JPS61246502A - Feedwater controller - Google Patents
Feedwater controllerInfo
- Publication number
- JPS61246502A JPS61246502A JP60086277A JP8627785A JPS61246502A JP S61246502 A JPS61246502 A JP S61246502A JP 60086277 A JP60086277 A JP 60086277A JP 8627785 A JP8627785 A JP 8627785A JP S61246502 A JPS61246502 A JP S61246502A
- Authority
- JP
- Japan
- Prior art keywords
- water supply
- flow rate
- pump
- output
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Earth Drilling (AREA)
- Paper (AREA)
- Revetment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、原子炉への給水流量を制御する給水制御装置
に係り、特に給水ポンプ切替時に原子炉水位の変動少な
くして切替所要時間の短縮が可能とされた給水制御装置
に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a water supply control device that controls the flow rate of water supply to a nuclear reactor, and in particular, to reduce fluctuations in reactor water level when switching feed water pumps and shorten the time required for switching. This invention relates to a water supply control device that enables
これまでの原子炉の給水制御装置、特に複数の給水ポン
プ群の運転を切替する場合に原子炉水位の変動を少なく
することを主要な課題としたものには1例えば特開昭5
6−8597号公報が知られている。この例では、手動
運転中の給水ポンプの流量要求信号の変化分を給水主制
御器の入力側で。Conventional nuclear reactor water supply control systems, especially those whose main challenge was to reduce fluctuations in the reactor water level when switching the operation of multiple water supply pump groups, include 1, for example, JP-A No. 5
No. 6-8597 is known. In this example, the change in the flow rate request signal of the water supply pump during manual operation is recorded on the input side of the water supply main controller.
自動運転中の給水系の自動流量要求信号より減算する構
成とすることによって、自動運転中の給水ポンプの流量
を手動運転中の給水ポンプの流量の変動分だけ増減させ
て給水流量の変動が少なくなるようにしている。これに
よる場合は、単に手動運転ポンプの流量を増減させ自動
運転中のポンプの流量は給水主制御器出力の変化によっ
て独立に変えるそれまでの方法に比し給水流量の変動が
大幅に少なくなることが予想されるが、各ポンプの流量
要求信号と実ポンプ流量の比例関係はポンプ流量が変化
する過渡時には必ずしも1呆たれないので、自動運転と
手動運転のポンプの流量の変動に差が生じることもちる
。また、それまでの方法と同様に、手動運転の給水ポン
プのff1ftが自動運転のポンプの流量と同程度とな
った場合は、給水主制御器出力によって制御されるポン
プ流量は給水流量の1/2であり、外乱発生時での制御
能力は低下するものと考えられる。By configuring the subtraction from the automatic flow rate request signal of the water supply system during automatic operation, the flow rate of the water supply pump during automatic operation can be increased or decreased by the amount of fluctuation in the flow rate of the water supply pump during manual operation, reducing fluctuations in the water supply flow rate. I'm trying to make it happen. In this case, fluctuations in the water supply flow rate are significantly reduced compared to the previous method where the flow rate of the manually operated pump was simply increased or decreased, and the flow rate of the pump during automatic operation was changed independently according to changes in the output of the main water supply controller. However, since the proportional relationship between the flow rate request signal of each pump and the actual pump flow rate does not always change during transient periods when the pump flow rate changes, there will be a difference in the fluctuation of the pump flow rate between automatic operation and manual operation. Mochiru. Similarly to the previous method, if ff1ft of the manually operated water supply pump becomes approximately the same as the flow rate of the automatically operated pump, the pump flow rate controlled by the water supply main controller output will be 1/1/1 of the water supply flow rate. 2, and it is considered that the control ability is reduced when a disturbance occurs.
同様に給水ポンプ切替時での制御に留意した公知例とし
ては特開昭58−217103号公報が挙げられる。こ
の例では切替のために起@/停止される給水ポンプの流
量要求信号の変化率が、原子炉水位の目標値との偏差が
設定範囲を外れた場合にはその偏差を少なくすべく補正
されるようになっている。然るに、原子炉の水位制#特
性とじては給水流量変化に対する原子炉水位の応答遅れ
があることから、この例による場合は偏差の設定範囲よ
りも原子炉水位の変動が大きくなる可能性がある。この
ため原子炉水位の変動を小さくすべく偏差の設定範囲を
狭くした場合にはまた給水ポンプの流量要求信号の変化
率の絶対値を減少させるような側止が多くなり、切替の
所要時間が長くなる虞れがある。Similarly, a known example that takes into account control when switching water pumps is Japanese Patent Application Laid-Open No. 58-217103. In this example, the rate of change of the flow rate request signal of the feedwater pump that is started/stopped for switching is corrected to reduce the deviation from the target value of the reactor water level if it is out of the set range. It has become so. However, due to the water level control characteristics of the reactor, there is a delay in the response of the reactor water level to changes in the feed water flow rate, so in this example, there is a possibility that fluctuations in the reactor water level will be larger than the deviation setting range. . For this reason, if the deviation setting range is narrowed to reduce fluctuations in the reactor water level, there will be more side stops that reduce the absolute value of the rate of change of the feedwater pump flow rate request signal, and the time required for switching will increase. There is a risk that it will be long.
本発明の目的は、複数台ちる給水ポンプの運転切替を行
なう場合に、各ポンプ流量を制御して原子炉水位の変動
を少なくシ、切替所要時間の大幅な短縮が可能とされた
給水制御装置を供するにある。An object of the present invention is to provide a water supply control device that can reduce fluctuations in reactor water level by controlling the flow rate of each pump when switching the operation of a plurality of water supply pumps, and can significantly shorten the time required for switching. It is to provide.
