[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61246368A - Depositing method for metallic film - Google Patents

Depositing method for metallic film

Info

Publication number
JPS61246368A
JPS61246368A JP8796485A JP8796485A JPS61246368A JP S61246368 A JPS61246368 A JP S61246368A JP 8796485 A JP8796485 A JP 8796485A JP 8796485 A JP8796485 A JP 8796485A JP S61246368 A JPS61246368 A JP S61246368A
Authority
JP
Japan
Prior art keywords
target
magnetic field
distribution
coil
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8796485A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sakuma
敏幸 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8796485A priority Critical patent/JPS61246368A/en
Publication of JPS61246368A publication Critical patent/JPS61246368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit a metallic film which is controlled in a film thickness distribution by impressing a vertical magnetic field to a target surface and changing the magnetic field distribution thereby charging the sputter erosion pattern of the target surface. CONSTITUTION:The magnetic field 100 is vertically impressed to the target 20 surface by using a coil 5 from the outside of an ordinary flat plate magnetron sputtering device. The annular erosion region moves toward the center of the target 20 when the current of a coil 10 is increased. The erosion region moves to the periphery of the target 20 when the coil current is decreased. The max. value in the deposition distribution moves from the central part toward the periphery according to said movement and therefore the deposition distribution where the thickness is larger in the peripheral part than in the center is realized. the overetching in aluminum dry etching of the subsequent stage is prevented by the above-mentioned method in a wiring stage of a process for producing a semiconductor integrated circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直流平板マグネトロンスノ?ツタ法による金属
膜の堆積方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to a direct current flat plate magnetron. This invention relates to a method of depositing a metal film using the ivy method.

〔従来の技術〕[Conventional technology]

従来、直流子板マグネトロンスパッタ法による金属膜の
堆積では、金属ターグツト裏面に永久磁石または電磁石
を配置し、ターゲット表面にリング状にプラズマを封じ
込めている。
Conventionally, in depositing a metal film by the galvanic plate magnetron sputtering method, a permanent magnet or an electromagnet is placed on the back side of a metal target to confine plasma in a ring shape on the target surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の従来技術では、堆積膜の堆積分布は、基板をター
ゲットに対向させて配置している場合に、中心が厚く、
基板周辺が薄くなるのが普通である。
In the above-mentioned conventional technology, the deposition distribution of the deposited film is such that when the substrate is placed facing the target, the center is thick;
It is normal for the periphery of the substrate to be thinner.

半導体集積回路製造工程の配線工程では、ふつう堆積分
布が中心部と周辺で5−程度の差がある。
In the wiring process of the semiconductor integrated circuit manufacturing process, there is usually a difference of about 5-5 in the deposition distribution between the center and the periphery.

後工程のアルミのドライエツチング工程では、中心部に
比べて周辺部の方がエツチング率が5%程度速いため、
周辺がオーバーエッチされる欠点があったO 本発明は前記問題点を解消した金属膜の堆積方法を提供
するものである@ 〔問題点を解決するための手段〕 本発明は、直流平板マグネトロンの外部より垂直磁場を
印加することにより、磁場分布を変化させ、膜厚分布を
制御した金属膜を堆積することを特徴とする金属膜の堆
積方法である。
In the post-process aluminum dry etching process, the etching rate is about 5% faster on the periphery than on the center.
The present invention provides a method for depositing a metal film that solves the above-mentioned problem. This is a metal film deposition method characterized by depositing a metal film with controlled film thickness distribution by changing the magnetic field distribution by applying a perpendicular magnetic field from the outside.

〔実施例〕〔Example〕

以下、本発明の一実施例を図によって説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

本発明は、平板マグネトロンスA’ツタ法においてター
ゲット表面に垂直な磁場を印加することにヨシ、磁場分
布を変化させてターゲット面のス/や、り侵蝕a4ター
ンを変え、これにより、基板に対する被スパ、り粒子の
飛来方向を変更させ、堆積分布を、中心に比べて周辺が
厚くなるようにしたものである。
The present invention applies a magnetic field perpendicular to the target surface in the flat plate magnetron A' vine method, and changes the magnetic field distribution to change the sp/y and a4 turns of the target surface, thereby causing damage to the substrate. The flying direction of the spun particles is changed, and the deposition distribution is made to be thicker at the periphery than at the center.

