[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6119070A - Separator which also serves as inter cooler for fuel cell and its manufacture - Google Patents

Separator which also serves as inter cooler for fuel cell and its manufacture

Info

Publication number
JPS6119070A
JPS6119070A JP59140251A JP14025184A JPS6119070A JP S6119070 A JPS6119070 A JP S6119070A JP 59140251 A JP59140251 A JP 59140251A JP 14025184 A JP14025184 A JP 14025184A JP S6119070 A JPS6119070 A JP S6119070A
Authority
JP
Japan
Prior art keywords
separator
gas
cooling fluid
leakage prevention
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59140251A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fukuda
弘之 福田
Masatomo Shigeta
重田 昌友
Hisatsugu Kaji
加治 久継
Kuniyuki Saito
国幸 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP59140251A priority Critical patent/JPS6119070A/en
Priority to US06/718,380 priority patent/US4664988A/en
Priority to CA000478145A priority patent/CA1259100A/en
Priority to GB08508687A priority patent/GB2158286B/en
Priority to FR8505143A priority patent/FR2562721B1/en
Priority to DE19853512865 priority patent/DE3512865A1/en
Publication of JPS6119070A publication Critical patent/JPS6119070A/en
Priority to US07/004,612 priority patent/US4956131A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a separator which prevents flow out of reaction gas and serves as an inter cooler by bonding together a gas separating part and a gas leakage prevention edge, and installing holes for cooling fluid nearly in the center in a direction of thickness of the gas separating part. CONSTITUTION:A separator 10 comprises a gas separating part 11 and a gas leakage prevention edge 12 bonded together by burning. A plurality of holes 13 for cooling fluid are installed neary in the center of a direction of thickness of the gas separating part 11. The holes 13 are formed in parallel to the surface and the side of the electrode substrate, and passed through one side to the other side. Thereby, reaction gasses are separated each other, and leakage of gasses to the side is prevented, and moreover the separator also serves as an inter cooler.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料電池用セパレーター及びその製造方法に
係り、詳細には、改良された特性を有し月つインターク
ーラーを兼ねる燃料電池用として有用なセパレーター及
びその製造方法に係る。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a fuel cell separator and a method for manufacturing the same, and more particularly, the present invention relates to a separator for fuel cells and a method for manufacturing the same, and more particularly, it has improved characteristics and is useful as a separator for fuel cells that also serves as an intercooler. separator and its manufacturing method.

(従来の技術) 従来、不透過性の黒鉛製薄板をリブ細工して得られるバ
イポーラセパレーターを用いるバイポーラセパレーター
型燃料電池が公知である。
(Prior Art) Conventionally, a bipolar separator type fuel cell using a bipolar separator obtained by ribbing an impermeable graphite thin plate is known.

これに対し、一方の面にリブを設け、他方の而は平11
′1な電極面となった構造を有し、リブ付き面から反応
ガスが平坦な電極面に拡散してくるモノポーラ型電極基
板が開発されて来ている。
On the other hand, one side is provided with ribs, and the other side is
Monopolar electrode substrates have been developed that have a structure with a flat electrode surface, in which a reactive gas diffuses from a ribbed surface to a flat electrode surface.

従来のモノポーラ型燃料電池セルは、一方の面にリブを
設は他方の而は平坦な構造を有する電極基板、触媒層、
電解質を含浸さ「たマトリックス及びセパレーターシー
トを積層して構成されており、電極基板のりブ付き面か
ら反応ガス(酸素又は水素)が平坦な電極面に拡散して
くるものである。
A conventional monopolar fuel cell has an electrode substrate, a catalyst layer, a rib structure on one side and a flat structure on the other side.
It consists of a laminated matrix and separator sheet impregnated with an electrolyte, and the reactive gas (oxygen or hydrogen) diffuses from the electrode substrate's grooved surface to the flat electrode surface.

燃料電池用に用いるセパレーターとして従来から種々の
ものが提案されている。
Various types of separators have been proposed for use in fuel cells.

これらセパレーターは、ガス拡散部としての多孔質基板
、正負両極及びリン酸マトリックスと共に積層して燃料
電池としたとき、各反応ガスを相互に隔離すると同時に
単位セル間の接続導体としての機能を右している。従っ
て、燃料電池用セパレーターには、ガス透過が小さい、
熱的及び電気的抵抗が小さい、更に、特に電池面積が大
きい場合には機械的強度例えば曲げ強度が大ぎい等の特
性が要求される。
When these separators are stacked together with a porous substrate as a gas diffusion part, positive and negative electrodes, and a phosphoric acid matrix to form a fuel cell, they isolate each reaction gas from each other and at the same time function as connecting conductors between unit cells. ing. Therefore, fuel cell separators have low gas permeation.
It is required to have characteristics such as low thermal and electrical resistance, and especially when the battery area is large, mechanical strength such as high bending strength is required.

しかし、従来のモノポーラ型燃料電池では、ガス拡散部
としての多孔性電極基板とセパレーターを8!(層する
際、電極基板とセパレーターとの電気的及び熱的接触抵
抗が無祝し得ない程大ぎくなるという欠点があった。一
般にこのような接触抵抗は基板内の伝達抵抗の数倍にも
達するといわれており、セル間温度分布の不肖−性9発
電効率の低下を招く可能性がある。
However, in a conventional monopolar fuel cell, a porous electrode substrate and a separator as a gas diffusion part are used. (When layering, the electrical and thermal contact resistance between the electrode substrate and the separator becomes unreasonably large. Generally, such contact resistance is several times the transfer resistance within the substrate.) It is said that this can lead to a decrease in power generation efficiency due to unsuitable temperature distribution between cells.

