[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61247696A - Device for vapor phase synthesis of diamond - Google Patents

Device for vapor phase synthesis of diamond

Info

Publication number
JPS61247696A
JPS61247696A JP8979085A JP8979085A JPS61247696A JP S61247696 A JPS61247696 A JP S61247696A JP 8979085 A JP8979085 A JP 8979085A JP 8979085 A JP8979085 A JP 8979085A JP S61247696 A JPS61247696 A JP S61247696A
Authority
JP
Japan
Prior art keywords
reaction chamber
substrate
diamond
waveguide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8979085A
Other languages
Japanese (ja)
Other versions
JPH0637348B2 (en
Inventor
Koji Kobashi
宏司 小橋
Hiroshi Hirai
洋 平井
Takeo Kawate
川手 剛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60089790A priority Critical patent/JPH0637348B2/en
Publication of JPS61247696A publication Critical patent/JPS61247696A/en
Publication of JPH0637348B2 publication Critical patent/JPH0637348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily and exactly perform temp. control of a substrate and to permit the use of a large substrate by providing an induction heating coil for heating the substrate in addition to a microwave irradiating device for generating plasma in gas. CONSTITUTION:A microwave irradiating device 11 is connected to an end of a microwave waveguide 1 and a reaction chamber 2 is attached to another end of the waveguide 1. 12 is a shield comprising quartz glass. The reaction chamber 2 is constituted of a nonmetallic material such as quartz and connected to an exhaust device 21 interposing an exhaust pipe 20 and a flow control valve 24. A gas feed pipe 3 is connected to another end of the reaction chamber 2. Another end of the gas feed pipe 3 is connected to a gas feeding source 31 interposing a flow control valve 35 interposing each flow control valve 32, 33, and 34 provided to each branch pipe. Further, a substrate for depositing diamond 4 is arranged to the inside of the reaction chamber 2 and an induction heating coil 7 arranged to heat the substrate 4 is provided to the external periphery of the reaction chamber 2.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ダイヤモンドを析出させる基板の温度管理
を容易かつ正確に行うことができるJ:うにしたダイヤ
モンド気相合成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a diamond vapor phase synthesis apparatus that can easily and accurately control the temperature of a substrate on which diamond is deposited.

(従来技術) マイクロ波を用いたプラズマCVD装dは、金属酸化物
半導体、セラミック、有機物等の薄膜形成に利用されて
いる。これらの多くの装置は、基板や形成膜の加熱、熱
的影響を最小限に抑えるように設計されている。」二記
プラズマCVD装首はダイヤモンドの気相合成にも適用
されるが、この場合は反応機構に関与するラジカル種の
府命が短いために、基板をプラズマ中に配置しな(プれ
ばならず、しかもダイヤモンド結晶成長を促すために、
基板温度は800〜1000℃の高温に保だな【プれば
ならない。
(Prior Art) Plasma CVD equipment using microwaves is used for forming thin films of metal oxide semiconductors, ceramics, organic materials, and the like. Many of these devices are designed to minimize heating and thermal effects on the substrate and formed film. 2. Plasma CVD necking is also applied to the vapor phase synthesis of diamond, but in this case, the lifetime of the radical species involved in the reaction mechanism is short, so the substrate must not be placed in the plasma. In order to promote diamond crystal growth,
The substrate temperature must be kept at a high temperature of 800 to 1000 degrees Celsius.

上記ダイヤモンド合成装置としては、例えば特開昭59
−3098号公報に示されるものが知られている。これ
はマイクロ波が伝送されるマイク[1波導波管の先端部
付近を、非金属製の反応管を貫通させて配置するととも
に、その反応管の内部にダイヤモンド析出用基板を配置
し、マイクロ波の照射によって反応管内のガスにプラズ
マを発生させるとともに、基板を加熱するJ:うにした
ものである。
As the above-mentioned diamond synthesis device, for example, JP-A-59
The one shown in Japanese Patent No. 3098 is known. This is a microphone that transmits microwaves [near the tip of a single-wave waveguide is placed through a non-metallic reaction tube, and a diamond deposition substrate is placed inside the reaction tube. The irradiation generates plasma in the gas inside the reaction tube and heats the substrate.

上記装置によりダイヤモンドを基板」二に析出させるに
は、つぎのような工程要素がある。
The following process elements are involved in depositing diamond onto a substrate using the above apparatus.

