[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61234867A - Material for living body - Google Patents

Material for living body

Info

Publication number
JPS61234867A
JPS61234867A JP60067271A JP6727185A JPS61234867A JP S61234867 A JPS61234867 A JP S61234867A JP 60067271 A JP60067271 A JP 60067271A JP 6727185 A JP6727185 A JP 6727185A JP S61234867 A JPS61234867 A JP S61234867A
Authority
JP
Japan
Prior art keywords
glass
fibers
cao
ceramic fibers
biological material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60067271A
Other languages
Japanese (ja)
Other versions
JPS6344380B2 (en
Inventor
武宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP60067271A priority Critical patent/JPS61234867A/en
Publication of JPS61234867A publication Critical patent/JPS61234867A/en
Publication of JPS6344380B2 publication Critical patent/JPS6344380B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 “本発明は、生体用材料、特に人工骨や人工歯根として
有用な生体用材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to biomaterials, particularly biomaterials useful as artificial bones and artificial tooth roots.

従来、人工骨や人工歯根等の材料としては銀、タンタル
等の金属材料、フパルトクロム合金、チタン合金、ステ
ンレス等の合金材料、ポリメチルメタクリレート、高密
度ポリエチレン等の高分子材料、アルミナセラミックス
、合成アパタイト等のセラミックス材料が用いられてき
た。しかしながら金属、合金材料は強度的には優れてい
るが、生体組織との親和性が悪く、長期間人体中で使用
すると、金属イオンが溶は出し、生体組織を害する恐れ
があり、又高分子材料は生体内で安定するが、強度が弱
く骨と化学結合せず、ごく限られた部分にしか使用でき
ない上、製造時に未又応で残づたモノマーが溶出して生
体組織を損う恐れがあった。さらにセラミックス材料で
あるアルミナセラミックスは、強度的には優れているが
、骨と化学結合せず、逆に合成アパタイトは骨と強固に
結合はするが、強度が低いという問題があった。
Conventionally, materials for artificial bones and artificial tooth roots include metal materials such as silver and tantalum, alloy materials such as fupartochromium alloy, titanium alloy, and stainless steel, polymer materials such as polymethyl methacrylate and high-density polyethylene, alumina ceramics, and synthetic apatite. Ceramic materials such as these have been used. However, although metals and alloy materials have excellent strength, they have poor affinity with living tissues, and when used in the human body for a long period of time, metal ions may be released and harm living tissues. Although the material is stable in the living body, it has low strength and does not chemically bond with bones, so it can only be used in very limited areas, and there is a risk that monomers left unresolved during manufacturing may elute and damage living tissue. was there. Furthermore, although alumina ceramics, which are ceramic materials, have excellent strength, they do not chemically bond with bone, and synthetic apatite, on the other hand, strongly bonds with bone, but has a problem of low strength.

本発明は、上記問題に鑑みなされたもので、生体親和性
に優れ、骨と直接化学結合をつくり、強度的にも高い生
体用材料を提供することを目的とするものである。
The present invention was made in view of the above-mentioned problems, and aims to provide a biological material that has excellent biocompatibility, forms a direct chemical bond with bone, and has high strength.

本発明の生体用材料は、Pt0B  CaO系ガラスの
焼成体中にセラミック繊維又はウィスカーを含んでいる
ことを特徴とする。
The biological material of the present invention is characterized in that it contains ceramic fibers or whiskers in a fired body of Pt0B CaO-based glass.

本発明で使用するProm −(!ao系ガラスとして
は、好ましくは少なくとも重量%でP、O@1〜30%
、(!ao  25〜55%、PlogJjJtmを合
量で25〜80 %の組成を有する。
The Prom-(!ao glass used in the present invention preferably contains at least 1 to 30% by weight of P and O.
, (!ao 25-55%, PlogJjJtm total composition 25-80%.

前記のPjOl  CaO系ガラスの組成範囲を上記の
ように限定したのは以下の理由による。
The reason why the composition range of the PjOlCaO glass is limited as described above is as follows.

