[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61231776A - Light detecting semiconductor device - Google Patents

Light detecting semiconductor device

Info

Publication number
JPS61231776A
JPS61231776A JP60072748A JP7274885A JPS61231776A JP S61231776 A JPS61231776 A JP S61231776A JP 60072748 A JP60072748 A JP 60072748A JP 7274885 A JP7274885 A JP 7274885A JP S61231776 A JPS61231776 A JP S61231776A
Authority
JP
Japan
Prior art keywords
type
region
layer
semiconductor device
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60072748A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamamoto
一彦 山本
Masayuki Yamaguchi
正之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60072748A priority Critical patent/JPS61231776A/en
Publication of JPS61231776A publication Critical patent/JPS61231776A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a light detecting semiconductor device which absorbs ultraviolet light with a high absorption coefficient in a depletion layer spread near its surface and facilitates photoelectric conversion highly sensitive to the ultraviolet light by forming P-type layers and high resistance regions alternately in a striped pattern. CONSTITUTION:A high-resistance region 4, which has an impurity concentration of not higher than 5X10<13>cm<-3>, is formed on an N<+> type silicon layer 3, which is an N-type conductive region with a high impurity concentration, to form a P-N junction. A P<+> type guard ring layer 5 for improvement of a dielectric strength is formed by diffusing boron of the same type as a P<+> type diffused layer 1 and its diffusion depth is approximately 2mum. A silicon nitride reflection- preventive film 2, formed by a depressurized CVD method, is provided with a reflection preventive effect in an ultraviolet region. A plurality of the P<+> type diffused layers 1 and N-type silicon stripes, which are the stripe shape openings of the high resistance region 4, are alternately formed in a striped pattern and the respective stripe widths are determined within the region of 10-50mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主として紫外光に高感度な光検知半導体装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention mainly relates to a photodetecting semiconductor device that is highly sensitive to ultraviolet light.

(従来の技術) 従来、紫外光を検出する光検知半導体装置は、第3図に
示すような断面構造をもっている。同図において1はP
型導電層(p型拡散層)、2は反射°防止膜である。こ
こで示したのはシリコンダイオードである。紫外光での
シリコンの吸収係数は大きく、表面近傍で大部分は吸収
される。このため5p型導電層1を薄くする工夫がなさ
れ、たとえば、ボロンのイオン注入により形成されてい
た。また、反射防止膜2の最適化等で、紫外光感度の向
上をはかっていた。なお、同図において、3はn+シリ
コン層、4はn型シリコン層、5はp0ガードリング層
、6は表面電極、7は裏面電極である。
(Prior Art) Conventionally, a photodetecting semiconductor device for detecting ultraviolet light has a cross-sectional structure as shown in FIG. In the same figure, 1 is P
type conductive layer (p-type diffusion layer), 2 is an anti-reflection film. What is shown here is a silicon diode. Silicon has a large absorption coefficient for ultraviolet light, and most of it is absorbed near the surface. For this reason, efforts have been made to make the 5p type conductive layer 1 thinner, for example by implanting boron ions. Furthermore, efforts were made to improve ultraviolet light sensitivity by optimizing the antireflection film 2 and the like. In the figure, 3 is an n+ silicon layer, 4 is an n-type silicon layer, 5 is a p0 guard ring layer, 6 is a front electrode, and 7 is a back electrode.

(発明が解決しようとする問題点) 従来の構成では、P型導電層を制御よく薄く形成し、感
度の均一化を図り、さらに反射防止膜部等の形成工程を
導入しなければならず1歩留りのばらつきが大きく、工
程が多いにもかかわらず、紫外光感度がそ九はど高くな
らない欠点があった。
(Problems to be Solved by the Invention) In the conventional structure, it is necessary to form a thin P-type conductive layer with good control, to achieve uniform sensitivity, and to introduce a process for forming an anti-reflection film. Despite the large variation in yield and the large number of steps involved, there were disadvantages in that the sensitivity to ultraviolet light was not very high.

本発明の目的は、従来の欠点を解消し、紫外光に高感度
で、歩留りのよい光検知半導体装置を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photodetecting semiconductor device that eliminates the conventional drawbacks, is highly sensitive to ultraviolet light, and has a high yield.