(A>反応管内を真空にする。(A> Make vacuum inside the reaction tube.

(B)CH4が1%程度のCH4−H2混合ガスを、約
50mρ/minで反応管内が約50Torrになるよ
うに流す。
(B) A CH4-H2 mixed gas containing approximately 1% CH4 is flowed at a rate of approximately 50 mρ/min such that the pressure inside the reaction tube is approximately 50 Torr.

(C)反応管内にマイクロ波の定在波を発生させること
により、基板周辺にプラズマを発生させる。
(C) Plasma is generated around the substrate by generating standing microwave waves in the reaction tube.

(D)基板自体もマイクロ波で誘導加熱する。(D) The substrate itself is also induction heated using microwaves.

(E)基板が800〜1000’Cになるように上記諸
条件を設定する。
(E) The above conditions are set so that the temperature of the substrate is 800 to 1000'C.

上記基板の温度は、マイクロ波の出力、基板の種類、ガ
ス流量、ノJス圧等に依存づ−る。ところが、これらの
パラメータはダイヤモンド成長速度等の形成条件を規定
するので、上記装「ゴにおりるようなマイクロ波のみの
調整による場合は、上記所定の基板温度と形成条件どを
同時に満足させることが困難である。
The temperature of the substrate depends on the output of the microwave, the type of substrate, the gas flow rate, the gas pressure, etc. However, these parameters define the formation conditions such as the diamond growth rate, so when adjusting only the microwave as in the above system, it is necessary to simultaneously satisfy the above-mentioned predetermined substrate temperature and formation conditions. is difficult.

また上記装置においては、反応管が導波管を貫通してい
るために反応管の口径は導波管の幅(2450Ml−1
zのマイクロ波用導波管では約1Qcm)以下にしなけ
ればならず、とくにマイクロ波の漏洩を防lトするため
には反応管は導波管J:りも充分に小さい口径にする必
要があった。このため、ダイヤモンドを析出させる基板
を大型化することができなかった。
In addition, in the above device, since the reaction tube passes through the waveguide, the diameter of the reaction tube is the width of the waveguide (2450 Ml-1
The diameter of the reaction tube must be smaller than that of the waveguide J: in order to prevent microwave leakage. there were. For this reason, it has not been possible to increase the size of the substrate on which diamond is deposited.

(発明の目的) この発明は、このような従来の課題の解決のためになさ
れたものであり、ガスにプラズマを発生させるために照
射するマイクロ波とは別に、誘導加熱を利用して基板の
温度制御を容易かつ正確に行うようにし、しかも基板を
大型化することを可能にしたものである。
(Purpose of the Invention) This invention was made to solve such conventional problems, and in addition to microwaves that are irradiated to generate plasma in gas, induction heating is used to heat the substrate. This makes it possible to easily and accurately control temperature, and also to increase the size of the substrate.

(発明の構成) この発明は、マイクロ波が伝送されるマイクロ波導波管
ど、この導波管の先端部に取付()られた反応室と、こ
の反応室に接続されたガス供給源および排気装置と、反
応室の内部に配置されたダイヤモンド析出用基板と、反
応室の外周部に上記基板を誘導加熱するように配置した
誘導加熱コイルとを有するものである。
(Structure of the Invention) The present invention includes a microwave waveguide through which microwaves are transmitted, a reaction chamber attached to the tip of the waveguide, a gas supply source connected to the reaction chamber, and an exhaust gas source connected to the reaction chamber. The apparatus includes an apparatus, a substrate for diamond deposition placed inside a reaction chamber, and an induction heating coil placed around the outer periphery of the reaction chamber so as to heat the substrate by induction.

(実施例) 第1図において、マイクロ波導波管1の一端部にはマイ
クロ波照射装置11が接続され、導波管1の他端部には
反応室2が取イ;1(プられている。12は石英ガラス
からなるシールドである。この反応室2は石英等の非金
属で構成され、この反応室2には排気管20が接続され
、この排気管20に設(〕られた流流調調整弁/Iを介
して排気装置21が接続され、反応室2の他端部にはガ
ス供給管3が接続されている。このガス供給管3の他端
部は流量調整弁35および分岐管中に設置ノられた各派
量調整弁32.33.34を介してガス供給源31に接
続されている。
(Example) In FIG. 1, a microwave irradiation device 11 is connected to one end of a microwave waveguide 1, and a reaction chamber 2 is connected to the other end of the waveguide 1. 12 is a shield made of quartz glass.This reaction chamber 2 is made of a non-metal such as quartz, and an exhaust pipe 20 is connected to this reaction chamber 2. An exhaust device 21 is connected via a flow control valve /I, and a gas supply pipe 3 is connected to the other end of the reaction chamber 2.The other end of this gas supply pipe 3 is connected to a flow control valve 35 and It is connected to the gas supply source 31 via respective flow rate regulating valves 32, 33, 34 installed in the branch pipes.

