JPS61231434A - Apparatus for testing stress corrosion cracking of turbine - Google Patents
Apparatus for testing stress corrosion cracking of turbineInfo
- Publication number
- JPS61231434A JPS61231434A JP7385185A JP7385185A JPS61231434A JP S61231434 A JPS61231434 A JP S61231434A JP 7385185 A JP7385185 A JP 7385185A JP 7385185 A JP7385185 A JP 7385185A JP S61231434 A JPS61231434 A JP S61231434A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- corrosion cracking
- stress corrosion
- piping
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はタービンの一部に生じる応力腐蝕割れの発生原
因を究明するためのタービンの応力腐蝕割れ試験装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stress corrosion cracking testing device for a turbine for investigating the cause of stress corrosion cracking occurring in a part of the turbine.
[従来の技術と発明が解決しようとする問題点]タービ
ンに発生する応力腐蝕割れ(以下SCCという)の発生
原因については明確に解明されていないのが現況である
。すなわちSCCは材料、応力、環境の3つの組合せの
みにより発生する。[Prior art and problems to be solved by the invention] At present, the cause of stress corrosion cracking (hereinafter referred to as SCC) that occurs in turbines has not been clearly elucidated. That is, SCC occurs due to only three combinations: material, stress, and environment.
これら?つの要因の肉材料についてはタービンの材質に
つき観測・測定することにより明確にすることができ、
また応力についても近年では有限要素法等の応力解析法
の発達により、SCCが生じ易い部分の温度・圧力を推
定することができる。these? The material of the two factors can be clarified by observing and measuring the material of the turbine.
Regarding stress, with the recent development of stress analysis methods such as the finite element method, it is now possible to estimate the temperature and pressure of areas where SCC is likely to occur.
しかしながらscceg囚する有害物質についてはこれ
を明確にすることは不可能であった。その為、タービン
環境内でおこるSCCの有害物質は推定する他なく、実
験至的なSCC再現試験は不可能とされていた。However, it has not been possible to clarify this regarding the harmful substances contained in SCCEG. For this reason, there is no choice but to estimate the amount of harmful SCC substances that occur in the turbine environment, and it has been considered impossible to carry out experimental SCC reproduction tests.
またタービンに発生する亀裂の伝播速度の測定について
も、亀裂の発生時点を知ることができな、いために測定
不可能であり、さらに亀裂発生挙動と亀裂伝播挙動とに
分けて測定することができず、また従来の装置はタービ
ン内に設置されていたために、開放点検時でなければ観
測・測定ができないという不具合があった。Furthermore, it is impossible to measure the propagation speed of cracks that occur in turbines because it is not possible to know the point at which cracks occur, and furthermore, it is not possible to measure the propagation speed of cracks that occur in turbines separately. Furthermore, because the conventional equipment was installed inside the turbine, there was a problem in that observation and measurements could only be made during an overhaul.
本発明は以上の点に基づいてなされたものでその目的と
するところは、実環境タービン中でのSCC再現試験の
実施を可能にし、亀裂伝播速度を定量的に把握して応力
腐蝕割れの予防保全を確実に図ることが可能なタービン
の応力腐蝕割れ試験装置を提供することにある。The present invention has been made based on the above points, and its purpose is to enable the implementation of SCC reproduction tests in real environment turbines, quantitatively grasp the crack propagation speed, and prevent stress corrosion cracking. An object of the present invention is to provide a stress corrosion cracking testing device for a turbine that can ensure maintenance.
