[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61215229A - Production of parent material for optical fiber - Google Patents

Production of parent material for optical fiber

Info

Publication number
JPS61215229A
JPS61215229A JP5638585A JP5638585A JPS61215229A JP S61215229 A JPS61215229 A JP S61215229A JP 5638585 A JP5638585 A JP 5638585A JP 5638585 A JP5638585 A JP 5638585A JP S61215229 A JPS61215229 A JP S61215229A
Authority
JP
Japan
Prior art keywords
glass tube
glass
rod
burner
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5638585A
Other languages
Japanese (ja)
Other versions
JPH0234895B2 (en
Inventor
Hiroo Kanamori
弘雄 金森
Ryuji Tono
東野 隆二
Tsunehisa Kyodo
倫久 京藤
Akira Urano
章 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5638585A priority Critical patent/JPH0234895B2/en
Publication of JPS61215229A publication Critical patent/JPS61215229A/en
Publication of JPH0234895B2 publication Critical patent/JPH0234895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a parent material for optical fiber having neither occurrence of foams nor deformation, by heating a glass tube in which a glass rod is set from the outside by a heat source moving relatively to the glass tube to contract the glass tube, and cooling the vicinity of the heat source. CONSTITUTION:The glass rod 2 is set in the glass tube, heated from the outside of the glass tube 1 by the burner 3 moving relatively in the arrow direction while being synchronously rotated, the glass tube 1 is contracted, the glass tube 1 is successively fused to the glass rod 2 in the axial direction, and integrated. The unfused part of the glass tube 1 in the vicinity of the burner 3 on the side of the arrow progress direction of the burner 3 is sprayed with a N2 gas from the nozzle 4, and cooled. Consequently, the contraction of the glass tube 1 is prevented, the inner face of the glass tube 1 and the glass rod 2 are sufficiently heated and fused. Consequently, a parent material for optical fiber can be obtained stably while leaving foams on the interface, preventing deformation.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光ファイバ用母材の製造方法に関し特にガラ
ス管内にガラス棒を配置し、両者を加熱一体化する工程
を含む光ファイバ用母材の製造方法に関するものである
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for manufacturing an optical fiber base material, and particularly relates to a method for manufacturing an optical fiber base material, which includes a step of arranging a glass rod in a glass tube and heating and integrating the two. The invention relates to a method for manufacturing materials.

〈従来の技術〉 ′光ファイバ用母材、特に石英系光ファイバ用母材の製
造方法として、例えば、ロッドインチューブ法、VAD
法、MOVD法が知られている。ロッドインチューブ法
では、コアとなる石英を主成分とする高純度ガラス棒を
、該コア部より屈折率の低いクラット部となる石英系ガ
ラス管内に配置し、両者を加熱一体化して棒状の光ファ
イバ用母材とする。VAD法では、5icz、等のガラ
ス原料をO3・H2等と共にガラス微粒子合成用バーナ
ーに送り込み、火炎加水分解反応により、火炎内で形成
させたガラス微粒子を、棒状出発材端部に堆積させると
共に、該出発材を回転させつつ軸方向に移動させていく
ことにより、ガラス微粒子の堆積体を軸方向に形成し、
然るのちに該ガラス微粒子の堆積体に、必要に応じて加
熱脱水処理を施したのち、これを加熱透明ガラス化し、
棒状の高純度な母材とする。
<Prior art>'As a method for manufacturing optical fiber preforms, especially quartz-based optical fiber preforms, for example, the rod-in-tube method, VAD
method and MOVD method are known. In the rod-in-tube method, a high-purity glass rod whose main component is quartz is placed inside a quartz-based glass tube, which is a crat with a lower refractive index than the core, and the two are heated and integrated to produce a rod-shaped light beam. Use as base material for fiber. In the VAD method, a glass raw material such as 5icz, etc. is fed into a burner for synthesizing glass fine particles together with O3, H2, etc., and glass fine particles formed in the flame are deposited on the end of the rod-shaped starting material by a flame hydrolysis reaction. By rotating and moving the starting material in the axial direction, a deposit of glass particles is formed in the axial direction,
Thereafter, the deposited body of glass particles is subjected to a heating dehydration treatment as necessary, and then heated to become transparent vitrification,
A rod-shaped high-purity base material is used.