また、反応室2の内部にはダイヤモンド析出用基板4が
配置され、この基板4は支持台5上に配置され、この支
持台5は支持棒6にJ:つて支持され、この支持棒6は
反応室2に着脱可能に取イ」けられた蓋8に結合されて
いる。また反応室の外周部には上記基板4を誘導加熱す
るように配置した誘導加熱用コイル7が配置されている
Further, a diamond deposition substrate 4 is arranged inside the reaction chamber 2, and this substrate 4 is arranged on a support stand 5, which is supported by a support rod 6, and this support rod 6 is It is connected to a lid 8 which is removably attached to the reaction chamber 2. Further, an induction heating coil 7 is disposed at the outer periphery of the reaction chamber so as to inductively heat the substrate 4 .

なお、上記支持棒6中には冷却水通路を形成し、そこに
冷却水を通ずことにより基板4の温度を調整することが
できるようにしてもよい。
Note that a cooling water passage may be formed in the support rod 6 so that the temperature of the substrate 4 can be adjusted by passing cooling water therethrough.

第2図はこの発明の別の実施例を示し、導波管1の先端
部には直径が徐々に増大する先広がり部19が形成され
、その先端部に反応室2が接続されている。ずなわち、
導波管1から反応室2に移る際に急激に断面積が増大す
るのを防止し、先広がり部19により徐々に断面積が増
大するように、構成されている。その伯の構成は上記第
1図のものと同様である。
FIG. 2 shows another embodiment of the present invention, in which a diverging portion 19 whose diameter gradually increases is formed at the tip of the waveguide 1, and a reaction chamber 2 is connected to the tip. Zunawachi,
It is configured to prevent the cross-sectional area from rapidly increasing when moving from the waveguide 1 to the reaction chamber 2, and to gradually increase the cross-sectional area due to the widening portion 19. The configuration of the bar is similar to that in FIG. 1 above.

第3図はこの発明のさらに別の実施例を示し、 。FIG. 3 shows yet another embodiment of this invention.

反応室2の外周の誘導加熱用コイル7のさらに外側に磁
石コイル70が配置され、これによって反応゛挙2内に
磁場を発生させることができるようにしている。すなわ
ち、磁場の形成によって電子を磁場の中で加速し、高い
プラズマ密度が1qられるようにしている。したがって
、磁場の強さは電子がサイクロ1〜ロン共鳴を起すJ:
うに設定する。例えば、マイクロ波が2450MHzの
場合は875ガウスに設定すればよい。その他の構成は
第2図に示すものと同様である。なお、上記磁石コイル
70は第1図の装置においても採用することができる。
A magnet coil 70 is arranged further outside the induction heating coil 7 on the outer periphery of the reaction chamber 2, so that a magnetic field can be generated within the reaction chamber 2. That is, by forming a magnetic field, electrons are accelerated in the magnetic field, and a high plasma density is achieved by 1q. Therefore, the strength of the magnetic field is J:
Set to For example, if the microwave is 2450 MHz, it may be set to 875 Gauss. The rest of the structure is the same as that shown in FIG. Note that the magnet coil 70 described above can also be employed in the apparatus shown in FIG.