[問題点を解決するための手段、]
すなわち本発明よるタービンの応力腐蝕割れ試験装置は
、任意のタービンの蒸気流を蒸気抽出配管を介してター
ビン外へ抽出し、上記蒸気抽出配管にバイパス配管を配
設し、このバイパス配管中に蒸気通過孔を有するモニタ
リング用カプセルを取付け、該モニタリング用カプセル
内に応力腐蝕割れが懸念される部分の材質と同一の材質
により作成された試験片を収容してなることを特徴とす
るものである。[Means for Solving the Problems] That is, the stress corrosion cracking testing device for a turbine according to the present invention extracts the steam flow of an arbitrary turbine to the outside of the turbine through a steam extraction pipe, and connects a bypass pipe to the steam extraction pipe. A monitoring capsule with a steam passage hole is installed in this bypass piping, and a test piece made of the same material as the material of the part where stress corrosion cracking is concerned is housed in the monitoring capsule. It is characterized by the fact that
[作用]
つまり蒸気抽出配管に配設されたバイパス配管中にモニ
タリング用カプセルを設置し、かつ該モニタリング用カ
プセル内に応力腐蝕割れの発生が懸念される部分の材質
と同一の材質よりなる試験片を設置することにより、タ
ービン開放点検時に限定されることなく、”任意の時間
に試験片を取出して、観測・測定することを可能にする
ものである。[Function] In other words, a monitoring capsule is installed in the bypass pipe installed in the steam extraction pipe, and a test piece is made of the same material as the part of the monitoring capsule where stress corrosion cracking is likely to occur. By installing a test piece, it is possible to take out a test piece at any time and observe and measure it, without being limited to the time of turbine open inspection.
[発明の効果]
したがって任意のタービンから蒸気を抽出する蒸気抽出
配管からバイパス配管内に蒸気通過孔を有するモニタリ
ング用カプセルを取着し、該モニタリング用カプセル内
に応力腐蝕割れが懸念される部分の材質と同一の材質に
より作成された試験片を収容することにより、実タービ
ン環境中でのSCC再現試験の実施が可能となり、亀裂
伝播速度および潜伏期間を定量的に把握することができ
、それによって応力腐蝕割れの予防保全を確実に図るこ
とができる。[Effects of the Invention] Therefore, a monitoring capsule having a steam passage hole is installed in the bypass piping from the steam extraction piping that extracts steam from an arbitrary turbine, and a monitoring capsule having a steam passage hole is installed in the monitoring capsule in the area where stress corrosion cracking is concerned. By accommodating test pieces made from the same material as the material, it becomes possible to carry out SCC reproduction tests in the actual turbine environment, and it is possible to quantitatively understand the crack propagation speed and incubation period. Preventive maintenance against stress corrosion cracking can be ensured.
[実施例]
以下第1図乃至第11図を参照して本発明の一実施例を
説明する。第1図中符号1はタービンを示し、このター
ビン1には蒸気抽出配管2が接続されている。この蒸気
抽出配管2にはバイパス配管3が配設されている。上記
バイパス配管3内には応力腐蝕割れ試験装置4が設置さ
れている。なお図中符号5はタービン回転部分、符号6
はタービン停止部分を夫々示す。[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 11. Reference numeral 1 in FIG. 1 indicates a turbine, to which a steam extraction pipe 2 is connected. A bypass pipe 3 is provided in the steam extraction pipe 2. A stress corrosion cracking test device 4 is installed inside the bypass pipe 3. In addition, the reference numeral 5 in the figure is the turbine rotating part, and the reference numeral 6 is the turbine rotating part.
1 and 2 respectively indicate the turbine stopped portions.
次に上記応力腐蝕割れ試験装置4の構成について説明す
る。第2図は応力腐蝕割れ試験装置4の取付状態を拡大
して示す図であり、複数の蒸気通過孔11Aを有するモ
ニタリングカプセル11をボルト12によりバイパス配
管3の内壁に固定しいる。なおボルト12による固定で
はなく、溶接により固定してもよい。上記モニタリング
用カプセル11内には第3図に示すように試験片13a
、13bおよび13cの内1又は複数を収容している。Next, the structure of the stress corrosion cracking testing apparatus 4 will be explained. FIG. 2 is an enlarged view showing the installed state of the stress corrosion cracking test device 4, in which the monitoring capsule 11 having a plurality of steam passage holes 11A is fixed to the inner wall of the bypass pipe 3 with bolts 12. Note that instead of fixing with the bolts 12, it may be fixed by welding. Inside the monitoring capsule 11 is a test piece 13a as shown in FIG.
, 13b and 13c.
該試験片11a、11bおよび11Cに任意の位置の抽
気した蒸気流を接触させ、それによって亀裂を発生させ
、観測・測定する。The test pieces 11a, 11b, and 11C are brought into contact with the extracted steam flow at arbitrary positions, thereby generating cracks, which are observed and measured.