この該母材を所定径に延伸し、石英ガラス管内部に配置
して、加熱一体化することにより、線引可能な棒状光フ
ァイバ用母材とする。
This base material is stretched to a predetermined diameter, placed inside a quartz glass tube, and heated and integrated to obtain a drawable rod-shaped optical fiber base material.

MCVD法では、出発石英ガラス管内に、5iCt、等
のガラス原料と01等を供給し、外部より加熱すること
Tより、高純度の石英を主成分とするガラス層を該出発
石英ガラス管内面上に形成させたのち、該出発石英ガラ
ス管を外部より加熱し、中実化することにより、棒状の
光ファイバ用母材とする。
In the MCVD method, glass raw materials such as 5iCt and 01 are supplied into a starting quartz glass tube and heated from the outside to form a glass layer mainly composed of high-purity quartz on the inner surface of the starting quartz glass tube. After forming the starting quartz glass tube, the starting quartz glass tube is heated from the outside and solidified to obtain a rod-shaped optical fiber preform.

又該棒状の光ファイバ用母材を他の石英管内に配置し両
者を加熱一体化する場合もある。
In some cases, the rod-shaped optical fiber base material is placed inside another quartz tube and the two are heated and integrated.

上記のように、光ファイバ用母材製造時に於いて、棒状
ガラス母材をガラス管内に配置し、両者を加熱一体化す
ることが多い。
As mentioned above, when manufacturing an optical fiber preform, a rod-shaped glass preform is often placed inside a glass tube and the two are heated and integrated.

このような棒状ガラス母材(以下ガラス棒と云う)とガ
ラス管の一体化の方法は、第2図に模式的に示した方法
で、通常行なわれる。第2図に於いて、■はガラス管、
2はガラス管lの内部に配置したガラス棒、3は加熱用
バーナーである。ガラス管1をガラス旋盤等に固定し、
ガラス管1とガラス棒2と同期回転させつつ加熱用バー
ナー3(以下バーナーと云う)をガラス管lの軸方向と
平行にガラス管lと相対的に移動させて行く。ガラス管
1は、加熱されることにより、径方向に収縮し、軸方向
に順次、ガラス棒2に融着して行き、ガラス管1とガラ
ス棒2は一体化される。
A method for integrating such a rod-shaped glass base material (hereinafter referred to as a glass rod) and a glass tube is normally carried out by the method schematically shown in FIG. 2. In Figure 2, ■ is a glass tube,
2 is a glass rod placed inside the glass tube l, and 3 is a heating burner. Fix the glass tube 1 to a glass lathe etc.
While rotating the glass tube 1 and the glass rod 2 synchronously, a heating burner 3 (hereinafter referred to as burner) is moved parallel to the axial direction of the glass tube 1 relative to the glass tube 1. When heated, the glass tube 1 contracts in the radial direction and is sequentially fused to the glass rod 2 in the axial direction, so that the glass tube 1 and the glass rod 2 are integrated.

この際、ガラス管lとガラス棒2の間隙の空間を減圧゛
し、一体化を促進する場合もある。
At this time, the space between the glass tube 1 and the glass rod 2 may be depressurized to promote integration.

〈発明が解決しようとする問題点〉 上記のような、一体化の方法に於いて、未融着部のガラ
ス管lの内表面とガラス棒2の表面は、バーナー3で十
分加熱されることが望ましい。何故ならば、ガラス表面
を高温に加熱することにより、ガラス表面の粘性が下り
、表面張力により、ガラス表面に残存する凹凸や、微少
な傷が消滅するので、ガラス管1の内表面とガラス棒2
の表面が平滑になる他、ガラス表面に付着している異物
を揮発させる効果もある。その結果、未融着部分のガラ
ス管1の内表面とガラス棒2の表面は十分に加熱される
ことにより、一体化後の気泡の原因となる凹凸、微少傷
、異物等がなくなり、ガラス管1とガラス棒2の界面で
の気泡をなくすことができる。
<Problems to be Solved by the Invention> In the above-mentioned integration method, the inner surface of the unfused portion of the glass tube l and the surface of the glass rod 2 must be sufficiently heated by the burner 3. is desirable. This is because by heating the glass surface to a high temperature, the viscosity of the glass surface decreases, and the surface tension eliminates the remaining unevenness and minute scratches on the glass surface, so that the inner surface of the glass tube 1 and the glass rod 2
In addition to smoothing the surface of the glass, it also has the effect of volatilizing foreign matter adhering to the glass surface. As a result, the unfused portions of the inner surface of the glass tube 1 and the surface of the glass rod 2 are sufficiently heated, so that unevenness, minute scratches, foreign objects, etc. that cause bubbles after integration are eliminated, and the glass tube Air bubbles at the interface between the glass rod 1 and the glass rod 2 can be eliminated.