上記構成において、流量調整弁32,33.34により
Cl−14,1−12および不活性ガスがそれぞれ所定
量流出され、所定のCH4l−12U合ガスどして流9
1整弁35から送り出されるとともに、排気装置21か
ら吸引されることにより反応室2中に所定の圧力で上記
C1〜+4−1−12混合ガスが供給される。CI−1
4の112に対する割合は、例えば1%程度に設定され
、このガスを流量的50mρ/minで反応管2内が約
50丁orrになるように設定する。
In the above configuration, a predetermined amount of Cl-14, 1-12 and inert gas are discharged by the flow rate regulating valves 32, 33, 34, respectively, and a predetermined CH4l-12U mixture gas flows through the flow 9.
The above-mentioned C1 to +4-1-12 mixed gas is supplied to the reaction chamber 2 at a predetermined pressure by being sent out from the 1 regulating valve 35 and sucked from the exhaust device 21. CI-1
The ratio of 4 to 112 is set, for example, to about 1%, and the gas is set to flow at a flow rate of 50 mρ/min so that the inside of the reaction tube 2 becomes about 50 orr.

なお、CI−(4の代りに以下のような伯の炭化水素を
用いてもよい。すなわち、工4タン、プロパン、ブタン
等のパラフィン系飽和鎖状炭化水素、エチレン、プロピ
レン、ブチレン等のオレフィン系不飽和鎖状炭化水素、
アセチレン、アリレン等のアセチレン系不飽和鎖状炭化
水素、アレン、ブタドエン等のジオレフィン系不飽和炭
化水素、シクロプロパン、シクロペンクン、シクロヘキ
サン等の脂環炭化水素、シクロブタジェン、ベンゼン、
1−ルエン、キシレン、ナフタレンおよびシクロオクタ
テトラエン等の芳香族炭化水素等が採用可能である。
In addition, the following hydrocarbons may be used in place of CI-(4). Namely, paraffinic saturated chain hydrocarbons such as ethylene, propane, butane, olefins such as ethylene, propylene, butylene, etc. Systemic unsaturated chain hydrocarbons,
Acetylenic unsaturated chain hydrocarbons such as acetylene and arylene, diolefinic unsaturated hydrocarbons such as arene and butadoene, alicyclic hydrocarbons such as cyclopropane, cyclopenkune, and cyclohexane, cyclobutadiene, benzene,
Aromatic hydrocarbons such as 1-luene, xylene, naphthalene, and cyclooctatetraene can be used.

2方マイクロ波照射装置11からはマイクロ波が導波管
1を通して送られ、その先端部の反応室2中に照射され
、基板5の部分に定在波の腹、すなわち最も電場の強い
場所が生じるようにする。
Microwaves are sent from the two-way microwave irradiation device 11 through the waveguide 1, and are irradiated into the reaction chamber 2 at the tip of the waveguide, so that the antinode of the standing wave, that is, the place where the electric field is strongest, is located at the substrate 5. Let it happen.

このマイクロ波の照射により基板4の部分に供給されて
いるCHs−1−12混合ガスにプラズマを発生させる
。また誘電加熱用コイル7に通電して基板4を加熱する
。基板4はマイクロ波の照射によっても加熱されること
になるが、マイクロ波の照射出力は基板4上にダイヤモ
ンドを析出さぜるのに最も好ましい条件になるように、
ガス流量、基板の種類等に応じて設定される。したがっ
て基板の加熱温度についはコイル7の通電による誘導加
熱によって補い、両者の加熱により基板4が800〜1
000°Cになるように調整する。コイル7には通常は
100 K l−1z程度の周波数の電流を流せばよい
Plasma is generated in the CHs-1-12 mixed gas supplied to the substrate 4 by this microwave irradiation. Further, the dielectric heating coil 7 is energized to heat the substrate 4. Although the substrate 4 is also heated by microwave irradiation, the microwave irradiation output is set to the most favorable conditions for depositing diamond on the substrate 4.
It is set according to the gas flow rate, type of substrate, etc. Therefore, the heating temperature of the substrate is compensated for by induction heating by energizing the coil 7, and the substrate 4 is heated to 800 to 1
Adjust to 000°C. Normally, a current with a frequency of about 100 Kl-1z may be passed through the coil 7.

上記のように、マイクロ波によりダイヤモンドの析出に
最も好ましい条件を設定するとともに、基板に対する温
度管理はこれとは別のコイルにJ−り行うようにしてい
るために、全体としての条件設定を正確かつ容易に行う
ことができる。
As mentioned above, the most favorable conditions for diamond precipitation are set using microwaves, and the temperature control for the substrate is performed using a separate coil, so the overall conditions can be set accurately. And it can be done easily.