上記試験片13a、13bおよび13CはSCCが懸念
される部分の材質と同一の材質により作成されており、
第4図乃至第6図に夫々拡大して示す。そして試験片1
3aおよび13bは亀裂伝播速度測定用であり、また試
験片13cはSCC発生観察用である。なお第4図およ
び第5図中符号14は発生した亀裂を示す。The test pieces 13a, 13b and 13C are made of the same material as the part where SCC is a concern,
FIGS. 4 to 6 each show an enlarged view. and test piece 1
Test pieces 3a and 13b are used to measure crack propagation speed, and test piece 13c is used to observe SCC occurrence. Note that the reference numeral 14 in FIGS. 4 and 5 indicates the generated crack.
次にこれら各試験片13a乃至1aCの応力拡大係数(
K)と亀裂伝播速度(da/dt)との関係を第7因お
よび第8図を参照して説明する。Next, the stress intensity factor (
The relationship between K) and crack propagation velocity (da/dt) will be explained with reference to the seventh factor and FIG.
第7図および第8図は横軸に応力拡大係数(K)をとり
、縦軸に亀裂伝播速度(da/dt)をとり、両者の関
係を示した図である。まず前記試験片13aは第7図に
示すように亀裂が進展すると応力拡大係数(K)が減少
するもの(K変化型試験片)であり(図中矢印A、Bで
示す)、これは亀裂長さの測定を頻繁に行なえる部分、
又は亀裂の伝播速度が非常に遅延する部分に使用すると
有利である。また試験片13bは、第8図に示すように
亀裂が進展しても略一定の応力拡大係数(K)を維持す
るもの(K定形試験片)であり(図中C点で示す〉、長
期化の試験に適している。このような特性を有する試験
片13aおよび13bにより第9図に示す実プラントに
おける任意のタービン1の蒸気流から抽出した蒸気中で
の亀裂伝播速度(da/dt)と応力拡大係数(K)と
の相関曲線を得ることができる。また前記SCC発生観
察用試験片13Cにより、第10図に示す特性を得るこ
とができる。第10図は横軸に時間をとり、縦軸にピー
ク応力(σ/σy)をとり、ピーク応力の時間変化を示
す図である。この第10図より応力腐蝕割れが最つども
懸念される部分の応力を知ることができ、それによって
SCCの発生挙動を把握することができる。FIGS. 7 and 8 are diagrams showing the relationship between the stress intensity factor (K) on the horizontal axis and the crack propagation velocity (da/dt) on the vertical axis. First, as shown in Fig. 7, the test piece 13a is a type in which the stress intensity factor (K) decreases as the crack progresses (K-variable test piece) (indicated by arrows A and B in the figure). Parts where length measurements can be made frequently,
Alternatively, it is advantageous to use it in areas where the propagation speed of cracks is extremely slow. In addition, as shown in Figure 8, the test piece 13b is a type that maintains a substantially constant stress intensity factor (K) even if a crack develops (K-shaped test piece) (indicated by point C in the figure), and has a long-term The crack propagation velocity (da/dt) in the steam extracted from the steam flow of any turbine 1 in the actual plant shown in FIG. A correlation curve between the stress intensity factor (K) and the stress intensity factor (K) can be obtained.Furthermore, the characteristics shown in Fig. 10 can be obtained using the test piece 13C for observing the occurrence of SCC. , the vertical axis is the peak stress (σ/σy), and it is a diagram showing the change in peak stress over time.From this Figure 10, it is possible to know the stress in the part where stress corrosion cracking is most likely to occur. The occurrence behavior of SCC can be understood by this.
次に第11図を参照して前記モニタリング用カプセル8
の取付・取外しがタービン系統に影響を与えないことを
説明する。蒸気抽出配管2には開閉弁21が介挿されて
おり、またバイパス配管3にはバイパス弁22Aおよび
22Bが夫々介挿されている。すなわちモニタリング用
カプセル8の取付・取外しをなす場合には、第11図(
A)に示すようにバイパス弁22Aおよび22Bを閉と
する(図中黒塗りで示す)。よって取付・取外し作業が
タービン系統に影響を与えることはない。Next, referring to FIG. 11, the monitoring capsule 8
Explain that the installation and removal of the turbine will not affect the turbine system. An on-off valve 21 is inserted into the steam extraction pipe 2, and bypass valves 22A and 22B are inserted into the bypass pipe 3, respectively. In other words, when attaching and detaching the monitoring capsule 8, the procedure shown in Fig. 11 (
As shown in A), the bypass valves 22A and 22B are closed (shown in black in the figure). Therefore, installation and removal work will not affect the turbine system.