又高温状態では、ガラス管lの内表面とガラス棒2の表
面の粘性が十分に下っているため、融着時に誘起される
界面の応力を低減でき、一体化後の1ラツクの発生や、
光ファイバ内の残存応力によ伝送特性の劣化を防止する
ことができる。
In addition, in the high temperature state, the viscosity of the inner surface of the glass tube l and the surface of the glass rod 2 is sufficiently reduced, so that the stress at the interface induced during fusion can be reduced, and the occurrence of 1-lack after integration,
Deterioration of transmission characteristics due to residual stress within the optical fiber can be prevented.

然しなから、実際は、ガラス管1の内表面及びガラス棒
2の表面を十分に加熱しようとして、ガラス管lを外部
から強く加熱すると、ガラス管lの変形が生じたり、或
いは、第3図に示すようにバーナ−3進行方向側のバー
ナー3近傍のガラス管lの温度のみが上昇し、ガラス管
lの収縮が起り始め、ガラス棒2の表面温度が十分に上
昇しないうち1こ融着が始まる等不都合を生じ、安定な
一体化ができない場合が多い。
However, in reality, if the glass tube 1 is strongly heated from the outside in an attempt to sufficiently heat the inner surface of the glass tube 1 and the surface of the glass rod 2, the glass tube 1 may be deformed, or as shown in FIG. As shown, only the temperature of the glass tube 1 near the burner 3 on the burner 3 advancing direction side increases, the glass tube 1 begins to shrink, and while the surface temperature of the glass rod 2 does not rise sufficiently, one fusion occurs. In many cases, stable integration is not possible due to inconveniences such as the formation of a metal.

特にガラス管lの肉厚が薄い場合には、外部からの加熱
によるガラス管lの収縮や変形が生じ易い。
Particularly when the glass tube 1 is thin, the glass tube 1 tends to shrink or deform due to external heating.

〈問題点を解決するための手段〉 本発明は、上記問題点を解決するためにガラス管lとガ
ラス棒2を一体化するに際し、バーナ−3進行方向側の
バーナー3近傍のガラス管lの未融着部分の外表面を冷
却することを提供する。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention, when integrating the glass tube 1 and the glass rod 2, solves the problem by: Provide cooling of the outer surface of the unfused portion.

く作 用〉 第3図に示すように、ガラス管1とガラス棒2の一体化
の際にガラス棒2の表面及びガラス管lの内表面の温度
を十分に高くするためには、単にバーナー3の火力を上
げる或いはバーナー3の移動速度を遅くして、ガラス管
lの外部から加熱効果を高めるだけでは不可能である。
Function> As shown in Fig. 3, in order to make the temperature of the surface of the glass rod 2 and the inner surface of the glass tube 1 sufficiently high when the glass tube 1 and the glass rod 2 are integrated, it is necessary to simply use a burner. It is not possible to increase the heating effect from the outside of the glass tube 1 by simply increasing the heating power of the burner 3 or slowing down the moving speed of the burner 3.

何故ならば、ガラス管1の外部から強加熱するだけでは
、バーナ−3進行方向側のバーナ−3近傍部に於いて、
ガラス管lのみが収縮し得る温度になっており、ガラス
棒2の表面や、ガラス管1の内面が十分に高温になり切
っていない個所ができ、該個所から一体化が進行してし
まうからである。
This is because if the glass tube 1 is only strongly heated from the outside, in the vicinity of the burner 3 on the side in the direction in which the burner 3 advances,
This is because the temperature is such that only the glass tube 1 can contract, and the surface of the glass rod 2 and the inner surface of the glass tube 1 become sufficiently hot and there are areas that are not fully cut, and the integration progresses from these areas. It is.