P、O,が1%より少ない場合は生体内で骨と化学結合
しにくくなり、30%より多い場合は、化学耐久性が悪
くなり、体液に溶けやすくなると同時に失透性が強く、
ガラス化が困難となる。
If the P, O, content is less than 1%, it will be difficult to chemically bond with bones in the body, and if it is more than 30%, the chemical durability will be poor, and at the same time it will dissolve easily in body fluids, and at the same time will have strong devitrification.
Vitrification becomes difficult.

CaOが25%より少ない場合は、成形物の強度が低く
なり、55%より多い場合は、失透性が強くガラス化が
困難となる。
If CaO is less than 25%, the strength of the molded product will be low, and if it is more than 55%, devitrification will be strong and vitrification will be difficult.

P、o、とCaOの合量が25%より少ない場合は、骨
との結合力が弱くなり、80%より多い場合は、化学耐
久性が悪くなると同時に失透してガラス化が困難となる
If the total amount of P, O, and CaO is less than 25%, the bonding force with bone will be weak, and if it is more than 80%, chemical durability will deteriorate and devitrification will occur, making vitrification difficult. .

かかるPlog−(!ao系ガラスの焼成体中に含まれ
るセラミック繊維   は、該ガラス焼成体の強度を上
げるものであり、7uaoss 5ift、ZrQ、、
SiO(7)繊維及びガラスファイバー、カーボンファ
イバーが好適であり、これらを長繊維あるいは短繊維に
して用いる。該短繊維は、長繊維をチ、、ブト状に切断
したものである。ウィスカーは、繊維状単結晶であり通
常得られる金属の炭化物、硼化物、窒化物、酸窒化物の
いずれも使用可能である。
The ceramic fibers contained in the fired Plog-(!ao glass) increase the strength of the fired glass.
SiO(7) fibers, glass fibers, and carbon fibers are suitable, and these are used in the form of long fibers or short fibers. The short fibers are obtained by cutting long fibers into pieces. The whisker is a fibrous single crystal, and any of commonly obtained metal carbides, borides, nitrides, and oxynitrides can be used.

以下に本発明の生体用材料の製造方法について記載する
The method for producing the biological material of the present invention will be described below.

本発明におけるPros  CaO系ガラスの焼成体中
にセラミック繊維を含有させる方法は、セラミック繊維
の長繊維を配列して用いる場合とチmyブト伏に切断し
たセラミック繊維の短繊維を混入して用いる場合とによ
って異なる。
The method of incorporating ceramic fibers into the fired body of Pros CaO glass in the present invention includes two methods: using long ceramic fibers in an array, and mixing short ceramic fibers cut into small pieces. It varies depending on.

セラミック繊維を配列して用いる場合は、セラミック繊
維の長繊維を複数本中空の円筒内に張力をかけて軸方向
に配列し、該円筒内に、28oメツシユ以下に粉砕した
Pオ06− CaO系ガラスを例えばスプレードライヤ
ーで100声程度に造粒した粒子を投入するか、或いは
P、O@ −CaO系ガラスパウダーをαテルピネオー
ル、ブチルカルピトールアセテートの有機物と混合して
スラリー状にして圧入し、次いでプレス又はラバープレ
スをかけて予備成形し、これを焼成すると、該セラミッ
ク繊維がP、0@−CaO系ガラスの焼成体中に軸方向
に配向した生体材料を得ることができる。添付の図面は
、上記の方法により得られた円柱形の生体材料10を一
部切欠して示した斜視図であり、ガラス11の焼成体中
にセラミック繊維12が軸方向に配列されて含まれてい
る。
When ceramic fibers are used in an array, a plurality of long ceramic fibers are arranged in the axial direction in a hollow cylinder under tension, and in the cylinder is a PO06-CaO system pulverized to a size of 28o mesh or less. Particles of glass granulated to about 100 particles using a spray dryer, for example, are introduced, or P,O@-CaO-based glass powder is mixed with organic substances such as α-terpineol and butyl carpitol acetate to form a slurry, and the mixture is press-fitted. Next, by applying a press or a rubber press to preform and firing this, a biomaterial in which the ceramic fibers are oriented in the axial direction in a fired body of P,0@-CaO glass can be obtained. The attached drawing is a partially cutaway perspective view of a cylindrical biomaterial 10 obtained by the above method, in which ceramic fibers 12 are arranged in the axial direction and are included in the fired body of glass 11. ing.