第1図は本発明を実施する装置である。ターゲット20
面の侵蝕ノ4ターンは主にターゲット面に垂直な成分に
よって決められるので、平板マグネトロンに真空槽15
0外部よりコイル10により垂直磁場100t−加える
構造とし、コイル電流(直流)値を変えるととにより、
垂直磁場強度を変えるようにする。このとき、外部コイ
ル10による磁場印加を効果的に行うためにターゲット
20真面の永久磁石または電磁石30はマグネトロン放
電が維持できる範囲内で最も弱い磁石とする。40は銅
プロ、り、50はシールド、60は基板、70はヒータ
、80は陽極、90は陰極である。110は排気系、1
20は冷却水、130はガス導入口、140はシリンダ
ーである。
FIG. 1 shows an apparatus for implementing the invention. target 20
Since the four turns of surface erosion are mainly determined by the component perpendicular to the target surface, a vacuum chamber 15 is used in the flat magnetron.
By applying a vertical magnetic field of 100 t from outside by the coil 10 and changing the coil current (DC) value,
Try to change the vertical magnetic field strength. At this time, in order to effectively apply a magnetic field by the external coil 10, the permanent magnet or electromagnet 30 directly in front of the target 20 is made the weakest magnet within the range where magnetron discharge can be maintained. 40 is a copper plate, 50 is a shield, 60 is a substrate, 70 is a heater, 80 is an anode, and 90 is a cathode. 110 is the exhaust system, 1
20 is cooling water, 130 is a gas inlet, and 140 is a cylinder.

以上、本実施例によれば、通常の平板マグネトロンス/
母、タ装置の外部よりフイル10ヲ使用してター4”、
)20面に垂直に磁場100 f:印加しである。
As described above, according to this embodiment, a normal flat magnetron/
First, use a 10mm film from the outside of the device to remove the 4"
) A magnetic field of 100 f is applied perpendicular to the 20 plane.

コイル10の電流を増すと、リング状の侵蝕領域はター
ゲット中心へ移動し、コイル電流を減すと、ターゲット
周辺へ移動する。これに伴い、堆積分布の最大値は中心
部より周辺へ動くので、中心部より周辺部の方が厚い堆
積分布を実現できる。尚、中心部より周辺部の膜厚は5
%程度厚くする。
When the current in the coil 10 is increased, the ring-shaped eroded area moves toward the center of the target, and when the coil current is decreased, it moves toward the periphery of the target. Along with this, the maximum value of the deposition distribution moves from the center to the periphery, so it is possible to achieve a thicker deposition distribution in the periphery than in the center. The thickness of the film from the center to the periphery is 5.
% thicker.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、通常の直流平板マグネト
ロンの外部より垂直磁場を印加することにより、侵蝕領
域をターグツト面内で移動させるため、堆積分布を変え
ることができ、したがって、半導体集積回路製造工程の
配線工程において、後工程のアルミPライエッチでのオ
ーバーエッチを防ぐことができる効果を有するものであ
る。
As explained above, the present invention moves the eroded region within the target plane by applying a perpendicular magnetic field from the outside of a normal DC flat magnetron, thereby changing the deposition distribution. This has the effect of preventing over-etching in the aluminum P lie etch in the subsequent process in the wiring process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置の断面概略図であ
る。 10・・・コイル、20・・・ターダウト、30・・・
永久磁石、60・・・基板、70・・・ヒータ、80・
・・陽極、90・・・陰極、150・・・真空槽。
FIG. 1 is a schematic cross-sectional view of an apparatus showing an embodiment of the present invention. 10... Coil, 20... Terdoubt, 30...
Permanent magnet, 60... Substrate, 70... Heater, 80.
...Anode, 90...Cathode, 150...Vacuum chamber.