そこで、鋭意研究結果、ガラス棒2の表面とガラス管1
の内表面の温度が十分に高くなっている状態で且つガラ
ス管1が収縮しない状態をバーナ−3進行方向側のバー
ナー3近傍のガラス管lの表面を外部より強制的に冷却
することにより実現し、ガラス管1の内表面及びガラス
棒2の表面の未融着部分の温度を上げ得ることを見い出
した。即ちバーナー3の進行方向側バーナー3の近傍部
に於いて、ガラス管1表面を強制的に冷却することによ
り、冷却された部分でのガラス管1の収縮を防止するこ
とができる一方、ガラス管l内表面及びガラス棒2では
、ガラス管1の熱伝導率が小さいため、外部からの冷却
によっても、さほど温度が低下せず十分ζこ加熱された
状態を保てる。
Therefore, as a result of intensive research, we found that the surface of glass rod 2 and the glass tube 1
A state in which the temperature of the inner surface of the glass tube 1 is sufficiently high and the glass tube 1 does not shrink is achieved by forcibly cooling the surface of the glass tube 1 near the burner 3 on the burner 3 advancing direction side from the outside. However, it has been found that the temperature of the unfused portions of the inner surface of the glass tube 1 and the surface of the glass rod 2 can be increased. That is, by forcibly cooling the surface of the glass tube 1 in the vicinity of the burner 3 on the side in the advancing direction of the burner 3, shrinkage of the glass tube 1 in the cooled portion can be prevented, while the glass tube Since the thermal conductivity of the glass tube 1 is low on the inner surface and the glass rod 2, the temperature does not drop much even by external cooling, and a sufficiently heated state can be maintained.

1〈実  施  例〉 VAD法により作製したGem、を径方向平均で、約3
5重量%含有した石英ガラス母材を、12■φの外径に
延伸し、外径18.3 tmφ、内径14mmφに成形
したガラス管内に配置し、加熱用0.・H,バーナーに
より、該ガラス管を外部から加熱しつつ、該バーナーを
20−7分の速度で移動し、該ガラス管と該ガラス母材
を一体化した。この際第1図に模式的に示すようにバー
ナー3近傍に内径8Iφの冷却用ノズル4(以下ノズル
と云う)を設け、当ガスを10t/分の流量でノズル4
に供給し、バーナー3の炎が集中し、ガラス管lが最も
強く加熱される部分から約15m+離れた所のガラス管
1の外表面に。
1 <Example> Gems produced by the VAD method have an average diameter of about 3
A quartz glass base material containing 5% by weight was stretched to an outer diameter of 12 mm, placed in a glass tube formed to have an outer diameter of 18.3 tmφ and an inner diameter of 14 mm, and heated with a heating temperature of 0.5 mm. -H, While heating the glass tube from the outside with a burner, the burner was moved at a speed of 20-7 minutes to integrate the glass tube and the glass base material. At this time, as schematically shown in FIG. 1, a cooling nozzle 4 (hereinafter referred to as the nozzle) with an inner diameter of 8 Iφ is provided near the burner 3, and the gas is supplied to the nozzle 4 at a flow rate of 10 t/min.
on the outer surface of the glass tube 1 at a distance of about 15 m+ from the part where the flame of the burner 3 is concentrated and the glass tube 1 is heated most intensely.

N、ガスを吹きつけ、ガラス管l外表面を常に冷却する
ようにした。その結果、ガラス管lとガラス棒2の融着
は、バーナー3の炎が集中する場所とほぼ一致した所で
進行すると共に、一体化後、ガラス管lとガラス棒2の
界面には、気泡の発生がなかった。
N gas was blown to constantly cool the outer surface of the glass tube. As a result, the fusion between the glass tube 1 and the glass rod 2 progresses at a location that almost coincides with the location where the flame of the burner 3 is concentrated, and after the integration, there are bubbles at the interface between the glass tube 1 and the glass rod 2. There was no occurrence of

同この時バーナー3には、0.の量35t/分、H8の
量100L/分を供給した。
At this time, burner 3 has 0. The amount of H8 was supplied at 35 t/min, and the amount of H8 was supplied at 100 L/min.