実施例−1 上記第2図の!置を使用し、反応ガスとしてH2ガスを
毎分50CCSH2ガスで20%に稀釈したC H4ガ
スを毎分5ccの流量で反応室2中に供給した。反応室
2の内部は50Torrに調整した。ついで、導波管1
を通して周波数2450MH2、出力1KWのマイクロ
波を導入し、プラズマを発生させた。同時にシリコンウ
ェハ基板4の温度を適宜の温度測定装置によってモニタ
ーしながら周波数100KH2の高周波を誘導加熱用コ
イル7に導き、出力を調整して上記基板4の温度を95
0℃に保った。このようにして基板4上にダイヤモンド
を3時間析出させたところ、直径1μm程度のダイヤモ
ンド粒子の生成が認められた。
Example-1 The above figure 2! A reactor was used to supply CH4 gas, which was obtained by diluting H2 gas to 20% with 50 CCSH2 gas per minute, into the reaction chamber 2 at a flow rate of 5 cc per minute. The inside of reaction chamber 2 was adjusted to 50 Torr. Next, waveguide 1
Microwaves with a frequency of 2450 MH2 and an output of 1 KW were introduced through the tube to generate plasma. At the same time, while monitoring the temperature of the silicon wafer substrate 4 with an appropriate temperature measuring device, a high frequency wave with a frequency of 100KH2 is guided to the induction heating coil 7, and the output is adjusted to bring the temperature of the substrate 4 to 95.
It was kept at 0°C. When diamond was deposited on the substrate 4 in this manner for 3 hours, the formation of diamond particles with a diameter of about 1 μm was observed.

実施例−2 上記第3図の装置を使用し、反応ガスとして1−12ガ
スを毎分50CC,1−42ガスで20%に稀釈したC
H4ガスを毎分5ccの流量で反応室2中に供給した。
Example-2 Using the apparatus shown in Fig. 3 above, 1-12 gas was diluted to 20% with 1-42 gas at 50 CC per minute as a reaction gas.
H4 gas was supplied into the reaction chamber 2 at a flow rate of 5 cc/min.

反応室2の内部は50To r rに調整し、また87
5ガウスの磁場が発生するにうに、コイル70に通電し
た。ついで導波管1を通して周波数2450MHz、出
力IKWのマイクロ波を導入し、プラズマを発生さけた
。同旧にシリコンウェハ阜板4の温度を適宜の温度測定
装買によってモニターしながら同波数100 K l−
I 7の高周波を誘導加熱用コイル7に導き、出力を調
整して基板4の温度を950℃に保った。このようにし
て基板4上にダイヤモンドを3時間析出させたところ、
直径1μm程度のダイヤモンド粒子の生成が認められた
The inside of reaction chamber 2 was adjusted to 50 Torr, and the temperature was 87 Torr.
The coil 70 was energized so that a magnetic field of 5 Gauss was generated. Next, microwaves with a frequency of 2450 MHz and an output of IKW were introduced through the waveguide 1 to avoid generating plasma. While monitoring the temperature of the silicon wafer board 4 using an appropriate temperature measuring device, the same wave number of 100 Kl- was measured.
The high frequency of I7 was guided to the induction heating coil 7, and the output was adjusted to maintain the temperature of the substrate 4 at 950°C. When diamond was deposited on the substrate 4 for 3 hours in this way,
The formation of diamond particles with a diameter of about 1 μm was observed.

(発明の効果) 以上説明したように、この発明はマイクロ波導波管の先
端部に非金属製の反応室を設りてその内部に配置され1
ごダイヤモンド析出用基板を反応室の外周部に配置した
誘導加熱」イルによって加熱するようにしたものであり
、反応ガスにプラズマを発生させるために照射するマイ
クロ波とは別に加熱手段を設りているために基板の温度
制御を容易かつ正確に行うことができ、また導波管とは
別に形成された反応室内に基板を配置づるようにしてい
るために、導波管により寸法的な制限を受けず大ぎな基
板を使用することができる。また上記装首において、以
下のような種々の特徴がある。
(Effects of the Invention) As explained above, the present invention provides a non-metallic reaction chamber at the tip of a microwave waveguide and a non-metallic reaction chamber disposed inside the microwave waveguide.
The substrate for diamond deposition is heated by an induction heating coil placed around the outer periphery of the reaction chamber, and a heating means is provided separately from the microwave irradiated to generate plasma in the reaction gas. The temperature of the substrate can be controlled easily and accurately because the substrate is placed in a reaction chamber separate from the waveguide. It is possible to use a large board without receiving any damage. Furthermore, the above-mentioned neck strap has various features as described below.