Claims (1)

【特許請求の範囲】[Claims] (1)直流平板マグネトロンの外部より垂直磁場を印加
することにより、磁場分布を変化させて、侵蝕領域をタ
ーゲット面内で移動させ、膜厚分布を制御した金属膜を
堆積することを特徴とする金属膜の堆積方法。
(1) By applying a perpendicular magnetic field from the outside of a DC flat magnetron, the magnetic field distribution is changed, the eroded region is moved within the target plane, and a metal film with a controlled film thickness distribution is deposited. Method of depositing metal films.
JP8796485A 1985-04-24 1985-04-24 Depositing method for metallic film Pending JPS61246368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8796485A JPS61246368A (en) 1985-04-24 1985-04-24 Depositing method for metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8796485A JPS61246368A (en) 1985-04-24 1985-04-24 Depositing method for metallic film

Publications (1)

Publication Number Publication Date
JPS61246368A true JPS61246368A (en) 1986-11-01

Family

ID=13929538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8796485A Pending JPS61246368A (en) 1985-04-24 1985-04-24 Depositing method for metallic film

Country Status (1)

Country Link
JP (1) JPS61246368A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783048A (en) * 1995-02-23 1998-07-21 Tokyo Electron Limited Sputtering cathode with uniformity compensation
US6224724B1 (en) 1995-02-23 2001-05-01 Tokyo Electron Limited Physical vapor processing of a surface with non-uniformity compensation
WO2009157439A1 (en) * 2008-06-26 2009-12-30 株式会社アルバック Sputtering apparatus and sputtering method
WO2010134346A1 (en) * 2009-05-20 2010-11-25 株式会社アルバック Film-forming method and film-forming apparatus
WO2012070195A1 (en) * 2010-11-24 2012-05-31 株式会社アルバック Sputtering method
JP2013001965A (en) * 2011-06-16 2013-01-07 Ulvac Japan Ltd Sputtering method
DE10196150B4 (en) * 2000-07-27 2013-07-04 Spp Process Technology Systems Uk Ltd. A magnetron sputtering apparatus and method for controlling such apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783048A (en) * 1995-02-23 1998-07-21 Tokyo Electron Limited Sputtering cathode with uniformity compensation
US6224724B1 (en) 1995-02-23 2001-05-01 Tokyo Electron Limited Physical vapor processing of a surface with non-uniformity compensation
DE10196150B4 (en) * 2000-07-27 2013-07-04 Spp Process Technology Systems Uk Ltd. A magnetron sputtering apparatus and method for controlling such apparatus
WO2009157439A1 (en) * 2008-06-26 2009-12-30 株式会社アルバック Sputtering apparatus and sputtering method
JPWO2009157439A1 (en) * 2008-06-26 2011-12-15 株式会社アルバック Sputtering apparatus and sputtering method
WO2010134346A1 (en) * 2009-05-20 2010-11-25 株式会社アルバック Film-forming method and film-forming apparatus
TWI464285B (en) * 2009-05-20 2014-12-11 Ulvac Inc Film formation equipment and film formation method
WO2012070195A1 (en) * 2010-11-24 2012-05-31 株式会社アルバック Sputtering method
JP5795002B2 (en) * 2010-11-24 2015-10-14 株式会社アルバック Sputtering method
JP2013001965A (en) * 2011-06-16 2013-01-07 Ulvac Japan Ltd Sputtering method

Similar Documents

Publication Publication Date Title
US4427516A (en) Apparatus and method for plasma-assisted etching of wafers
US20090308732A1 (en) Apparatus and method for uniform deposition
JPH0585634B2 (en)
CN100523276C (en) Design of hardware features to facilitate arc-spray coating applications and functions
WO2010123680A2 (en) Wafer processing deposition shielding components
JPS61170050A (en) Formation of low resistance contact
JP2007284794A (en) Plasma systems with magnetic filter devices to alter film deposition/etching characteristics
JPS61246368A (en) Depositing method for metallic film
JPS59173265A (en) Sputtering device
JPH0618182B2 (en) Dry etching equipment
JPS634062A (en) Bias sputtering device
JPS59229480A (en) Sputtering device
JP2002373887A (en) Etching system for high dielectric
JPS63153266A (en) Sputtering device
GB2049560A (en) Plasma etching
JPH01116068A (en) Bias sputtering device
JP4056112B2 (en) Magnetron sputtering equipment
WO2024232121A1 (en) Method for depositing film
JP2688831B2 (en) Film forming equipment by sputtering method
JPS637364A (en) Bias sputtering device
JP3032316B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPH027870Y2 (en)
JP3455616B2 (en) Etching equipment
JPS62205270A (en) Magnetron electrode
JPH01132762A (en) Method and device for sputtering