またチョツプド状セラミック繊維を混入して用いる場合
は、チョツプド状セラミック繊維とploll−CaO
系ガラスの粉末を予め充分に混合し、次いでパラフィン
、ワックス、ポリビニルアルコール等の有機剤を混合し
た後、プレス1、うI<′−プレスをかけて所望の形状
に予備成形し、これを焼成することでP、Q@ −Ca
O系ガラスの焼成体中に チ1.ブト状セラミック繊維
が均一に分散した生体用材料を得ることができる。
In addition, when chopped ceramic fibers are mixed and used, chopped ceramic fibers and ploll-CaO
The glass powder is thoroughly mixed in advance, and then organic agents such as paraffin, wax, and polyvinyl alcohol are mixed, and then preformed into the desired shape using a press 1 and a press. By doing so, P, Q@ -Ca
1. In the fired body of O-based glass. It is possible to obtain a biological material in which the butty ceramic fibers are uniformly dispersed.

以下本発明を更に具体的な実施例により詳しく説明する
The present invention will be explained in more detail below using more specific examples.

実施例1 重量%でptos 10%、(iao 35%、S10
.45%、Mg010%になるように調合されたガラス
原料を1450°Cで4時間溶解した後、水冷ローラー
の間に流してリボン状ガラスを得、その後アルミナボー
ルミルを用いて280メツシユ以下に粉砕した。得られ
たガラスパウダーをスプレードライヤーを用いて80〜
100 pに造粒し、この造粒物を直径20戸のAlオ
0゜ファイバーを軸方向に約1!nm間隔で50本配列
した外径15mm長さ60 mmのプレス容器の中に投
入し、2000 kg/61iの耐水圧プレス、言わゆ
るラバープレスをかけて10φX 50 mmの予備成
形品を得た。しかる後この成形体の外部にはみ出してい
るAl、O,ファイバーを切断後1100°Cで4時間
焼成したところ、ガラスが結晶化してアパタイト、オラ
ストナイトの結晶が析出し、且つこのガラス中にAl、
Qs7゜イバーが軸方向に配列されて内在している生体
用材料が得られた。アルミナファイバーを含まない結晶
化したガラスのみの曲げ強度は2000 k−であった
のに対し、前記方法で得られた生体用材料の曲げ強度は
5000に−と大幅に増大した。
Example 1 In wt% ptos 10%, (iao 35%, S10
.. Glass raw materials prepared to have a concentration of 45% Mg and 10% Mg were melted at 1450°C for 4 hours, poured between water-cooled rollers to obtain ribbon-shaped glass, and then ground to 280 mesh or less using an alumina ball mill. . Using a spray dryer, the obtained glass powder is heated to 80~
The granules were granulated to a size of 100p, and the granules were fused with 20 diameter Al-0° fibers in an axial direction of about 1! It was placed in a press container with an outer diameter of 15 mm and a length of 60 mm in which 50 pieces were arranged at nm intervals, and subjected to a 2000 kg/61i water pressure press, a so-called rubber press, to obtain a 10φ x 50 mm preform. After that, the Al, O, and fibers protruding from the outside of this molded body were cut and fired at 1100°C for 4 hours, and the glass crystallized and apatite and olastonite crystals precipitated. Al,
A biomaterial was obtained in which Qs7° fibers were arranged in the axial direction and contained therein. While the bending strength of the crystallized glass alone without alumina fibers was 2000 k-, the bending strength of the biological material obtained by the above method was significantly increased to 5000 k-.