(A)反応室内を真空(例えば10 ’ T o r 
r )に保ち、誘導加熱用コイルだ(プを運転刀ること
により、基板の表面に吸着したN2.02 、N20等
のガスを除去することができる。
(A) Vacuum the reaction chamber (e.g. 10' Tor
Gases such as N2.02 and N20 adsorbed on the surface of the substrate can be removed by keeping the temperature at 100 Ω and operating the induction heating coil.

(B)誘導加熱用コイルとマイク(]波照照射首どを運
転し、アルゴン等のガスを低圧で導入し、反応室内にア
ルゴンプラズマを生じさせることにJ、す、誘導加熱用
コイルを用いない場合と比較して効率的に基板表面のれ
!i浄化ができる。
(B) Induction heating coil and microphone () The induction heating coil is used to operate the Hatera irradiation head, introduce gas such as argon at low pressure, and generate argon plasma in the reaction chamber. It is possible to clean the surface of the substrate more efficiently than in the case where there is no such thing.

(C)a導加熱用コイルに入力する高周波の周波数を変
えれば、基板だけを選択的に加熱することができる。
(C) By changing the frequency of the high frequency input to the a conductive heating coil, only the substrate can be selectively heated.

(D)W板上にダイヤモンドを析出させた後、誘導加熱
用コイルだ(プを運転することにJ:す、基板の熱処理
を行うことができる。
(D) After depositing diamond on the W plate, the induction heating coil can be operated to heat-treat the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す全体説明図、= 12
− 第2図はこの発明の別の実施例を示す部分説明図、第3
図はさらに別の実施例を示づ一部分説明図である。 1・・・導波管、2・・・反応室、3・・・ガス供給管
、4・・・基板、7・・・誘導加熱用コイル、11・・
・マイクロ波照射装閥、20・・・υ1気管、21・・
・1気装置、31・・・ガス供給源、70・・・磁石コ
イル。 特許出願人      株式会社神戸製鋼所代 理 人
      弁理士  小谷悦司同        弁
理士  長1)正向        弁理士  板谷康
夫第  1  図 第2図 第  3  図
FIG. 1 is an overall explanatory diagram showing an embodiment of this invention, = 12
- Figure 2 is a partial explanatory diagram showing another embodiment of the invention;
The figure is a partially explanatory view showing still another embodiment. DESCRIPTION OF SYMBOLS 1... Waveguide, 2... Reaction chamber, 3... Gas supply pipe, 4... Substrate, 7... Induction heating coil, 11...
・Microwave irradiation device, 20...υ1 trachea, 21...
・1 air device, 31... gas supply source, 70... magnet coil. Patent Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Etsushi Kotani Patent Attorney Chief 1) Masayuki Patent Attorney Yasuo Itaya Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] 1. マイクロ波が伝送されるマイクロ波導波管と、こ
の導波管の先端部に取付けられた反応室と、この反応室
に接続されたガス供給源および排気装置と、反応室の内
部に配置されたダイヤモンド析出用基板と、反応室の外
周部に上記基板を誘導加熱するように配置した誘導加熱
コイルとを有することを特徴とするダイヤモンド気相合
成装置。
1. A microwave waveguide through which microwaves are transmitted, a reaction chamber attached to the tip of this waveguide, a gas supply source and exhaust device connected to this reaction chamber, and a gas supply source and exhaust device arranged inside the reaction chamber. 1. A diamond vapor phase synthesis apparatus comprising: a diamond deposition substrate; and an induction heating coil disposed around the outer periphery of a reaction chamber so as to inductively heat the substrate.
2. マイクロ波が伝送されるマイクロ波導波管と、こ
の導波管の先端部に取付けられた反応室と、この反応室
に接続されたガス供給源および排気装置と、反応室の内
部に配置されたダイヤモンド析出用基板と、反応室の外
周部に上記基板を誘導加熱するように配置した誘導加熱
コイルと、反応室内に磁場を形成させるように反応室の
外周部に配置した磁石コイルとを有することを特徴とす
るダイヤモンド気相合成装置。
2. A microwave waveguide through which microwaves are transmitted, a reaction chamber attached to the tip of this waveguide, a gas supply source and exhaust device connected to this reaction chamber, and a gas supply source and exhaust device arranged inside the reaction chamber. It has a substrate for diamond precipitation, an induction heating coil arranged around the outer periphery of a reaction chamber to inductively heat the substrate, and a magnet coil arranged around the outer periphery of the reaction chamber so as to form a magnetic field inside the reaction chamber. A diamond vapor phase synthesis device featuring:
JP60089790A 1985-04-25 1985-04-25 Diamond vapor phase synthesizer Expired - Lifetime JPH0637348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60089790A JPH0637348B2 (en) 1985-04-25 1985-04-25 Diamond vapor phase synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089790A JPH0637348B2 (en) 1985-04-25 1985-04-25 Diamond vapor phase synthesizer

