JPS61248507A (en) | 1985-04-26 | 1985-04-26 | Method for improvement in magnetic properties of amorphous alloy stacked core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61248507A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7830236B2 (en) | 2008-09-09 | 2010-11-09 | Gm Global Technology Operations, Inc. | DC-DC converter for fuel cell application using hybrid inductor core material |
JP2012174824A (en) * | 2011-02-21 | 2012-09-10 | Hitachi Metals Ltd | MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE |
JP2016072556A (en) * | 2014-10-01 | 2016-05-09 | 株式会社村田製作所 | Electronic component |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5683012A (en) * | 1979-12-11 | 1981-07-07 | Nippon Steel Corp | Improving method for iron loss of transformer core |
-
1985
- 1985-04-26 JP JP60088847A patent/JPS61248507A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5683012A (en) * | 1979-12-11 | 1981-07-07 | Nippon Steel Corp | Improving method for iron loss of transformer core |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7830236B2 (en) | 2008-09-09 | 2010-11-09 | Gm Global Technology Operations, Inc. | DC-DC converter for fuel cell application using hybrid inductor core material |
DE102009040157B4 (en) * | 2008-09-09 | 2012-07-12 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | DC-DC converter for a fuel cell application using a hybrid inductor core material |
JP2012174824A (en) * | 2011-02-21 | 2012-09-10 | Hitachi Metals Ltd | MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE |
JP2016072556A (en) * | 2014-10-01 | 2016-05-09 | 株式会社村田製作所 | Electronic component |
US9997288B2 (en) | 2014-10-01 | 2018-06-12 | Murata Manufacturing Co., Ltd. | Electronic component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5477438B2 (en) | Method for producing grain-oriented electrical steel sheet | |
KR101421391B1 (en) | Grain oriented electrical steel sheet | |
JP6010907B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
US11638971B2 (en) | Grain-oriented silicon steel with low core loss and manufacturing method therefore | |
JP2018037572A (en) | Wound core, and manufacturing method of wound core | |
KR102133909B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
US4919733A (en) | Method for refining magnetic domains of electrical steels to reduce core loss | |
JPS6254873B2 (en) | ||
US4915750A (en) | Method for providing heat resistant domain refinement of electrical steels to reduce core loss | |
JP6838321B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet | |
CN114829639B (en) | Oriented electrical steel sheet and method for refining magnetic domains thereof | |
JP2019135323A (en) | Grain-oriented electromagnetic steel sheet, wound iron core, method for manufacturing grain-oriented electromagnetic steel sheet, and method for manufacturing wound iron core | |
JPH07320922A (en) | One directional electromagnetic steel sheet at low iron loss | |
JPS61248507A (en) | Method for improvement in magnetic properties of amorphous alloy stacked core | |
KR102149826B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JPH0332888B2 (en) | ||
JPH0332886B2 (en) | ||
CN114255971A (en) | Heat-resisting notch oriented silicon steel and notching method thereof | |
JP7582466B2 (en) | Grain-oriented electrical steel sheet | |
WO2024111642A1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
US12051529B2 (en) | Oriented electrical steel sheet and method for producing same | |
KR20240098852A (en) | Grain oriented electrical steel sheet and method for refining magnetic domains therein | |
KR930004850B1 (en) | Process for making oriented electrical steel sheet | |
KR20240158289A (en) | Directional electrical steel sheet and method for manufacturing the same | |
KR20240098423A (en) | Grain oriented electrical steel sheet and manufacturing method of the same |