比較例1 実施例と同一条件で、ノズル4を設けずに、ガラス管l
とガラス棒2の一体化を行ったところ、融着はバーナー
3の炎が集中する所から、バーナー3の進行方向側に約
5m離れた場所で起った。
Comparative Example 1 Under the same conditions as the example, a glass tube l was used without providing the nozzle 4.
When the glass rod 2 and the glass rod 2 were integrated, fusion occurred at a location approximately 5 m away from the location where the flame of the burner 3 was concentrated in the direction in which the burner 3 was traveling.

この時ガラス管1とガラス棒2の界面には、一体化後、
多数の気泡が残存した。
At this time, at the interface between the glass tube 1 and the glass rod 2, after integration,
Many air bubbles remained.

比較例2 実施例に於いて、バーナー3に供給するHlの量を12
01/fj、 O,の量を40t/分に増加させ、且つ
ノズル4を設けないで、一体化を行ったところ、融着は
、バーナー3の炎が集中する所から進行方向制約10m
離れた場所で起った。
Comparative Example 2 In the example, the amount of Hl supplied to the burner 3 was set to 12
When the amount of 01/fj, O, was increased to 40 t/min and the integration was performed without installing the nozzle 4, the fusion was limited to a traveling direction of 10 m from the place where the flame of the burner 3 was concentrated.
It happened in a remote location.

この時ガラス管1とガラス棒2の界面に多数の気泡が存
在すると共に、ガラス管lが収縮時不均−に収縮し、一
体化後、この母材に偏心を生じると共に、長手方向に曲
りも生じた。
At this time, a large number of bubbles exist at the interface between the glass tube 1 and the glass rod 2, and the glass tube 1 shrinks unevenly during shrinkage, causing eccentricity in the base material and bending in the longitudinal direction after integration. also occurred.

〈発明の効果〉 上記のように、本発明は、ガラス管とガラス棒の一体化
を気泡預生や、変形の不都合なく、安定に行うために有
効である。特に本発明は、使用するガラス管の肉厚が薄
く、外部からの加熱により、収縮や変形が生じ易い場合
、或いは、ガラス管内面や、ガラス棒の表面が汚染され
ていたり、平滑でない場合により有効である。
<Effects of the Invention> As described above, the present invention is effective for stably integrating a glass tube and a glass rod without the problem of bubble formation or deformation. In particular, the present invention is suitable for cases where the glass tube used is thin and easily shrinks or deforms due to external heating, or when the inner surface of the glass tube or the surface of the glass rod is contaminated or uneven. It is valid.

尚本発明では、ガラス管にN2ガスを吹きつけることに
より、ガラス管を冷却する方法のみを示しているが、吹
きつけるガスの種類は、取扱い各易な不活性ガスや空気
でも良い。又冷却方法もガスを吹きつける方法の他、水
冷の方法も有効である。
In the present invention, only a method of cooling the glass tube by blowing N2 gas onto the glass tube is shown, but the type of gas to be sprayed may be an easily handled inert gas or air. As for the cooling method, in addition to the method of blowing gas, a method of water cooling is also effective.

又本発明は、加熱源として、バーナーを用いるが、電気
抵抗炉や誘導加熱炉等信の熱源に対しても有効である。
Although the present invention uses a burner as a heat source, it is also effective for electric heat sources such as electric resistance furnaces and induction heating furnaces.