Publications (2)

Publication Number Publication Date
JPS61247696A true JPS61247696A (en) 1986-11-04
JPH0637348B2 JPH0637348B2 (en) 1994-05-18

Family

ID=13980479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089790A Expired - Lifetime JPH0637348B2 (en) 1985-04-25 1985-04-25 Diamond vapor phase synthesizer

Country Status (1)

Country Link
JP (1) JPH0637348B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442313A (en) * 1987-08-10 1989-02-14 Semiconductor Energy Lab Production of carbon
JPH0380192A (en) * 1989-08-23 1991-04-04 Denki Kogyo Co Ltd Device for synthesizing diamond film by microwave plasma cvd
US5254171A (en) * 1991-04-16 1993-10-19 Sony Corporation Bias ECR plasma CVD apparatus comprising susceptor, clamp, and chamber wall heating and cooling means

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623107B2 (en) * 2009-02-17 2014-01-07 Mcalister Technologies, Llc Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits
WO2013025655A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50343A (en) * 1973-05-07 1975-01-06
JPS5113397A (en) * 1974-06-17 1976-02-02 Ford Motor Co RUTENIUMUGANJUSHOKUBAITAI
JPS58110494A (en) * 1981-12-17 1983-07-01 Natl Inst For Res In Inorg Mater Synthesizing method for diamond

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50343A (en) * 1973-05-07 1975-01-06
JPS5113397A (en) * 1974-06-17 1976-02-02 Ford Motor Co RUTENIUMUGANJUSHOKUBAITAI
JPS58110494A (en) * 1981-12-17 1983-07-01 Natl Inst For Res In Inorg Mater Synthesizing method for diamond

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442313A (en) * 1987-08-10 1989-02-14 Semiconductor Energy Lab Production of carbon
JPH0380192A (en) * 1989-08-23 1991-04-04 Denki Kogyo Co Ltd Device for synthesizing diamond film by microwave plasma cvd
US5254171A (en) * 1991-04-16 1993-10-19 Sony Corporation Bias ECR plasma CVD apparatus comprising susceptor, clamp, and chamber wall heating and cooling means

Also Published As

Publication number Publication date
JPH0637348B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
US20150211125A1 (en) Plasma processing apparatus
JPH02282482A (en) Plasma reactor apparatus and treatment of material
JPH0387372A (en) Formation of deposited film
US20200123653A1 (en) Axisymmetric material deposition from plasma assisted by angled gas flow
JPS61247696A (en) Device for vapor phase synthesis of diamond
JP4741060B2 (en) Method and apparatus for epitaxially depositing atoms or molecules from a reaction gas on a deposition surface of a substrate
TWI602215B (en) Toroidal plasma processing apparatus with a shaped workpiece holder
JPH02167891A (en) Gas-phase synthetic device of diamond film
JPS6242029B2 (en)
JPH0665744A (en) Production of diamond-like carbon thin film
JPS61247695A (en) Device for vapor phase synthesis of diamond
JPH0686663B2 (en) Film forming equipment using microwave plasma
JP2870774B2 (en) Method for forming single crystal film
RU2792526C1 (en) Diamond coating device
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JPH06280019A (en) Production of thin film of diamond-like carbon
JPS61247698A (en) Device for vapor phase synthesis of diamond
JPH0532489A (en) Synthesis of diamond using plasma
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JP2024019535A (en) Hot filament cvd apparatus
JPS6385092A (en) Production of diamond film
JP3272187B2 (en) Apparatus and method for forming semiconductor thin film
JPS5945907A (en) Method and apparatus for forming metallic oxide film
JPS60127292A (en) Production of diamond