(問題点を解決するための手段) 本発明の光検知半導体装置は、高濃度の不純物濃度を有
する第1の半導体領域上に少なくとも5×10″3CI
11−’以下の不純物濃度を有する第2の同形の半導体
領域を形成し、前記第1、第2の半導体領域と異なる導
電形を有する第3の半導体領域を交互に縞状に形成する
ものである。
(Means for Solving the Problems) The photodetecting semiconductor device of the present invention includes at least 5×10″3 CI on a first semiconductor region having a high impurity concentration.
A second semiconductor region of the same shape having an impurity concentration of 11-' or less is formed, and third semiconductor regions having a conductivity type different from the first and second semiconductor regions are alternately formed in a striped shape. be.

また、第3の半導体領域の縞状幅および、前記半導体領
域の縞状間隔がそれぞれ、10ないし50μmの範囲に
選定されたものである。
Further, the striped width of the third semiconductor region and the striped interval of the semiconductor regions are each selected to be in the range of 10 to 50 μm.

(作 用) 上記構成により、吸収係数の大きい紫外光は表面近傍に
ひろがった空乏層内で吸収され、紫外光に高感度な光電
変換を行なう光検知半導体装置を得ることができる。
(Function) With the above configuration, ultraviolet light having a large absorption coefficient is absorbed within the depletion layer extending near the surface, and a photodetecting semiconductor device that performs photoelectric conversion with high sensitivity to ultraviolet light can be obtained.

(実施例) 本発明の一実施例を第1図ないし第2図に基づいて説明
する。第1図は本発明の光検知半導体装置の断面図であ
り、第2図は同表面パターン図である。同図において第
3図と同じ部分に関しては同一符号を付しその説明を省
略する。
(Example) An example of the present invention will be described based on FIGS. 1 and 2. FIG. 1 is a sectional view of the photodetecting semiconductor device of the present invention, and FIG. 2 is a surface pattern diagram thereof. In this figure, the same parts as in FIG. 3 are designated by the same reference numerals, and their explanation will be omitted.

第1図において、高濃度の不純物濃度を有するn型導電
形の領域であるn+型シリコン層3の上にI X 10
13an−3の不純物濃度を有する高抵抗領域が形成さ
れており、厚さは30μmで、エピタキシアル成長で形
成した。pn接合を形成するために。
In FIG. 1, on an n+ type silicon layer 3 which is an n type conductivity type region having a high impurity concentration, I
A high resistance region having an impurity concentration of 13an-3 was formed, the thickness was 30 μm, and it was formed by epitaxial growth. to form a pn junction.

まず50にevの加速エネルギーにより、5X10”a
n〜2のドーズ量によりボロンをイオン注入する。
First, by the acceleration energy of 50 ev, 5X10"a
Boron ions are implanted at a dose of n~2.

引きつづき150Kevの加速エネルギーにより、lX
1015an−”のドーズ量によりボロンをイオン注入
して形成する。5は耐圧を向上させるためのピガードリ
ング層で、P″″拡散層1と同形のボロンを拡散し、約
2μmの拡散深さである。2は、減圧CVD法による窒
化シリコンの反射防止膜であり、紫外領域での反射防止
効果をもたせである。
Continuing with the acceleration energy of 150 Kev, lX
It is formed by implanting boron ions at a dose of 1015 an-''. 5 is a Pigard ring layer for improving the withstand voltage, and boron having the same shape as the P'' diffusion layer 1 is diffused to a diffusion depth of about 2 μm. 2 is an antireflection film made of silicon nitride produced by low pressure CVD, and has an antireflection effect in the ultraviolet region.

第2図は。本実施例による表面パターン図であり、P1
拡散層1と高抵抗領域であるn型シリコ2層4が縞状に
交互にくり返し形成され、それぞれの幅は10ないし5
0μmの範囲で選定され、具体例として、ともに20μ
mで形成されている。パターン幅は、逆バイアス5vを
印加した場合にも、高抵抗領域にも空気層が十分に広が
り、効率よくキャリアをドリフト電流としてとり出すこ
とが可能な幅から決定した。
Figure 2 is. It is a surface pattern diagram according to the present example, and P1
Diffusion layers 1 and n-type silicon 2 layers 4, which are high resistance regions, are alternately formed in stripes, each having a width of 10 to 5.
Both are selected in the range of 0μm, and as a specific example, both are 20μm.
It is formed by m. The pattern width was determined from a width that allows the air layer to sufficiently spread even in the high resistance region even when a reverse bias of 5 V is applied, and carriers can be extracted efficiently as a drift current.