実施例2 実施例1と同一組成で280メツシユ以下に粉砕したガ
ラス粉末80重量%と、直径10.−長さ200)のZ
r017 yイバー20重量%を充分混合し、少量のワ
ックスを添加して200℃に加熱しながら攪拌し、ワッ
クスを粉体になじませた後、プレス金型に入れて角柱状
に成形し、しかる後2000 k−でラバープレスをか
けて10 X 10 X 50 mmの角柱状予備成型
体を作製した。
Example 2 80% by weight of glass powder having the same composition as Example 1, pulverized to 280 mesh or less, and a glass powder with a diameter of 10. - length 200) Z
r017 Mix 20% by weight of Yiber thoroughly, add a small amount of wax, stir while heating to 200°C, blend the wax into the powder, put it into a press mold, shape it into a prismatic shape, and then After that, a rubber press was applied at 2000 k- to produce a prismatic preform of 10 x 10 x 50 mm.

得られた成形体を電気炉中に入れ、“600℃で1時間
加熱してワックスを焼き飛ばした後、1000℃で4時
間焼成した。これによりアパタイト、オラストナイトが
析出した結晶化ガラス中に均一にZr0tフ1イバーが
分散した生体用材料が得られ、それの曲げ強度は460
o kiであつた。
The obtained molded body was placed in an electric furnace and heated at 600°C for 1 hour to burn off the wax, and then fired at 1000°C for 4 hours. As a result, apatite and olastonite precipitated in the crystallized glass. A biological material in which Zr0t fibers were uniformly dispersed was obtained, and its bending strength was 460.
It was OK.

実施例3 重量%でPros 20%、OaO40%、Sin、 
30%、Mg02%、B、0.3%、Nan04%、K
801%になるように調合された原料を電気炉で145
0℃で4時間溶解した後、水冷ローラーに流してリボン
状ガラスを得、しかる後Al、C%ボールミルにて28
0メ。
Example 3 Pros 20%, OaO 40%, Sin, in weight %
30%, Mg02%, B, 0.3%, Nan04%, K
Raw materials mixed to 801% are heated to 145% in an electric furnace.
After melting at 0°C for 4 hours, it was poured on a water-cooled roller to obtain a ribbon-shaped glass, and then processed in an Al, C% ball mill at 28
0me.

シュ以下に粉砕した。得られた粉末ガラス75%と太さ
約5ノ長さ200〜300戸の酸窒化珪素ウィスカーを
充分混合し、少量のパラフィンを添加して120℃で再
び混合後前圧プレス、ラバープレスを行って直径10m
m長さ50mmの円柱を予備成形したものを電気炉で4
00″’CI時間焼成してパラフィンを飛ばした後、1
200℃4時間焼成した。これによりアパタイト、オラ
ストナイト、トライカルシウムホスフェイトの析出した
結晶化ガラス中に均一に酸窒化ウィスカーの分散した焼
成体が得られ、その曲げ強度を測定したところ7000
 kd  と著しく強度の増大が認められた。
It was crushed to a fine powder. 75% of the obtained powdered glass and silicon oxynitride whiskers with a thickness of about 5 mm and a length of 200 to 300 pieces were thoroughly mixed, a small amount of paraffin was added, and the mixture was mixed again at 120°C, followed by pre-pressure pressing and rubber pressing. diameter 10m
A cylinder with a length of 50 mm is preformed and heated in an electric furnace.
After baking for 00'' CI hours and removing paraffin, 1
It was baked at 200°C for 4 hours. As a result, a fired body was obtained in which oxynitride whiskers were uniformly dispersed in crystallized glass in which apatite, olastonite, and tricalcium phosphate were precipitated, and the bending strength of the body was measured to be 7000.
A significant increase in strength was observed as kd.

上記の本発明の実施例1乃至実施例3の焼成体より作製
した人工骨を羊の大社部の欠損部に挿入してZoJ間経
過後骨と共に取り出し、骨との接着状態、生体との親和
性、周辺績−に及ぼす影響を調査したところ骨と一体と
なって強く結合しており、また人工骨周辺組痰に対し何
ら害を示さず、しかもクラックその他損傷の発生は認め
られなかった。
The artificial bone prepared from the fired bodies of Examples 1 to 3 of the present invention was inserted into the defective part of the sheep's main shrine, and after the ZoJ period had passed, it was removed together with the bone to check the adhesion state with the bone and the compatibility with the living body. An investigation of the effect on the artificial bone's performance and peripheral performance revealed that it was strongly bonded to the bone and did not cause any harm to the mucus surrounding the artificial bone, and no cracks or other damage was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面、qタスの焼成体中にセラミック繊維を配列して含
有させた生体用材料の一部切欠斜視図である。 (10)生体用材料  (11)ガラス焼結体(12)
セラミック繊維 手続補正書 昭和61年 5月 6日
FIG. 1 is a partially cutaway perspective view of a biological material in which ceramic fibers are arranged and contained in a fired body of qtas. (10) Biomaterial (11) Glass sintered body (12)
Ceramic fiber procedural amendment May 6, 1986

Claims (5)

【特許請求の範囲】[Claims] (1)P_2O_5−CaO系ガラスの焼成体中に、セ
ラミック繊維又はウィスカーを含んでなる生体用材料。
(1) A biological material comprising ceramic fibers or whiskers in a fired body of P_2O_5-CaO glass.
(2)P_2O_5−CaO系ガラスは、少なくとも重
量%でP_2O_5 1〜30%、CaO 25〜55
%、P_2O_5とCaOを合量で25〜80%の組成
を有することを特徴とする特許請求の範囲第1項記載の
生体用材料。
(2) P_2O_5-CaO glass contains at least 1 to 30% of P_2O_5 and 25 to 55% of CaO by weight.
%, P_2O_5 and CaO in a total composition of 25 to 80%.
(3)セラミック繊維は、Al_2O_3、SiO_2
、ZrO_2、SiC、ガラスファイバ、カーボンファ
イバから選択される特許請求の範囲第1項記載の生体用
材料。
(3) Ceramic fibers include Al_2O_3 and SiO_2
, ZrO_2, SiC, glass fiber, and carbon fiber.
(4)セラミック繊維は、セラミック長繊維あるいは短
繊維である特許請求の範囲第1項記載の生体用材料。
(4) The biological material according to claim 1, wherein the ceramic fibers are ceramic long fibers or short ceramic fibers.
(5)ウィスカーは、金属の炭化物、硼化物、窒化物、
酸窒化物から選択される特許請求の範囲第1項記載の生
体用材料。
(5) Whiskers are metal carbides, borides, nitrides,
The biological material according to claim 1, which is selected from oxynitrides.
JP60067271A 1985-03-29 1985-03-29 Material for living body Granted JPS61234867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60067271A JPS61234867A (en) 1985-03-29 1985-03-29 Material for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60067271A JPS61234867A (en) 1985-03-29 1985-03-29 Material for living body

Publications (2)

Publication Number Publication Date
JPS61234867A true JPS61234867A (en) 1986-10-20
JPS6344380B2 JPS6344380B2 (en) 1988-09-05

Family

ID=13340127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60067271A Granted JPS61234867A (en) 1985-03-29 1985-03-29 Material for living body

Country Status (1)

Country Link
JP (1) JPS61234867A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242263A (en) * 1987-03-31 1988-10-07 東海カ−ボン株式会社 Artificial bone material
US4897370A (en) * 1987-06-30 1990-01-30 Lion Corporation Process for preparing ceramics composite sintered bodies
JPH03131263A (en) * 1989-10-16 1991-06-04 Nippon Electric Glass Co Ltd Cement for living body
GB2347672A (en) * 1999-03-10 2000-09-13 Gc Kk Glass powder for glass ionomer cement containing glass fibres
CN111437201A (en) * 2020-03-18 2020-07-24 东华大学 Photocurable dentin binder for dental restoration and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495369A (en) * 1990-08-01 1992-03-27 Yazaki Corp Electrical connector with terminal fixture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021015A (en) * 1974-05-22 1975-03-06
JPS52132009A (en) * 1977-03-15 1977-11-05 Hans Scheicher Ceramic materials
JPS5361195A (en) * 1976-11-13 1978-06-01 Kyoto Ceramic Compound ceramic member for implantation in bone* and innbone implanted member employing same ceramic member
JPS5816049A (en) * 1981-07-17 1983-01-29 Toshiba Corp Biometallic material
JPS5957970A (en) * 1982-09-25 1984-04-03 株式会社イナックス Carbon fiber-apatite baked composite body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021015A (en) * 1974-05-22 1975-03-06
JPS5361195A (en) * 1976-11-13 1978-06-01 Kyoto Ceramic Compound ceramic member for implantation in bone* and innbone implanted member employing same ceramic member
JPS52132009A (en) * 1977-03-15 1977-11-05 Hans Scheicher Ceramic materials
JPS5816049A (en) * 1981-07-17 1983-01-29 Toshiba Corp Biometallic material
JPS5957970A (en) * 1982-09-25 1984-04-03 株式会社イナックス Carbon fiber-apatite baked composite body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242263A (en) * 1987-03-31 1988-10-07 東海カ−ボン株式会社 Artificial bone material
US4897370A (en) * 1987-06-30 1990-01-30 Lion Corporation Process for preparing ceramics composite sintered bodies
JPH03131263A (en) * 1989-10-16 1991-06-04 Nippon Electric Glass Co Ltd Cement for living body
GB2347672A (en) * 1999-03-10 2000-09-13 Gc Kk Glass powder for glass ionomer cement containing glass fibres
GB2347672B (en) * 1999-03-10 2003-06-25 Gc Kk Glass powder for glass ionomer cement
CN111437201A (en) * 2020-03-18 2020-07-24 东华大学 Photocurable dentin binder for dental restoration and preparation method thereof

Also Published As

Publication number Publication date
JPS6344380B2 (en) 1988-09-05

Similar Documents

Publication Publication Date Title
JP2703520B2 (en) Phosphosilicate glass ceramic containing leucite
US6479565B1 (en) Bioactive ceramic cement
US4775592A (en) Fluoroaluminosilicate glass powder for dental glass ionomer cement
US5082803A (en) Process for producing bone prosthesis
Dos Santos et al. Fiber reinforced calcium phosphate cement
CA2212625A1 (en) Ceramic fused fiber enhanced dental material
JPS595536B2 (en) Calcium aluminum fluorosilicate glass powder
JPS6241662A (en) Biologically active composite material for artificial prosthetic purpose
JPS60186455A (en) Apatite composite ceramics
JPH0244443B2 (en)
EP2758023B1 (en) Wear resistant dental composition
US5527836A (en) Bioactive cement
US4786555A (en) Support particles coated with or particles of precursors for or of biologically active glass
JPS61234867A (en) Material for living body
FR2722694A1 (en) NOVEL MATERIAL FOR MEDICAL OR VETERINARY USE, PROCESS FOR OBTAINING SAME AND ITS APPLICATIONS
US4952530A (en) Dental composite material and process
US20040050296A1 (en) Dental and medical cement
JPH0214866A (en) Solution of calcium phosphate compound ceramic precursor and production thereof
CA2102154A1 (en) Metal composite and method for filling a dental cavity
JPH0555150B2 (en)
JPS59171546A (en) Filler for bone substitute
JPH03165773A (en) Composition for living body and material for living body
JPH0249260B2 (en)
JPH05220177A (en) Implant made of ti base sintered alloy having excellent bioaffinity
CA1158078A (en) Artificial dental root