、更にMOVD法等で行なわれるガラス管の中実化に際
しても、ガラス管内面の清浄平滑化や、中実時の変形を
緩和する目的にも、本発明は有効である。
Moreover, the present invention is also effective for cleaning and smoothing the inner surface of a glass tube and mitigating deformation during solidification when solidifying a glass tube using the MOVD method or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施態様を模式的に示す図である。 第2図、第3図は、ガラス管とガラス棒の融着一体化の
方法を模式的に示す図で、第3図は単にガラス管を強く
加熱した時に繁々起る状態を示す図である。 第1図 第3図
FIG. 1 is a diagram schematically showing an embodiment of the present invention. Figures 2 and 3 are diagrams schematically showing a method of fusing and integrating a glass tube and a glass rod, and Figure 3 is simply a diagram showing a situation that often occurs when a glass tube is strongly heated. be. Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバ用母材の製造工程において、ガラス管
内部にガラス棒を配置し、加熱源を該ガラス管外部に設
置し、該ガラス管の軸と平行に相対的に移動しつつ、該
ガラス管を加熱収縮させ、該ガラス管を該ガラス棒に軸
方向に順次融着させていき、該ガラス管と該ガラス棒を
一体化するに際して、加熱源進行方向側の加熱源近傍の
該ガラス管の未融着部分の外表面を冷却することを特徴
とする、光ファイバ用母材の製造方法。
(1) In the process of manufacturing optical fiber preforms, a glass rod is placed inside a glass tube, a heating source is installed outside the glass tube, and the heating source is moved relatively parallel to the axis of the glass tube. The glass tube is heated and shrunk, and the glass tube is sequentially fused to the glass rod in the axial direction, and when the glass tube and the glass rod are integrated, the glass near the heating source on the heating source advancing direction side is A method for producing an optical fiber base material, the method comprising cooling the outer surface of an unfused portion of a tube.
(2)前記ガラス管の未融着部分の外表面に気体を吹き
つけることにより、該未融着部分を冷却することを特徴
とする特許請求の範囲(1)項に記載の光ファイバ用母
材の製造方法。
(2) The optical fiber motherboard according to claim (1), wherein the unfused portion of the glass tube is cooled by blowing gas onto the outer surface of the unfused portion. Method of manufacturing wood.
JP5638585A 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO Expired - Lifetime JPH0234895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5638585A JPH0234895B2 (en) 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5638585A JPH0234895B2 (en) 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS61215229A true JPS61215229A (en) 1986-09-25
JPH0234895B2 JPH0234895B2 (en) 1990-08-07

Family

ID=13025779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5638585A Expired - Lifetime JPH0234895B2 (en) 1985-03-19 1985-03-19 HIKARIFUAIBAYOBOZAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0234895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239032A (en) * 1988-01-21 1989-09-25 Polaroid Corp Production of optical fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595136U (en) * 1992-05-23 1993-12-24 株式会社東洋工機 Harness protector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239032A (en) * 1988-01-21 1989-09-25 Polaroid Corp Production of optical fiber
JPH0660027B2 (en) * 1988-01-21 1994-08-10 ポラロイド コーポレーション Optical fiber manufacturing method

Also Published As

Publication number Publication date
JPH0234895B2 (en) 1990-08-07

Similar Documents

Publication Publication Date Title
KR830002158B1 (en) Method for forming optical waveguide preform having continuously removable starting member
JPS5945609B2 (en) Optical fiber manufacturing method
US6189342B1 (en) Method of making segmented core optical waveguide preforms
US4362545A (en) Support member for an optical waveguide preform
US4286978A (en) Method for substantially continuously drying, consolidating and drawing an optical waveguide preform
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
EP0216338A2 (en) Method of employing plasma for finishing start rods
JP2003327440A (en) Method for manufacturing preform for optical fiber
JP2003212581A (en) Method for producing polarization maintaining fiber
JPS61215229A (en) Production of parent material for optical fiber
KR100979895B1 (en) Manufacture of high purity glass tubes
JPH051221B2 (en)
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
US4289522A (en) Support member for an optical waveguide preform
JP3819614B2 (en) Method for producing quartz glass preform for optical fiber
JPH0479981B2 (en)
JP3498590B2 (en) Manufacturing method of preform for optical fiber
JP2003212550A (en) Method of manufacturing glass tube and target rod for the same
JP4565221B2 (en) Optical fiber preform
JPH05221681A (en) Manufacture of optical fiber
JPS58661Y2 (en) Glass particle synthesis torch
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform
JP2003246639A (en) Method of manufacturing glass preform and glass preform
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term