本発明において、2層の形成を縞状に行なっているため
、2層のシート抵抗が従来に較べ増大する。シート抵抗
の増大は、周波数応答性の低下をもたらすため、高濃度
で拡散深さを深くする必要がある。このため、本実施例
においては、中・高の加速エネルギーの2段階イオン注
入によりボロンを拡散させ、シート抵抗の低減を行なっ
ている。
In the present invention, since the two layers are formed in a striped manner, the sheet resistance of the two layers is increased compared to the conventional method. Since an increase in sheet resistance causes a decrease in frequency response, it is necessary to increase the diffusion depth at a high concentration. Therefore, in this embodiment, boron is diffused by two-step ion implantation with medium and high acceleration energies to reduce the sheet resistance.

また、公知のボロン拡散方法において、SiO□膜をマ
スクとして1選択拡散を行なう場合、2層と高抵抗領域
において、表面に2000ないし3000人の段差が生
じる。このような段差は、5in2−Si界面近傍にお
ける、逆バイアス印加時の空乏層の拡がりに歪をもたら
し、紫外光感度の低下をもたらす。
Further, in the known boron diffusion method, when selective diffusion is performed using the SiO□ film as a mask, a step difference of 2,000 to 3,000 people occurs on the surface between the second layer and the high resistance region. Such a step causes distortion in the expansion of the depletion layer near the 5in2-Si interface when a reverse bias is applied, resulting in a decrease in ultraviolet light sensitivity.

このため、本実施例において、ボロンのイオン注入法を
用い、しかも、レジストをマスクとする方法を用い、S
iO□−Si界面の段差を小さくしている6なお、本実
施例においては、n″″″基板用した場合について述べ
たが、23層を00層に、n型の高抵抗層をp型にして
もよい。
Therefore, in this example, boron ion implantation was used, and a resist was used as a mask.
The step difference at the iO□-Si interface is made small.6 In this example, the case where an n'''' substrate was used was described, but the 23 layer was replaced with a 00 layer, and the n-type high resistance layer was replaced with a p-type layer. You can also do this.

(発明の効果) 本発明によれば、2層と高抵抗領域を交互に縞状に形成
することで、シリコン表面の近傍で吸収される紫外光領
域の光電感度を従来に比較して約50%の量子効率の増
大(入射光波長365μm)を実現できた。また従来と
同様のシリコン基板の仕様によれば、紫外光領域から近
赤外光領域にわたり、高感度な受光素子が得られる効果
がある。
(Effects of the Invention) According to the present invention, by forming two layers and high resistance regions alternately in a striped pattern, the photoelectric sensitivity in the ultraviolet light region absorbed near the silicon surface is improved by about 50% compared to the conventional method. % increase in quantum efficiency (incident light wavelength: 365 μm). Further, according to the same specifications of the silicon substrate as in the past, a highly sensitive light-receiving element can be obtained from the ultraviolet light region to the near-infrared light region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による光検知半導体装置の断
面図、第2図は同チップパターン図、第3図は従来の光
検知半導体装置の断面図である。 1 ・・・p1拡散層、 2 ・・・反射防止膜、 3
 ・・・n+型シリコン層、 4 ・・・ n型シリコ
ン層、5 ・・・p1ガードリング層、 6 ・・表面
電極、7 ・・・裏面電極。 第 1 図 第2図 第3因 1・・・pヤ導屯啼 (p”+値引
FIG. 1 is a sectional view of a photodetecting semiconductor device according to an embodiment of the present invention, FIG. 2 is a chip pattern diagram of the same, and FIG. 3 is a sectional view of a conventional photodetecting semiconductor device. 1... p1 diffusion layer, 2... antireflection film, 3
... n+ type silicon layer, 4 ... n type silicon layer, 5 ... p1 guard ring layer, 6 ... surface electrode, 7 ... back surface electrode. Figure 1 Figure 2 Figure 3 Factor 1... p ya guidance (p” + discount

Claims (2)

【特許請求の範囲】[Claims] (1)高濃度の不純物濃度を有する第1の半導体領域上
に少なくとも5×10^1^3cm^−^3以下の不純
物濃度を有する第2の同形の半導体領域を形成し、前記
第1、第2の半導体領域と異なる導電形を有する第3の
半導体領域を交互に縞状に形成することを特徴とする光
検知半導体装置。
(1) A second semiconductor region of the same shape having an impurity concentration of at least 5×10^1^3 cm^-^3 or less is formed on the first semiconductor region having a high impurity concentration; A photodetecting semiconductor device characterized in that third semiconductor regions having a conductivity type different from that of the second semiconductor regions are formed alternately in a striped pattern.
(2)第3の半導体領域の縞状幅および、前記半導体領
域の縞状間隔がそれぞれ、10ないし50μmの範囲に
選定されたことを特徴とする特許請求の範囲第(1)項
記載の光検知半導体装置。
(2) The light according to claim (1), wherein the stripe width of the third semiconductor region and the stripe interval of the semiconductor regions are each selected in the range of 10 to 50 μm. Detection semiconductor device.
JP60072748A 1985-04-08 1985-04-08 Light detecting semiconductor device Pending JPS61231776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072748A JPS61231776A (en) 1985-04-08 1985-04-08 Light detecting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072748A JPS61231776A (en) 1985-04-08 1985-04-08 Light detecting semiconductor device