この目的のため本発明は、給水流量を一定に保つために
、切替されようとしている各ポンプの流量増減をそれぞ
れ制御し各ポンプの流f総和を一定に保つようになした
ものである。For this purpose, the present invention is designed to keep the flow rate f of each pump constant by controlling the increase/decrease in the flow rate of each pump that is about to be switched, in order to keep the water supply flow rate constant.
原子炉水位の変動の原因としては、主蒸気流量と給水i
tのミスマツチに加え、沸騰水形原子炉では更に原子炉
圧力変動による炉内ボイド0変動が考えられるが、給水
ポンプ切替時での原子炉水位の変動は治水流量の変動に
よるところが大きいことから、給水流量のみに着目し上
記のように制御すべくなしたものである。このためには
、起動または停止されようとしている給水ポンプの流量
増加分または流量減少分だけ給水主制御器によって制御
されている自動運転中0給水ポンプの流量を減少または
増加させる必要がちる。したがって、自動運転ポンプの
流量が一定の変化率で減少または増加するように給水主
制御器への原子炉水位偏差を発生させ、各ポンプ流量総
和が一定となるように起動/停止ポンプの流量変化を制
御すればよく、また、自動運転ポンプの流量変化率を変
えるには原子炉水位偏差が変化するように起動/停止ポ
ンプの流量変化率を制御すればよい。このような制御を
実現するには、自動運転ポンプの流量変化率、またはこ
れに同等なプロセス変数を取り込んで目標1直と突合せ
、その偏差に応じて起動/停化ポンプの流量要求信号の
変化率を調整するといった具合にフィードバック制御系
を構成すればよい。The main steam flow rate and feed water i are the causes of fluctuations in the reactor water level.
In addition to the mismatch of t, in a boiling water reactor, it is possible that the void inside the reactor varies due to reactor pressure fluctuations, but since the fluctuations in reactor water level when switching the feed water pump are largely due to fluctuations in flood control flow rate, This system focuses only on the water supply flow rate and is designed to control it as described above. For this purpose, it is necessary to decrease or increase the flow rate of the water supply pump during automatic operation, which is controlled by the water supply main controller, by the amount of increase or decrease in the flow rate of the water supply pump that is about to be started or stopped. Therefore, a reactor water level deviation is generated to the water supply main controller so that the flow rate of the automatic operation pump decreases or increases at a constant rate of change, and the flow rate of the start/stop pumps is changed so that the sum of the flow rates of each pump is constant. In addition, in order to change the rate of change in the flow rate of the automatically operating pump, it is sufficient to control the rate of change in flow rate of the start/stop pump so that the reactor water level deviation changes. To achieve this kind of control, the rate of change in flow rate of the automatically operating pump or a process variable equivalent to this is taken in, compared with the target 1st shift, and the flow rate request signal of the start/stop pump is changed according to the deviation. The feedback control system may be configured by adjusting the rate.
以上のように制御すべくなした場合は、自動運転ポンプ
の流量変化率を一定に制御することが。When controlling as described above, it is necessary to control the flow rate change rate of the automatically operating pump to be constant.
給水主制御器の入力でちる原子炉水位偏差を一定に制御
することと等しくなり、各ポンプの流量制御が原子炉水
位の安定制御に寄与するので、外乱入力に対する制御安
定性も確保し得るものでちる。This is equivalent to controlling the reactor water level deviation to a constant level based on input from the main water supply controller, and since the flow rate control of each pump contributes to stable control of the reactor water level, control stability against disturbance input can also be ensured. Dechiru.
以下、本発明を第1図から第6図により説明する。 The present invention will be explained below with reference to FIGS. 1 to 6.
先ず第1図により本発明による給水制御装置の基本的な
構成について説明すれば1本例でのものけ沸騰水形原子
力発電所(以下、BW几プラントと称す)に適用された
。場合のものとなっている。First, the basic configuration of the water supply control system according to the present invention will be explained with reference to FIG. 1. In one example, the system is applied to a Mononoke boiling water nuclear power plant (hereinafter referred to as a BW plant). It is a matter of case.
図示の如く原子炉圧力容器1内で発生した蒸気は主蒸気
管とその途中設けられた蒸気加減弁5を介しタービン2
に導かれ、これにより発醒機3が回転駆動されるように
なっている。一方、タービン2およびバイパス弁6から
の蒸気は復水器4で凝縮された後、給水′i#を介し給
水ポンプ7.8により再び原子炉圧力容器1内に注水さ
れるものとなっている。治水ポンプにはタービン駆動の
もの(給水ポンプ7)とモータ、駆動のもの(給水ポン
プ8)があるが、これら給水ポンプ7.8の流量は本発
明による給水制御装[12によって制御されるようにな
っている。それからの給水調整弁開度要求信号18によ
りモータ駆動給水ポンプ8吐出側に設けられた給水調整
弁10の開度を調整することによって、ちるいは給水タ
ービン速度要求信号19により給水タービン9に導かれ
る蒸気量を加減し給水タービン速度を調゛格することに
よって流量が制御されるものでろる。なお、dX1図に
おいては給水タービン速度要求信号19を受けて給水タ
ービン9の速度を制御するタービンガバナ(El(G)
は省略されている。As shown in the figure, the steam generated in the reactor pressure vessel 1 is passed through the main steam pipe and the steam control valve 5 provided midway through the main steam pipe to the turbine 2.