また蒸気を抽気する場合には、上記開閉弁21およびバ
イパス弁22Aおよび22Bを第11図(B)乃至(D
)に示すように適宜開閉操作して行なう。In addition, when steam is extracted, the on-off valve 21 and the bypass valves 22A and 22B are operated in FIGS. 11(B) to (D).
), open and close as appropriate.
ヶ、。♂t□11図。*、!1゜一実施例や示。
図で、第1図はタービンから蒸気を抽出する蒸気抽出配
管からバイパス配管内に応力腐蝕割れ試験装置を設置し
た状態を示す図、第2図は応力腐蝕割れ試験装置の平面
図、第3図は第2図の■−■断面図、第4図乃至第6図
は試験片の平面図、7図乃至第9図は亀裂伝播速度(D
A/DT)と応力拡大係数(K)の関係を示す図、第1
0図はピーク応力の時間変化を示す図、第11図(A)
乃至(D)はモニタリング用カプセル取付・取外し時等
の開閉弁およびバイパス弁の開閉状態を示す図である。
1・・・タービン、2・・・蒸気抽出配管、3・・・バ
イパス配管、4・・・応力腐蝕割れ試験装置、5・・・
タービン回転部分、6・・・タービン静止部分、11・
・・モニタリング用カプセル、11A・・・蒸気通過孔
、13a、13b、13c・・・試験片。
出願人復代理人 弁理士 鈴江武彦
第1(!I
@2図 第3図
第4図
第5図 第6図
第7図 第8図
、−ご゛〃、]シー大イ糸4ドL(に)k%mジグ
時 7−ラ第
(A)
((j
(D)Wow. ♂t□11 figure. *,! 1゜Examples and illustrations. Figure 1 shows the stress corrosion cracking test device installed from the steam extraction pipe that extracts steam from the turbine to the bypass pipe, Figure 2 is a plan view of the stress corrosion cracking test equipment, and Figure 3 is a sectional view taken along ■-■ in Fig. 2, Figs. 4 to 6 are plan views of the test piece, and Figs. 7 to 9 are crack propagation speeds (D
Diagram showing the relationship between A/DT) and stress intensity factor (K), 1st
Figure 0 shows the change in peak stress over time, Figure 11 (A)
FIGS. 3A to 3D are diagrams showing the open and close states of the on-off valve and the bypass valve when attaching and detaching the monitoring capsule. DESCRIPTION OF SYMBOLS 1... Turbine, 2... Steam extraction piping, 3... Bypass piping, 4... Stress corrosion cracking test device, 5...
Turbine rotating part, 6...Turbine stationary part, 11...