Publications (1)

Publication Number Publication Date
JPS61231776A true JPS61231776A (en) 1986-10-16

Family

ID=13498283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072748A Pending JPS61231776A (en) 1985-04-08 1985-04-08 Light detecting semiconductor device

Country Status (1)

Country Link
JP (1) JPS61231776A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488063U (en) * 1990-12-18 1992-07-30
EP0986110A1 (en) * 1998-09-10 2000-03-15 Electrowatt Technology Innovation AG Light receiving semiconductor device and its use in flame control
JP2005536035A (en) * 2002-05-24 2005-11-24 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Photodiode
JP2006128592A (en) * 2004-10-28 2006-05-18 Samsung Electro Mech Co Ltd Multi-wavelength light receiving element and method of fabricating the same
WO2015141356A1 (en) * 2014-03-18 2015-09-24 シャープ株式会社 Photoelectric conversion element and photoelectric conversion device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594182A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Semiconductor photodetector
JPS59124177A (en) * 1982-12-29 1984-07-18 Shimadzu Corp Planar diffusion type electromagnetic wave detecting diode
JPS6059787A (en) * 1983-09-13 1985-04-06 Fujitsu Ltd Semiconductor photodetector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594182A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Semiconductor photodetector
JPS59124177A (en) * 1982-12-29 1984-07-18 Shimadzu Corp Planar diffusion type electromagnetic wave detecting diode
JPS6059787A (en) * 1983-09-13 1985-04-06 Fujitsu Ltd Semiconductor photodetector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0488063U (en) * 1990-12-18 1992-07-30
EP0986110A1 (en) * 1998-09-10 2000-03-15 Electrowatt Technology Innovation AG Light receiving semiconductor device and its use in flame control
US6246099B1 (en) 1998-09-10 2001-06-12 Electrowatt Technology Innovation Ag Photosensitive semiconductor element having an outer layer divided into mutually spaced regions
JP2005536035A (en) * 2002-05-24 2005-11-24 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Photodiode
JP2006128592A (en) * 2004-10-28 2006-05-18 Samsung Electro Mech Co Ltd Multi-wavelength light receiving element and method of fabricating the same
WO2015141356A1 (en) * 2014-03-18 2015-09-24 シャープ株式会社 Photoelectric conversion element and photoelectric conversion device using same

Similar Documents

Publication Publication Date Title
US9236519B2 (en) Geiger-mode avalanche photodiode with high signal-to-noise ratio, and corresponding manufacturing process
JP2954034B2 (en) Single carrier type solid state radiation detector
US9214588B2 (en) Wavelength sensitive sensor photodiodes
US20100282310A1 (en) Electromagnetic emission converter
KR101111215B1 (en) Electromagnetic radiation converter and a battery
JP2002057352A (en) Solar battery and manufacturing method
JPH04505233A (en) Avalanche photodiode
US3812518A (en) Photodiode with patterned structure
US4129878A (en) Multi-element avalanche photodiode having reduced electrical noise
JPH0346279A (en) Hetero junction photodiode
US4141756A (en) Method of making a gap UV photodiode by multiple ion-implantations
JPS61231776A (en) Light detecting semiconductor device
JP3607385B2 (en) Silicon avalanche photodiode
JPH0527997B2 (en)
US5179431A (en) Semiconductor photodetection device
JPH07135329A (en) Solar cell and its fabrication
JPS59127883A (en) Photosensitive semiconductor device
RU2240631C1 (en) Photodetector
JPH0563030B2 (en)
JPH0559590B2 (en)
JPS5896777A (en) Solar battery
JPS6218774A (en) Light-accepting semiconductor device
JPS55141766A (en) Manufacturing of semiconductor light position detector
KR900005127B1 (en) Silicon photo diode for low sensing
JPS59145579A (en) Semiconductor light-receptor