The atomizer 3 is thereby driven to rotate. On the other hand, the steam from the turbine 2 and the bypass valve 6 is condensed in the condenser 4, and then is injected into the reactor pressure vessel 1 again by the water supply pump 7.8 via the water supply 'i#. . There are two types of flood control pumps: one driven by a turbine (water supply pump 7) and one driven by a motor (water supply pump 8), and the flow rate of these water supply pumps 7.8 is controlled by the water supply control system [12] according to the present invention. It has become. Then, by adjusting the opening degree of the water supply regulating valve 10 provided on the discharge side of the motor-driven water supply pump 8 using the water supply regulating valve opening request signal 18, the water is guided to the water supply turbine 9 using the water supply turbine speed request signal 19. The flow rate may be controlled by adjusting the amount of steam drawn and adjusting the feedwater turbine speed. In addition, in the dX1 diagram, a turbine governor (El(G)) that receives the water supply turbine speed request signal 19 and controls the speed of the water supply turbine 9
is omitted.
ところで、給水ポンプの役割分担は原子炉出力20チま
でけモータ、駆動給水ポンプ(以下。By the way, the role of the water supply pump is divided into the motor and the drive water pump (hereinafter referred to as "power supply pump") up to the reactor output of 20 inches.
MDRFPと称す)2台+MD几F’P−A、MDRF
P−E(予備用))のうち1台(MDRF’P −A
)が用いられ、20%出力から40チ出力まではタービ
ン駆動給水ポンプ(以下、TDRFPと称す)が1台(
TDRFP−A)用いられ、40チ出力以上では2台(
TDRF’P −A、 TDRFP −B )が用いら
れるようになっている。給水ポンプの切替操作は原子炉
出力上昇時、または出力下降時に原子炉出力が20%お
よび40チに達した時点で炉出カ一定の条件下で行なわ
れる。(referred to as MDRFP) 2 units + MD 几F'P-A, MDRF
P-E (spare)), one (MDRF'P-A
) is used, and one turbine-driven water pump (hereinafter referred to as TDRFP) is used from 20% output to 40% output (
TDRFP-A) is used, and two units (
TDRF'P-A, TDRFP-B) are now being used. The switching operation of the feed water pump is performed under the condition that the reactor output is constant when the reactor output reaches 20% and 40% when the reactor output increases or decreases.
さて1本例での給水制御装置12け水位検出器11から
の原子炉水位信号15を入力として取り込み、ポンプ切
替要求の入力によって給水調整弁開度要求信号18およ
び給水タービン速度要求信号19を出力するようになっ
ている。同図に示すように、原子炉水位信号15け水位
目標設定器13からの目標値信号と比較され、その水位
偏差信号16は給水主制御器14および起動/停止ポン
プalk制御器20に入力される。給水主制御器14は
水位偏差信号16を取り込んで比例・積分演算を行ない
給水主制御器出力17を出力する一方、起動/停止ポン
プ流量制御器20け水位偏差信号16および給水主制御
器出力17を取り込んで自動運転中のポンプの流量変化
率の推定信号を作成し、これが与えられた目標値に等し
くなるようにその出力23を変化させるものとなってい
る。Now, in this example, the feed water control device 12 takes in the reactor water level signal 15 from the water level detector 11 as an input, and outputs the feed water regulating valve opening request signal 18 and the water turbine speed request signal 19 by inputting the pump switching request. It is supposed to be done. As shown in the figure, the reactor water level signal 15 is compared with the target value signal from the water level target setter 13, and the water level deviation signal 16 is inputted to the main water supply controller 14 and the start/stop pump alk controller 20. Ru. The main water supply controller 14 takes in the water level deviation signal 16, performs proportional and integral calculations, and outputs the main water supply controller output 17, while the start/stop pump flow rate controller 20 receives the water level deviation signal 16 and the water main controller output 17. is taken in to create an estimated signal of the rate of change in flow rate of the pump during automatic operation, and the output 23 is changed so that this signal becomes equal to a given target value.
後述するように、起動/停止ポンプ流量制御器出力23
は起動/停止ポンプのa、量要求信号に等しくなるので
、起動/停止ポンプ流量制御器20の演算内容は自動運
転ポンプの流量変化率推定信号の目標値との1差に比例
・積分・微分演算(またはこれと同等な演算)を行なっ
て、起動/停止ポンプの流量要求変化率設定信号を作成
しこれを積分するものとなっている2流量要求信号出力
器としての信号切換器21.22は運転員の選択操作に
より給水主制御器出力17または起動/停止ポンプ流1
制御器出力23の何れかを選択し、それぞれ給水、A整
弁開度要求信号18、給水タービン速度要求信号19と
して出力するようになっているわけでちる。Start/stop pump flow controller output 23, as described below.
is equal to a of the start/stop pump and the quantity request signal, so the calculation content of the start/stop pump flow rate controller 20 is proportional to the difference between the flow rate change rate estimation signal of the automatic operation pump and the target value. A signal switch 21.22 as a two-flow rate request signal output device that performs calculations (or equivalent calculations) to create a flow rate request change rate setting signal for the start/stop pump and integrates this signal. is the water supply main controller output 17 or the start/stop pump flow 1 depending on the operator's selection operation.
This means that any one of the controller outputs 23 is selected and output as the water supply, A valve opening request signal 18, and water supply turbine speed request signal 19, respectively.