... Monitoring capsule, 11A... Steam passage hole, 13a, 13b, 13c... Test piece. Applicant's Sub-Attorney Patent Attorney Takehiko Suzue No. 1 (! )k%m jig
Time 7-rath (A) ((j (D)
Claims (1)
ン外へ抽出し、上記蒸気抽出配管にバイパス配管を配設
し、このバイパス配管中に蒸気通過孔を有するモニタリ
ング用カプセルを取付け、該モニタリング用カプセル内
に応力腐蝕割れが懸念される部分の材質と同一の材質に
より作成された試験片を収容してなることを特徴とする
タービンの応力腐蝕割れ試験装置。The steam flow of any turbine is extracted to the outside of the turbine through a steam extraction piping, a bypass piping is arranged in the steam extraction piping, a monitoring capsule having a steam passage hole is installed in the bypass piping, and a monitoring capsule having a steam passage hole is installed in the bypass piping. A stress corrosion cracking testing device for a turbine, characterized in that a test piece made of the same material as that of a portion where stress corrosion cracking is concerned is housed in a capsule.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7385185A JPS61231434A (en) | 1985-04-08 | 1985-04-08 | Apparatus for testing stress corrosion cracking of turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7385185A JPS61231434A (en) | 1985-04-08 | 1985-04-08 | Apparatus for testing stress corrosion cracking of turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61231434A true JPS61231434A (en) | 1986-10-15 |
JPH0462331B2 JPH0462331B2 (en) | 1992-10-06 |
Family
ID=13530063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7385185A Granted JPS61231434A (en) | 1985-04-08 | 1985-04-08 | Apparatus for testing stress corrosion cracking of turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61231434A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104374640A (en) * | 2013-08-16 | 2015-02-25 | 中国科学院金属研究所 | Device for carrying out metal stress corrosion test in gap |
WO2021181773A1 (en) * | 2020-03-13 | 2021-09-16 | 三菱パワー株式会社 | Method for evaluating stress corrosion cracking of steam turbine |
-
1985
- 1985-04-08 JP JP7385185A patent/JPS61231434A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104374640A (en) * | 2013-08-16 | 2015-02-25 | 中国科学院金属研究所 | Device for carrying out metal stress corrosion test in gap |
WO2021181773A1 (en) * | 2020-03-13 | 2021-09-16 | 三菱パワー株式会社 | Method for evaluating stress corrosion cracking of steam turbine |
JP2021143991A (en) * | 2020-03-13 | 2021-09-24 | 三菱パワー株式会社 | Method of evaluating stress corrosion cracking of steam turbines |
TWI789658B (en) * | 2020-03-13 | 2023-01-11 | 日商三菱動力股份有限公司 | Method for the assessment of stress corrosion cracking in steam turbines |
Also Published As
Publication number | Publication date |
---|---|
JPH0462331B2 (en) | 1992-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107767975B (en) | Method for monitoring quality performance of weight-losing component of nuclear power plant and diagnosing fault | |
Rokicki et al. | Frequency and modeshape evaluation of steam turbine blades using the metal magnetic memory method and vibration wave propagation | |
Storti et al. | Simulating application of operational modal analysis to a test rig | |
JPS61231434A (en) | Apparatus for testing stress corrosion cracking of turbine | |
WO2010050368A1 (en) | Method for evaluating corrosion fatigue damage | |
Grądzki et al. | Rotor blades diagnosis method based on differences in phase shifts | |
Stubbs | The role of NDE in the life management of steam turbine rotors | |
Akula et al. | Condition monitoring saves money and prevents failures | |
KR101001605B1 (en) | Manufacturing Method for Socket Weld Specimen Containing the Fatigue Crack | |
WO2024112160A2 (en) | Stress corrosion cracking detection reference parameter configuration method and device using acoustic emission sensor | |
Chao et al. | Non-Destructive Testing and Diagnostic of Rotating Machinery Faults in Petrochemical Processing Plant | |
BROWN et al. | Vibration Monitoring of Hydropower Systems | |
Fuhai et al. | Analysis of the Causes of Gas Leakage of a 500kV SF6 Circuit Breaker | |
JP2001305043A (en) | Device and method for testing stress corrosion crack for condenser | |
JPH10213532A (en) | Corrosion fatigue testing method | |
JPS6045707A (en) | Test device for crack due to stress corrosion in turbine | |
KR20230017940A (en) | A system for simulating microstructure change of a sample and a method for evaluating microstructure change of a sample using the same | |
Jankowska et al. | Artificial Neural Networks Approaches to Monitoring of Combustion in a Fluid Boiler | |
Rowley et al. | Analysis of acoustic data from UK sodium/water reaction test facilities | |
Smedley | PFR evaporator leak | |
Mizanur et al. | A Study on Non Destructive Evaluation of the Steam Turbine L-0 Blades | |
Guo et al. | Fatigue crack identification method based on strain amplitude changing | |
JPH1164210A (en) | Method for inspecting system piping | |
Ammirato et al. | Currently Available Nondestructive Inspection Methods for Generating Retaining Ring.(Retroactive Coverage) | |
Zhang et al. | Design and Realization of External Monitoring System for Pipeline Internal Corrosion Based on AC FSM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |