[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6121966A - Low temperature sintering method for dielectric ceramic composition - Google Patents

Low temperature sintering method for dielectric ceramic composition

Info

Publication number
JPS6121966A
JPS6121966A JP59140111A JP14011184A JPS6121966A JP S6121966 A JPS6121966 A JP S6121966A JP 59140111 A JP59140111 A JP 59140111A JP 14011184 A JP14011184 A JP 14011184A JP S6121966 A JPS6121966 A JP S6121966A
Authority
JP
Japan
Prior art keywords
silicic acid
dielectric
acid powder
weight
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59140111A
Other languages
Japanese (ja)
Other versions
JPH0515663B2 (en
Inventor
健次 藤本
淳一 井上
一明 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP59140111A priority Critical patent/JPS6121966A/en
Publication of JPS6121966A publication Critical patent/JPS6121966A/en
Publication of JPH0515663B2 publication Critical patent/JPH0515663B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マイク四肢用フィルタ等に用いられるチタン
酸バリウム系誘電体材料の焼結温度を低下することがで
きる方法に関し、更に詳しくは、ニオブを含有するチタ
ン酸バリウム系誘電体材料を仮焼成した後、適量のケイ
酸粉末を添加してから本焼成する低温焼結方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method capable of lowering the sintering temperature of barium titanate-based dielectric material used for microphone limb filters, etc. The present invention relates to a low-temperature sintering method in which a barium titanate-based dielectric material containing niobium is pre-sintered, an appropriate amount of silicic acid powder is added, and then main firing is performed.

[従来の技術] 近年、自動車無線や衛星通信等のマイクロ波領域におい
て、共振器やフィルタとして誘電体磁器が盛んに使用さ
れている。このような用途で使用される誘電体磁器は、
誘電率が高く、損失が少なく、安定性の良好な材質であ
ることが肝要である。従来一般に使用されているチタン
酸バリウム系誘電体材料は、高誘電率、低損失であり共
振周波数温度係数が比較的小さい材料として知られ、実
用に供されているが、回路技術の向上等により発信器等
に適用する場合には、更に低い損失と高い安定性が要求
され、通常のチタン酸バリウム系誘電体材料では特性的
に不十分であった。
[Prior Art] In recent years, dielectric ceramics have been widely used as resonators and filters in microwave areas such as automobile radio and satellite communications. Dielectric porcelain used in such applications is
It is important that the material has a high dielectric constant, low loss, and good stability. Barium titanate-based dielectric materials, which have been commonly used in the past, are known to have a high dielectric constant, low loss, and a relatively small resonant frequency temperature coefficient, and are in practical use.However, due to improvements in circuit technology, etc. When applied to transmitters, etc., even lower loss and higher stability are required, and ordinary barium titanate dielectric materials have insufficient characteristics.

乙の点を改善するものとして、チタン酸バリウム系材料
に対して酸化ニオブを適量添加する組成の材料がある。
To improve the point B, there is a material having a composition in which an appropriate amount of niobium oxide is added to a barium titanate-based material.

このような組成とすると、通常のチタン酸バリウム系誘
電体材料の特性を更に一層改善でき、より低い損失とよ
り高い安定性を発現させることができる。
With such a composition, the characteristics of the usual barium titanate dielectric material can be further improved, and lower loss and higher stability can be realized.

[発明が解決しようとする問題点] しかしながらこのようなチタン酸バリウム系誘電体材料
は、゛十分な特性を発現させようとすると、通常約14
00℃以上もの高温で焼成する必要がある。しかし、こ
のような高温での焼成は、電気炉における使用電力量の
増大をもたらすことのみならず発熱体や炉本体の損耗が
甚だしくなり、焼成コストの増大を招来していた。
[Problems to be Solved by the Invention] However, such barium titanate-based dielectric materials usually require about 14
It is necessary to bake at a high temperature of 00°C or higher. However, firing at such high temperatures not only increases the amount of power used in the electric furnace, but also causes significant wear and tear on the heating element and the furnace body, leading to an increase in firing costs.

本発明の目的は、上記のような従来技術の問題点を解消
し、マイクロ波用誘電体としての特性を損なう乙となし
に焼結温度を低下することができるような方法を提供す
ることにある。
The purpose of the present invention is to solve the problems of the prior art as described above, and to provide a method that can lower the sintering temperature without impairing the properties as a microwave dielectric material. be.

[問題点を解決するための手段] 上記のような問題点を解決することができる本発明は、
酸化バリウム15〜25モル%と酸化チタン75〜85
モル%を主成分とし、酸化ニオブを0.1〜07重量%
含有する組成の誘電体材料に対して、それを仮焼成した
後に約500人程度以下のケイ酸粉末を001〜005
重量%添加混合し、本焼成を行うことを特徴とする誘電
体磁器組成物の低温焼結方法である。
[Means for solving the problems] The present invention, which can solve the above problems,
Barium oxide 15-25 mol% and titanium oxide 75-85%
The main component is mol%, and 0.1 to 07% by weight of niobium oxide.
After pre-sintering the dielectric material containing the composition, approximately 500 or less silicic acid powder is added to the dielectric material with a composition of 001 to 005.
This is a low-temperature sintering method for a dielectric ceramic composition, which is characterized by adding and mixing in weight percent and performing main firing.

ここで重要なことは、原料粉末秤量の段階でケイ酸粉末
を添加するのではなく、仮焼成後の工程でケイ酸粉末を
添加する点である。またケイ酸粉末は、均一に混合でき
るように、できるだけ細かい粒径(約500人程度以下
)として添加するのが好ましい。
What is important here is not to add the silicic acid powder at the stage of weighing the raw material powder, but to add the silicic acid powder at the step after pre-calcination. Furthermore, it is preferable that the silicic acid powder be added in the form of as fine a particle size as possible (approximately 500 particles or less) so that it can be mixed uniformly.

[作用] このような構成とすると、従来約1400℃以上もの高
温で焼成しなければ十分な特性を発現させ得なかったチ
タン酸バリウム系誘電体磁器材料を、1300℃前後の
比較的低い温度でマイクロ波領域における電気的特性を
損なうことなく焼結することが可能となる。このような
数十ないし百数十度℃程度の焼結温度の低減でも、電気
炉で使用する電力量あるいは電気炉本体や発熱体の損耗
を考えると、全体としては極めて顕著なコスト低減効果
がもたらされるのである。
[Function] With this configuration, barium titanate-based dielectric porcelain materials, which conventionally required firing at a high temperature of about 1400°C or higher to develop sufficient properties, can be fired at a relatively low temperature of about 1300°C. It becomes possible to perform sintering without impairing electrical properties in the microwave region. Even if the sintering temperature is reduced by several tens to hundreds of degrees Celsius, it will have an extremely significant overall cost reduction effect, considering the amount of electricity used in the electric furnace and the wear and tear on the electric furnace main body and heating element. It is brought about.

[発明の具体的構成] 以下、本発明について更に詳しく説明する。[Specific structure of the invention] The present invention will be explained in more detail below.

本発明は、前述のように、チタン酸バリウム系誘電体材
料を焼結する際、その焼結温度を著しく低減できる方法
である。本発明で用いる誘電体材料は、酸化バリウム(
Bad)15〜25モル%と酸化チタン(Tie、)7
5〜85モル%なる組成比率の材料を主成分とし、それ
に対して酸化ニオブ(Nb205)を01〜07重量%
添加した組成のものである。酸化バリウムおよび酸化チ
タンについての前記組成比率は、マイクロ波領域におけ
る誘電体材料として通常用いられている組成範囲である
から、この組成範囲についての説明は省略する。しかし
前述の如く、この酸化バリウムと酸化チタンのみでは十
分な電気的特性を発現させえないため、酸化ニオブが添
加される。この酸化ニオブの添加範囲は、前記の主成分
に対して01〜0.7重量%である。
As described above, the present invention is a method that can significantly reduce the sintering temperature when sintering a barium titanate dielectric material. The dielectric material used in the present invention is barium oxide (
Bad) 15-25 mol% and titanium oxide (Tie, ) 7
The main component is a material with a composition ratio of 5 to 85 mol%, and 01 to 07% by weight of niobium oxide (Nb205).
It is of the composition added. The above composition ratios for barium oxide and titanium oxide are within the composition range commonly used as dielectric materials in the microwave region, and therefore explanations regarding this composition range will be omitted. However, as mentioned above, barium oxide and titanium oxide alone cannot exhibit sufficient electrical characteristics, so niobium oxide is added. The addition range of niobium oxide is 01 to 0.7% by weight based on the above-mentioned main components.

酸化ニオブを添加することによって更に低い損失と高い
安定性が生じることになる。
Addition of niobium oxide will result in even lower losses and higher stability.

このような誘電体材料は、基本的には従来同様の粉末成
形法によって製造することができる。
Such a dielectric material can basically be manufactured by a conventional powder molding method.

即ち材料各成分をそれぞれ所定量に秤量し、十分混合し
て仮焼成を行う。ここで本発明が従来技術と顕著に相違
する点は、仮焼成後にケイ酸粉末を001〜0,05重
量%添加する点である。ケイ酸粉末を添加し粉砕混合し
た仮焼成粉体を、有機バインダ等を加えて造粒し、所定
形状に加圧成形してから本焼成を行う。
That is, each component of the material is weighed in a predetermined amount, thoroughly mixed, and pre-fired. Here, the present invention is significantly different from the prior art in that 0.01 to 0.05% by weight of silicic acid powder is added after pre-calcination. The pre-fired powder obtained by adding silicic acid powder and pulverizing and mixing is granulated by adding an organic binder and the like, pressure-molded into a predetermined shape, and then main firing is performed.

ケイ酸粉末を添加することによって本焼成における焼結
温度を著しく低減させることができる。その添加範囲を
0.01〜0.05重量%とじたのは、001重量未満
だとあまり焼成温度の低減効果が生じないし、逆に00
5重量%を超えると得られた誘電体材料の電気的特性が
かなり低下してしまうからである。また、本発明はケイ
酸粉末を仮焼成後に添加する点に一つの大きな特徴があ
る。もし予め、即ち仮焼成前の段階でケイ酸粉末を混合
すると、実験結果によれば01重量%以上混入しなけれ
ば焼結温度の低減効果は生じないし、またそれ程大量に
混入すれば電気特性の一つであるQが大幅に低下してし
まうからである。また、ケイ酸粉末を添加する場合には
、その粒径が約500人程度以下に揃ったものを使用す
るのがよい。粒径が大きなものは均一に混合しに<<、
焼結体が不均一となる傾向が生じるからである。
By adding silicic acid powder, the sintering temperature in the main firing can be significantly reduced. The reason for limiting the addition range to 0.01 to 0.05% by weight is that if it is less than 0.01% by weight, there will not be much effect of reducing the firing temperature;
This is because if the amount exceeds 5% by weight, the electrical properties of the resulting dielectric material will deteriorate considerably. Moreover, one major feature of the present invention is that silicic acid powder is added after pre-calcination. If silicic acid powder is mixed in advance, that is, before calcining, experimental results show that unless it is mixed in at least 0.1% by weight, there will be no effect of reducing the sintering temperature, and if it is mixed in such a large amount, the electrical properties will be affected. This is because Q, which is one of the factors, decreases significantly. Further, when adding silicic acid powder, it is preferable to use one having a particle size of about 500 particles or less. If the particle size is large, mix it evenly.
This is because the sintered body tends to become non-uniform.

[実施例] 以下、本発明の実施例について、本発明の範囲外のもの
と対比しながら説明する。Bad。
[Examples] Hereinafter, examples of the present invention will be described while comparing them with those outside the scope of the present invention. Bad.

TlO2,Nb2O5の各原料をそれぞれ所定組成とな
るように秤量しボールミル等により湿式混合した後、こ
れを乾燥し、1000℃で6時間仮焼成した。これにケ
イ酸粉末を0 (無添加)〜01重量%の範囲で添加し
て微粉砕し、乾燥した後、ポリビニルアルコール等の結
合剤を加えて造粒し、3oo0kg/atの圧力で成形
した。乙の成形物を1270〜1360℃の温度で3時
間本焼成した後、直径11mmφ、厚さ5IIII11
の円柱に加工して測定試料とした。そして、誘電体共振
法によりQ及び誘電率εを測定した。測定周波数は6.
5G Hzである。焼成温度並びにケイ酸の添加量に対
するQ及び誘電率の関係を次表に示す。
Each raw material of TlO2 and Nb2O5 was weighed so as to have a predetermined composition, wet-mixed using a ball mill, etc., and then dried and pre-calcined at 1000°C for 6 hours. Silicic acid powder was added to this in a range of 0 (no additive) to 01% by weight, pulverized, dried, and then granulated by adding a binder such as polyvinyl alcohol, and molded at a pressure of 300 kg/at. . After firing the molded product B for 3 hours at a temperature of 1270 to 1360°C, the molded product had a diameter of 11 mmφ and a thickness of 5III11.
It was processed into a cylinder and used as a measurement sample. Then, Q and dielectric constant ε were measured using a dielectric resonance method. The measurement frequency is 6.
It is 5GHz. The relationship between Q and dielectric constant with respect to the firing temperature and the amount of silicic acid added is shown in the following table.

表 この表から明らかなように、ケイ酸粉末の添加によって
焼結温度を低下させることができる。
Table As is clear from this table, the sintering temperature can be lowered by adding silicic acid powder.

特にケイ酸粉末を001重量%添加し1330℃で焼成
したものは、優れた特性を生じ、従来1400℃以上の
高温で焼成しなければ得られなかった誘電体材料の特性
にまさるとも劣らない優れたマイクロ波用誘電体磁器で
あった。また、ケイ酸粉末を添加しない従来の方法の場
合、1330℃以下では焼結しなかったものでも、ケイ
酸粉末を添加することによって焼結させる乙とが可能と
なり、しかも良好な電気的特性を発現される乙とができ
た。
In particular, materials added with 1,001% by weight of silicic acid powder and fired at 1,330°C have excellent properties that are comparable to those of dielectric materials that could previously only be obtained by firing at a high temperature of 1,400°C or higher. It was dielectric porcelain for microwave use. In addition, in the case of conventional methods that do not add silicic acid powder, even those that did not sinter at temperatures below 1330°C can be sintered by adding silicic acid powder, and have good electrical properties. The expression B was created.

[発明の効果] 本発明は、上記のように構成したチタン酸バリウム系誘
電体磁器組成物の低温焼結方法であるから、従来140
0℃以上の高温でしか焼結できなかった材料を、133
0℃前後の比較的低い温度で略同等もしくはそれ以上の
特性を生じるように焼結させることができ、それ故焼成
に使用する電気炉の使用電力量を大幅に削減することが
できるばかりでなく、発熱体や電気炉本体の損耗を低減
させることができ、全体として製造コストを著しく低減
することができるという優れた効果を奏しうるものであ
る。
[Effects of the Invention] The present invention is a low-temperature sintering method for a barium titanate-based dielectric ceramic composition configured as described above.
Materials that could only be sintered at high temperatures above 0°C were made into 133
It can be sintered at a relatively low temperature of around 0°C to produce approximately the same or better properties, and therefore not only can it significantly reduce the amount of electricity used in the electric furnace used for firing. This has the excellent effect of reducing wear and tear on the heating element and the electric furnace main body, and significantly reducing manufacturing costs as a whole.

Claims (1)

【特許請求の範囲】[Claims] 1、酸化バリウム15〜25モル%と酸化チタン75〜
85モル%を主成分とし、酸化ニオブを0.1〜0.7
重量%含有する組成の誘電体材料に対して、それを仮焼
成した後に約500Å程度以下のケイ酸粉末を0.01
〜0.05重量%添加混合し、本焼成を行うことを特徴
とする誘電体磁器組成物の低温焼結方法。
1. Barium oxide 15~25 mol% and titanium oxide 75~
The main component is 85 mol%, and 0.1 to 0.7 niobium oxide.
After pre-sintering the dielectric material having a composition containing 0.01% by weight of silicic acid powder of about 500 Å or less,
A low-temperature sintering method for a dielectric ceramic composition, characterized by adding and mixing ~0.05% by weight and performing main firing.
JP59140111A 1984-07-06 1984-07-06 Low temperature sintering method for dielectric ceramic composition Granted JPS6121966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140111A JPS6121966A (en) 1984-07-06 1984-07-06 Low temperature sintering method for dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140111A JPS6121966A (en) 1984-07-06 1984-07-06 Low temperature sintering method for dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS6121966A true JPS6121966A (en) 1986-01-30
JPH0515663B2 JPH0515663B2 (en) 1993-03-02

Family

ID=15261176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140111A Granted JPS6121966A (en) 1984-07-06 1984-07-06 Low temperature sintering method for dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS6121966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218207A (en) * 1990-10-31 1992-08-07 Murata Mfg Co Ltd Dielectric porcelain composition
US6258450B1 (en) 1998-07-23 2001-07-10 Taiyo Yuden Co., Ltd. Dielectric ceramic composition and ceramic electronic parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792575A (en) * 1980-11-26 1982-06-09 Fujitsu Ltd High dielectric constant ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792575A (en) * 1980-11-26 1982-06-09 Fujitsu Ltd High dielectric constant ceramic composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218207A (en) * 1990-10-31 1992-08-07 Murata Mfg Co Ltd Dielectric porcelain composition
US6258450B1 (en) 1998-07-23 2001-07-10 Taiyo Yuden Co., Ltd. Dielectric ceramic composition and ceramic electronic parts

Also Published As

Publication number Publication date
JPH0515663B2 (en) 1993-03-02

Similar Documents

Publication Publication Date Title
JP4596004B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
CN101492293B (en) Barium titanate based Y5P ceramic dielectric material and method of producing the same
US4785375A (en) Temperature stable dielectric composition at high and low frequencies
CN108129145B (en) X7R ceramic capacitor dielectric material and preparation method thereof
JPS6121966A (en) Low temperature sintering method for dielectric ceramic composition
JP2554478B2 (en) Microwave dielectric porcelain composition
JP2003146752A (en) Dielectric ceramic composition
JP3243874B2 (en) Dielectric porcelain composition
JP2504158B2 (en) Ferroelectric porcelain
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JPS62252007A (en) Microwave dielectric porcelain compound
JP3550414B2 (en) Method for producing microwave dielectric porcelain composition
JPS63250008A (en) Dielectric ceramic
JPH0360463A (en) Piezoelectric porcelain
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JP2950672B2 (en) Dielectric porcelain composition
JP4006655B2 (en) Dielectric porcelain composition for microwave
KR100261550B1 (en) Microwave dielectric materials
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH02197181A (en) Ferroelectric porcelain body
JPS63152815A (en) Dielectric ceramic
JPH0338892A (en) Piezoelectric porcelain composition
JP3243873B2 (en) Dielectric porcelain composition
JPH05213662A (en) Production of dielectric porcelain
JPH107462A (en) Composition for dielectric porcelain base and its production