次に給水制御装置について詳細に説明すれば、42図は
その第1の実施態様での詳細なブロック構成を示したも
のでろる。図中における単要素/三要素切換器33は原
子炉出力が30%までは原子炉水位信号15のみを取り
込む単要素側に設定され、原子炉出力が30%以上では
原子・p水位信号15に、給水流量と主蒸気流量のミス
マツチ信号を係数器32を介し加えたものを選択する三
要素側に設定されるものとなっている。本例では原子炉
出力20チにおけるMDR,FP −A運転からTDR
FP −A運転への切替を想定しているので。Next, to explain the water supply control device in detail, FIG. 42 shows a detailed block configuration of the first embodiment. The single-element/three-element switch 33 in the figure is set to the single-element side that takes in only the reactor water level signal 15 when the reactor output is up to 30%, and when the reactor output is 30% or more, it is set to the nuclear/p water level signal 15. , the mismatch signal of the feed water flow rate and the main steam flow rate is added via the coefficient unit 32 and is set on the three element side. In this example, TDR from MDR and FP-A operation at reactor power of 20 cm.
This is because we are assuming a switch to FP-A operation.
単要素制御が行なわれるようになっている。この例では
自動運転ポンプの流量変化率推定信号は擬似微分回路4
2を介された給水主制御器出力17より求められている
が、擬似微分回路42の伝達関数は次式で表わされる。Single-element control is now performed. In this example, the flow rate change rate estimation signal of the automatically operating pump is generated by the pseudo differentiator circuit 4.
The transfer function of the pseudo-differential circuit 42 is expressed by the following equation.
但し、S # K、 T tラプラス演算子、変換ゲイ
ン、給水主制御器の積分時定数である。However, S # K, T t are Laplace operator, conversion gain, and integral time constant of water supply main controller.
擬似微分回路42の出力は給水主制御器出力17の変化
率相当信号でらって、原子炉水位偏差信号16に比例す
るものとなっている。切替信号変化率制御器45ではそ
の擬似微分回路42の出力である自動運転ポンプの流量
変化率推定信号、即ちポンプ切替速度を決める信号とそ
の目標値との偏差を取り込み、比例・積分・微分演算(
またはこれと同等の演算)を行なって切替信号変化率4
6を出力し、その切替信号変化率46は更に積分547
によって積分されることによって、起動/停止ポンプ流
量制御器出力23が得られるようになっている。The output of the pseudo differential circuit 42 is determined by a signal corresponding to the rate of change of the main water supply controller output 17, and is proportional to the reactor water level deviation signal 16. The switching signal change rate controller 45 takes in the flow rate change rate estimation signal of the automatically operating pump, which is the output of the pseudo-differentiation circuit 42, that is, the deviation between the signal that determines the pump switching speed and its target value, and performs proportional, integral, and differential calculations. (
or equivalent calculation) to change the switching signal change rate 4.
6, and the switching signal change rate 46 is further integrated 547
The start/stop pump flow controller output 23 is obtained by integrating the start/stop pump flow controller output 23.
さて、ポンプ切替制御について説明すれば、ポンプ切替
制御の前提条件として、給水調整弁−A開度要求信号3
8としては信号切替器34により給水主制御4出力17
が選択されMDRFP −Aのt&量は自動で市1j御
されている一方、TDR,F’P −Aけ手動または計
算機制御により給水タービンが昇速され、そのポンプ吐
出圧力は給水ポンプ出口側のヘッダ圧力に近い直まで上
げられており、最小流量運転状態におかれている。この
状態から給水タービン−A速度要求信号40として起動
/停止ポンプ流量制御器出力23を選択するように信号
切換器36を操作すれば、給水主制御器出力17が目標
の変化率で減少するように切替信号変化率制御器45お
よび積分器47により給水タービン−A速度要求信号4
0が増加させられ、TDRFP−Aの出口逆止弁が開き
原子炉側への給水が増加していくものでちる。このよう
にして、給水主制御器出力17、即ち、給水調整弁−A
開度要求信号38が目標変化率で減少するように給水タ
ービン−A速度要求信号40の増加が制御されるわけで
ちる。ところで、 MDR,FP−Aの流量減少とその
停止操作は給水主制御器出力17と起動/停止ポンプ流
量制御器出力23が等しくなった時点で。Now, to explain pump switching control, as a prerequisite for pump switching control, the water supply regulating valve-A opening request signal 3
8, water supply main control 4 output 17 by signal switch 34
is selected, and the t& amount of MDRFP-A is automatically controlled. On the other hand, the water supply turbine speed is increased by manual or computer control for TDR, F'P-A, and the pump discharge pressure is set at the outlet side of the water supply pump. The pressure has been increased to near the header pressure, and the minimum flow rate is in operation. From this state, if the signal switch 36 is operated to select the start/stop pump flow rate controller output 23 as the water supply turbine-A speed request signal 40, the water supply main controller output 17 will decrease at the target rate of change. The switching signal change rate controller 45 and the integrator 47 cause the water supply turbine-A speed request signal 4 to be
0 is increased, the outlet check valve of TDRFP-A opens, and the water supply to the reactor side increases. In this way, the water supply main controller output 17, i.e., the water supply regulating valve-A
This means that the increase in the water turbine-A speed request signal 40 is controlled so that the opening request signal 38 decreases at the target rate of change. By the way, the MDR and FP-A flow rate reduction and stop operations are performed when the main water supply controller output 17 and the start/stop pump flow rate controller output 23 become equal.
信号切換器34.36により互心の制御信号を切換する
と同時に、ポンプ切替速度目標設定器43による自動運
転ポンプの流量変化率の目標値は逆符号に変更されるよ
うになっている。これによりMDRFP−Aの流量が起
動/停止ポンプ流量制御器出力23により減少させられ
る一方では。At the same time as the mutual control signals are switched by the signal switchers 34 and 36, the target value of the flow rate change rate of the automatically operating pump by the pump switching speed target setter 43 is changed to the opposite sign. While this causes the MDRFP-A flow rate to be reduced by the start/stop pump flow controller output 23.
TDfLPP−AO流量が給水主制御器14により制御
されて増加するようになるものでちる。やがてMD几F
’P−Aの流量が零となった時点でポンプを停止させて
待機状態にしておき、信号切換器34を自動側に切換し
てポンプ切替制御は終了するものでちる。The TDfLPP-AO flow rate is controlled by the main water supply controller 14 and increases. Eventually MD 几F
'When the flow rate of P-A becomes zero, the pump is stopped and placed in a standby state, and the signal switch 34 is switched to the automatic side to complete the pump switching control.
以上は原子炉出力20%時での切替制御であるが、原子
炉出力が40俤であって、 TDFLFP−Aが運転
中にTDR,FP −Bを追加運転する場合には。The above is the switching control when the reactor output is 20%, but when the reactor output is 40 yen and TDR and FP-B are additionally operated while TDFLFP-A is in operation.
同様にTDRFP−Hの流量を起動/停止ポンプ流量制
御器20で増加制御し、TDRFP−AとTDRFP−
Bの制御信号が等しくなった時点で、TDRFP−Bの
制御が給水主制御器出力17によって行なわれるように
信号切換器37を操作すればよい。原子炉出力降下時で
のTDR,FP 2台運転から1台運転への移行および
TDRFP−AからMDRFP−Aの切替制御は上昇時
と逆の操作で行ない得るものである。なお、信号切換器
35はMDRFP−B用のものである。Similarly, the flow rate of TDRFP-H is increased and controlled by the start/stop pump flow rate controller 20, and TDRFP-A and TDRFP-
When the control signals of B become equal, the signal switch 37 may be operated so that the TDRFP-B is controlled by the main water supply controller output 17. The transition from two TDR and FP operations to one operation and switching control from TDRFP-A to MDRFP-A at the time of reactor power drop can be performed by the reverse operation to that at the time of rise. Note that the signal switch 35 is for MDRFP-B.
第3図は給水制御装置の第2の実施態様での詳細なブロ
ック構成を示したものでちる。この実施態様が先に述べ
たMlのそれに相違するところは、自動運転ポンプの流
量変化率推定信号を給水主制御器出力17より擬似微分
回路42によって求める代わりに、原子炉水位偏差信号
16が係数器48を介されることによって求められてい
る点である。このような構成としても、給水主制御器1
4での演算が通常の比例・積分のみでちれば、全く同等
の流量変化率推定信号が得られ何等制御特性は変化しな
いものである。FIG. 3 shows a detailed block configuration of the second embodiment of the water supply control device. This embodiment differs from that of Ml described above, in that instead of obtaining the flow rate change rate estimation signal of the automatically operating pump from the water supply main controller output 17 using a pseudo-differentiation circuit 42, the reactor water level deviation signal 16 is used as a coefficient. This point is obtained by passing through the device 48. Even with such a configuration, the water supply main controller 1
If the calculation in step 4 consists of only ordinary proportional and integral calculations, completely equivalent flow rate change rate estimation signals will be obtained and the control characteristics will not change in any way.
第4図は給水制御装置の第3の実施態様での詳細なブロ
ック構成を示したものである。この実施態様と第1のそ
れとの相違は、後者では起動/停止ポンプの流量制御器
側に制御信号を完全に切換して起動または停止のための
ポンプ流量制御を行なっているのに対し、前者では給水
主制御出力17に起動/停止ポンプ流量制御器出力23
を加えることによって制御が行なわれている点である。FIG. 4 shows a detailed block configuration of the third embodiment of the water supply control device. The difference between this embodiment and the first one is that in the latter, the control signal is completely switched to the flow controller side of the start/stop pump to control the pump flow rate for starting or stopping, whereas in the former Then, the water supply main control output 17 is connected to the start/stop pump flow rate controller output 23.
The point is that control is performed by adding .
このように制御する場合は、起動/停止ポンプ流量制御
器出力23!fiバイアス信号となって起動/停止ポン
プの流′Ik要求信号を変化させるもので、原子炉水位
変動をもたらす外乱入力時での制御特性が多少異なって
くるが、基本的な制御特性は変化しない。本態様でのM
DRF’P −A運転からTDaFP−A運転への切替
制御について説明すれば以下のようになる。When controlling in this way, start/stop pump flow rate controller output 23! It becomes a fi bias signal and changes the flow 'Ik request signal of the start/stop pump.The control characteristics will differ slightly when a disturbance is input that causes reactor water level fluctuation, but the basic control characteristics will not change. . M in this aspect
The switching control from DRF'P-A operation to TDaFP-A operation will be explained as follows.
即ち、TDRFP−Aの流量増加開始時点では、起動/
停止ポンプ流量制御器出力23け給水ター ゛ピン−
A速度要求信号40が最小となるように大きな負のバイ
アス信号として給水主制御器出力17に加算器56によ
って加算される。このバイアス信号が減少するに伴れT
DRFP−Aの流量は増加するが、バイアス零で両ポン
プのitはほぼ等しくなる。この時点で信号接点50を
閉、信号接点52を開とし、これと同時にポンプ切替速
度目標設定器43による流量変化率目標を逆符号に変吏
するものでちる。これ以降はMDRFP−Aの流量が減
少し、やがて流t4となってTDR,FP −Aに運転
が切替されるわけでらる。MDRFP −Aを停止して
待機状態とし、信号接点50を開にしてポンプ切替制御
は終了されるものである。That is, at the time when the flow rate of TDRFP-A starts to increase, startup/
Stop pump flow controller output 23 water supply turbine pin
A large negative bias signal is added to the water supply main controller output 17 by an adder 56 so that the A speed request signal 40 is minimized. As this bias signal decreases, T
Although the flow rate of DRFP-A increases, the it of both pumps becomes approximately equal at zero bias. At this point, the signal contact 50 is closed, the signal contact 52 is opened, and at the same time, the flow rate change target set by the pump switching speed target setter 43 is changed to the opposite sign. After this, the flow rate of MDRFP-A decreases, and eventually becomes flow t4, and the operation is switched to TDR and FP-A. The pump switching control is completed by stopping the MDRFP-A and putting it in a standby state, and opening the signal contact 50.
第5図けBWRプラントの動特性シミュレータを用い従
来技術によ石ポンプ切替操作のシミュレーションを行な
った結果を示したものである。従来技術では数時間に亘
って緩やかにポンプ切替操作を行なうことによって、原
子炉水位の変動を少なくしている。しかし、ここでは本
発明による場合と比較するために短時間でのポンプ切替
時での制御特性がシミュレーション結果として示されて
いる。FIG. 5 shows the results of simulating the stone pump switching operation according to the prior art using a BWR plant dynamic characteristic simulator. In the prior art, fluctuations in the reactor water level are reduced by slowly switching pumps over several hours. However, here, in order to compare with the case according to the present invention, the control characteristics when switching the pump in a short time are shown as simulation results.
図示の如くタービン駆動給水ポンプ−A(TDRFP
−A )の流fjkはモータ駆動給水ボングーAの流量
が減少したことによって急激に増加する結果、原子炉水
位が大きく上昇していることが判る。給水主制御器によ
りモータ駆動、給水ポンプ−A(MDRFP−A)の流
量が減少させられるが。As shown in the figure, turbine-driven water pump-A (TDRFP)
It can be seen that the flow fjk of -A) increases rapidly due to the decrease in the flow rate of the motor-driven water supply bongoo A, resulting in a large rise in the reactor water level. The water supply main controller reduces the flow rate of the motor-driven water supply pump-A (MDRFP-A).
制御効果が遅れて発生するので、応答は全体的に変動し
原子炉水位の変動も大きくなっている。Since the control effect occurs with a delay, the response fluctuates overall and the reactor water level fluctuates widely.
第6図は本発明による給水制御装置のf41の実施態様
に係る。同様なポンプ切替シミュレーション結果を示し
たものでちる。TDaF’P −Aの流量増加によって
給水流量が増加し原子炉水位が上昇した結果、MDRF
P −A ’7)流速が給水主制御器により減少させら
れることになる。’1’DaFP −Aの流uVi給水
王制御器出力が目標変化率で減少するように制御されて
いるので、切替開始数分後は一時的に流量増加率が低下
しているが、その後はMDRFP−Aの流量変動に応じ
て給水流量が一定となるように制御され増加するものと
なっている。FIG. 6 relates to an embodiment f41 of the water supply control device according to the invention. This figure shows the results of a similar pump switching simulation. As a result of the increase in the flow rate of TDaF'P-A, the feed water flow rate increased and the reactor water level rose.
P-A'7) The flow rate will be reduced by the water supply main controller. '1'DaFP-A's flow uVi water supply controller output is controlled to decrease at the target rate of change, so the rate of increase in flow rate temporarily decreases a few minutes after the start of switching, but after that The water supply flow rate is controlled to be constant and increases in accordance with the flow rate fluctuation of the MDRFP-A.
この結果よりしても本発明による給水制御装置による場
合は、従来技術よりも大幅に短縮された切替時間で、I
@子炉水位を安定に制御しつつポンプ切替を行なうこと
が可能となるものでちる。This result also shows that the water supply control device according to the present invention has a significantly shorter switching time than the conventional technology.
@It is possible to switch pumps while stably controlling the water level in the secondary reactor.
なお、本発明による給水制御装置は電子回路的なブロッ
ク構成として説明されているが、マイクロコンピュータ
等を用いたディジタル制御手段によっても実現可能であ
る。この場合、上記の説明で運転員操作によるものとし
て説明されている。Although the water supply control device according to the present invention has been described as having an electronic circuit block configuration, it can also be realized by digital control means using a microcomputer or the like. In this case, the above description assumes that the operation is performed by the operator.
ポンプ切替制御操作途中の接点切換え動作もその制御手
段により他のプロセス量を監視して操作りイミノジを決
定することによって、完全に自動化することが可能であ
る。また、本発明に係る起動/停止ポンプ流量制御器は
、主に自動運転中給水ポンプの流量要求信号の変化率の
目標値との偏差信号を取り込んで起動/停止ポンプの切
替信号変化率を出力する切替信号変化率制御器と、切替
信号変化率を取り込んで積分1.これを出力する積分器
とからなるが1通常の制御器と同様にして切替信号変化
率制御器の出力側に上下限リミッタを付加し切替信号変
化率の値に制限を加えるようにすれば、制御動作の安定
性がより向上されることになる。この場合には、ポンプ
流量要求信号の増加時と減少時とでリミッタ設定値を適
切に変更することがより効果的となっている。更に本発
明では切替信号変化率は比例・積分・微分演算によって
求められているが、特にこれに限定されることなく例え
ば、進み/遅れ補償による演算やファジィ(puzzy
)制御演算などによっても同様な効果が得られるもの
となっている。The contact switching operation during the pump switching control operation can also be completely automated by having the control means monitor other process quantities and determine the timing of the operation. Further, the start/stop pump flow rate controller according to the present invention mainly takes in a deviation signal between the target value and the rate of change of the flow rate request signal of the water supply pump during automatic operation, and outputs the change rate of the start/stop pump switching signal. A switching signal change rate controller that takes in the switching signal change rate and integrates 1. If you add upper and lower limiters to the output side of the switching signal change rate controller to limit the value of the switching signal change rate in the same way as a normal controller, The stability of control operation will be further improved. In this case, it is more effective to appropriately change the limiter setting value when the pump flow rate request signal increases and decreases. Furthermore, in the present invention, the change rate of the switching signal is determined by proportional, integral, and differential calculations; however, the present invention is not limited to these; for example, calculations by lead/lag compensation, fuzzy
) Similar effects can also be obtained by control calculations.
以上説明したように本発明による場合は、原子炉水位の
変動の他に、各ポンプの流11要求信号の変動を監視し
起動または停止されるポンプの流量変化率を制御する機
能を有していることから、給水流量の変動を防止し得る
。従来技術では給水ポンプ切替のために起動または停止
されるポンプと。As explained above, in the case of the present invention, in addition to fluctuations in the reactor water level, there is a function to monitor fluctuations in the flow 11 request signal of each pump and control the rate of change in flow rate of the pumps to be started or stopped. Therefore, fluctuations in the water supply flow rate can be prevented. In the prior art, the pump is started or stopped for water pump switching.
給水主制御器によすR,量が自動的に制御されているポ
ンプとの間で流量の変化量が異なる場合があり得、この
ような場合には給水流量が変化し原子炉水位が変動して
いたが、これを防止すべく長時間に亘って緩やかに切替
ポンプの流量を変化させ原子炉水位の変動を抑えていた
ものである。したがって、これまでにあっては給水ポン
プ切替運転操作が数時間に亘っていたのに対し、本発明
による場合は数十分以内に切替可能となり、大幅に所要
時間が短縮されるといった効果がある。There may be a difference in the amount of change in the flow rate between the water supply main controller and the pump whose flow rate is automatically controlled.In such cases, the water supply flow rate changes and the reactor water level fluctuates. However, in order to prevent this, the flow rate of the switching pump was changed gradually over a long period of time to suppress fluctuations in the reactor water level. Therefore, whereas in the past, switching operation of the water supply pump took several hours, in the case of the present invention, switching can be performed within several tens of minutes, which has the effect of significantly shortening the required time. .
第1図は1本発明による給水制御装置の基本的な概要構
成を示す図、第2図、第3図、第4図は、それぞれその
実施態様での構成を示す図、第5図。
第6図は、これまでのポンプ切替制御特性のシミュレー
ション結果と本発明に係るそのシミュレーション結果の
例を示す図である。
1・・・原子炉圧力容器、7・・・タービン駆動給水ポ
ンプ、8・・・モータ駆動給水ポンプ、9・・・給水タ
ービン、10・・・給水調整弁、11・・・水位検出器
、12・・・給水制御装置、13・・・水位目標設定器
、14・・・給水主制御器、20・・・起動/停止ポン
プ流量制御器、21.22・・・信号切換器、34,3
5,36゜37・・・信号切換器、42・・・擬似微分
回路、43・・・ポンプ切替速度目標設定器、45・・
・切替信号変化率制御器、47・・・積分器、48・・
・係数器、5o。
51.52,53・・・信号接点、54,55,56゜
57・・・加算器。FIG. 1 is a diagram showing the basic outline configuration of a water supply control device according to the present invention, FIGS. 2, 3, and 4 are diagrams showing the configuration of an embodiment thereof, and FIG. 5. FIG. 6 is a diagram showing an example of the simulation results of the pump switching control characteristics so far and the simulation results according to the present invention. DESCRIPTION OF SYMBOLS 1... Reactor pressure vessel, 7... Turbine-driven water supply pump, 8... Motor-driven water supply pump, 9... Water supply turbine, 10... Water supply adjustment valve, 11... Water level detector, 12... Water supply control device, 13... Water level target setter, 14... Water supply main controller, 20... Start/stop pump flow rate controller, 21.22... Signal switch, 34, 3
5, 36° 37... Signal switch, 42... Pseudo differential circuit, 43... Pump switching speed target setter, 45...
・Switching signal change rate controller, 47... Integrator, 48...
・Coefficient unit, 5o. 51.52, 53...Signal contacts, 54,55,56°57...Adder.
Claims (1)
水ポンプを制御する給水制御装置であつて、原子炉水位
の目標値との偏差にもとづき原子炉への給水流量を制御
する給水主制御器と、原子炉水位の目標値との偏差、上
記給水主制御器出力の何れか一方を取り込んで上記給水
主制御器からの自動運転中給水ポンプの流量要求信号の
変化率が目標値に等しくなるように、起動/停止ポンプ
の流量要求信号を変化させる起動/停止ポンプ流量制御
器と、該制御器出力および上記給水主制御器出力にもと
づき各給水ポンプに流量要求信号を与える流量要求信号
出力器とからなり、給水ポンプの切替時に原子炉水位を
変動させることなく各給水ポンプの流量を制御する構成
を特徴とする給水制御装置。 2、自動運転中給水ポンプの流量要求信号の変化率は、
給水主制御器出力が擬似微分回路を介されることによつ
て得られる特許請求の範囲第1項記載の給水制御装置。 3、自動運転中給水ポンプの流量要求信号の変化率は、
原子炉水位の目標値との偏差が係数器を介されることに
よつて得られる特許請求の範囲第1項記載の給水制御装
置。 4、起動/停止ポンプ流量制御は、自動運転中給水ポン
プの流量要求信号の変化率の目標値との偏差を取り込ん
で比例・積分・微分演算を行なう切替信号変化率制御器
と、該変化率制御器の出力を積分して該起動/停止ポン
プ流量制御器の出力とする積分器とを少なくとも含む特
許請求の範囲第1項記載の給水制御装置。 5、流量要求信号出力器は、給水主制御器出力、起動/
停止ポンプ流量制御器出力の何れか一方を給水ポンプ毎
に選択出力する信号切換器とされる特許請求の範囲第1
項記載の給水制御装置。 6、流量要求信号出力器は、給水ポンプ対応の信号接点
と、該接点からの起動/停止ポンプ流量制御器出力を給
水主制御器出力に加算する給水ポンプ対応の加算器とか
らなる特許請求の範囲第1項記載の給水制御装置。[Claims] 1. A water supply control device that controls a plurality of water supply pumps provided to supply water to a nuclear reactor, which controls the flow rate of water supply to the reactor based on the deviation of the reactor water level from a target value. Changes in the flow rate request signal of the water supply pump during automatic operation from the water supply main controller by taking in either the deviation between the target value of the reactor water level and the output of the water supply main controller that controls the water supply main controller. a start/stop pump flow controller that varies the flow request signal of the start/stop pumps so that the rate is equal to a target value; and a flow request signal to each feedwater pump based on the output of the controller and the output of the water main controller; What is claimed is: 1. A water supply control device comprising: a flow rate request signal output device that provides a flow rate request signal output device, and configured to control the flow rate of each feed water pump without changing the reactor water level when switching the feed water pumps. 2. The rate of change of the flow rate request signal of the water supply pump during automatic operation is:
2. The water supply control device according to claim 1, wherein the water supply main controller output is obtained by passing the output through a pseudo differentiation circuit. 3. The rate of change of the flow rate request signal of the water supply pump during automatic operation is:
2. The water supply control device according to claim 1, wherein the deviation of the reactor water level from the target value is obtained by passing through a coefficient unit. 4. Start/stop pump flow rate control includes a switching signal change rate controller that takes in the deviation from the target value of the change rate of the flow rate request signal of the water supply pump during automatic operation and performs proportional, integral, and differential calculations, and a change rate controller that performs proportional, integral, and differential calculations. 2. The water supply control device according to claim 1, comprising at least an integrator that integrates the output of the controller and outputs the output of the start/stop pump flow rate controller. 5.The flow rate request signal output device is the water supply main controller output, start/
Claim 1, which is a signal switching device that selectively outputs either one of the stop pump flow rate controller outputs for each water supply pump.
Water supply control device as described in section. 6. The flow rate request signal output device is comprised of a signal contact corresponding to the water supply pump and an adder corresponding to the water supply pump that adds the start/stop pump flow rate controller output from the contact to the water supply main controller output. Water supply control device according to scope 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60086277A JPS61246502A (en) | 1985-04-24 | 1985-04-24 | Feedwater controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60086277A JPS61246502A (en) | 1985-04-24 | 1985-04-24 | Feedwater controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61246502A true JPS61246502A (en) | 1986-11-01 |
Family
ID=13882325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60086277A Pending JPS61246502A (en) | 1985-04-24 | 1985-04-24 | Feedwater controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61246502A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107543141A (en) * | 2017-09-19 | 2018-01-05 | 中国核动力研究设计院 | Steam generator analogue body water supply system and control method during increasing temperature and pressure |
-
1985
- 1985-04-24 JP JP60086277A patent/JPS61246502A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107543141A (en) * | 2017-09-19 | 2018-01-05 | 中国核动力研究设计院 | Steam generator analogue body water supply system and control method during increasing temperature and pressure |
CN107543141B (en) * | 2017-09-19 | 2019-05-07 | 中国核动力研究设计院 | Steam generator analogue body water supply system and control method during increasing temperature and pressure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920007744B1 (en) | Automatic steam generator control at low power | |
JPH0566601B2 (en) | ||
US4472345A (en) | Load control system for nuclear power plant | |
JPS61246502A (en) | Feedwater controller | |
JPH0631813B2 (en) | Turbine controller for nuclear reactor plant | |
JPH081122B2 (en) | Water supply control device | |
JPS6039845B2 (en) | Nuclear turbine pressure control device | |
JPS6214046B2 (en) | ||
JPS59145309A (en) | Afc controller of turbine bypass thermal power plant | |
JPS61272508A (en) | Feed water controller for nuclear reactor | |
JPH01269093A (en) | Feed water controller for nuclear reactor | |
JPH01210705A (en) | Minimum flow regulating valve control device for feed water pump | |
JPS61215404A (en) | Control device for steam turbine | |
JPS5882195A (en) | Reactor feedwater control device | |
JPS60117002A (en) | Controller for feedwater to nuclear reactor | |
JPS6032002B2 (en) | Turbine control device | |
JPS61134699A (en) | Load follow-up controller for boiling water type nuclear power plant | |
JPS6041759B2 (en) | Reactor pressure control device | |
JPS63685B2 (en) | ||
JPS59128495A (en) | Automatic load follow-up control device | |
JPH0371679B2 (en) | ||
JPS58104404A (en) | Controller for minimum flow of feed pump | |
JPS58178105A (en) | Control system of feedwater | |
JPS61225503A (en) | Controller for feedwater of nuclear reactor | |
JPH06230176A (en) | Turbine controller |