本発明者等は、特開昭59−68170号公報に於いて
、セパレーターとしての機能を果たすチ密炭素質層の両
側にガス拡散層としての多孔性炭素質層を有し一体化さ
れている燃料電池用電極基板を提供した。この電極基板
では上述の接触抵抗が皆無となり、熱的及び電気伝導性
が大いに改良された。
The present inventors disclosed in Japanese Patent Application Laid-Open No. 59-68170 that a porous carbonaceous layer as a gas diffusion layer is provided on both sides of a dense carbonaceous layer that functions as a separator, and is integrated. Provided an electrode substrate for fuel cells. In this electrode substrate, the above-mentioned contact resistance was completely eliminated, and thermal and electrical conductivity were greatly improved.

−〇− 一方、燃料電池に於いては、例えば前記多孔質基板の側
面にも反応ガスが拡散するため、これを防止すべく通常
、基板端部にフッ素系樹脂等を含浸したり、及び/又は
、周辺シール部材を使用する。
-〇- On the other hand, in fuel cells, for example, the reaction gas also diffuses to the side surfaces of the porous substrate, so in order to prevent this, the ends of the substrate are usually impregnated with a fluorine-based resin, and/or Alternatively, use a peripheral seal member.

近年、この周辺シール部材を兼ねるセパレーターが開発
されて来ている。
In recent years, separators that also serve as this peripheral sealing member have been developed.

例えば、特開昭58−214277号公報には、表面全
面に回り互いに交錯する方向に各反応ガス供給溝が形成
され、両側縁には前記供給溝に係合する数列の突条を有
する帯状弾性片を接合して各シール面が形成されてなる
燃料電池のガス分離板が記載されている。このガス分離
板(セパレーター)では、例えばフッ素ゴム又はフッ素
樹脂成型体から成る前記帯状片がガスシール材の機能を
果たすが、この帯状片はガス分離板と一体的に炭化され
たものでな(、そのため該シール材部の熱的及び電気的
抵抗が大きい。
For example, in Japanese Patent Application Laid-Open No. 58-214277, reaction gas supply grooves are formed in directions that extend around the entire surface and intersect with each other, and a band-shaped elastic band having several rows of protrusions on both side edges that engage with the supply grooves is disclosed. A gas separator plate for a fuel cell is described in which the sealing surfaces are formed by joining the pieces together. In this gas separation plate (separator), the strip made of, for example, fluororubber or fluororesin molding functions as a gas sealing material, but this strip is not carbonized integrally with the gas separation plate. Therefore, the thermal and electrical resistance of the sealing material portion is large.

又、特開昭58−12267号公報には、上記のシール
材用帯状片付ガス分離板と同様な外形を有しく反応ガス
供給溝は形成されていない)一体向に炭化されている燃
料電池のガス分離板が記載されている。
Furthermore, Japanese Patent Application Laid-Open No. 58-12267 discloses a fuel cell that is carbonized in one direction (having the same external shape as the above-mentioned gas separation plate with a band-shaped piece for sealing material, but without forming a reaction gas supply groove). gas separation plates are described.

上記両ガス分離板は、グラフフィト粉末とフェノール樹
脂の混合物から作成されている。このため、特にガス透
過度及び機械的強度(特に曲げ強度)の面で不充分であ
った。
Both gas separation plates are made from a mixture of graphite powder and phenolic resin. For this reason, it was insufficient particularly in terms of gas permeability and mechanical strength (particularly bending strength).

本発明者等も特開昭59−96661号公報に於いて、
セパレーターとしてのグラファイトシートと一体化され
、電池側面への反応ガスの漏出を防止する周辺シール用
グラファイトシートと、ガス拡散部としての多孔性炭素
質層とから成る燃料電池用電極基板を提供した。
The present inventors also wrote in Japanese Unexamined Patent Publication No. 59-96661,
The present invention provides an electrode substrate for a fuel cell comprising a graphite sheet for peripheral sealing that is integrated with a graphite sheet as a separator to prevent leakage of reaction gas to the side surface of the cell, and a porous carbonaceous layer as a gas diffusion part.

本発明者等は、更に研究した結果、充填材として、例え
ば前記特開昭58−12267号公報に開示の如きグラ
ファイト粉末に代えて、酸化ピッチ焼成破砕品、炭素繊
緒破砕品、フェノール粒子焼成品等の難黒鉛化炭素質粒
子、好ましくは酸化ピッチ焼成破砕品を使用すると、炭
化焼成により反応ガスの電池側面への漏出を防ぐ周辺シ
ール部と、実質的に反応ガスを隔離するセパレーター部
とが一体化された燃料電池用セパレーターが得られ、且
つ、このセパレーターは優れた機械的強度例えば曲げ強
度を有し、しかもガス透過性が改良されており、更に熱
及び電気伝導性に優れていることを見い出し、「燃料電
池用セパレーター及びその製造方法Jと題して昭和59
年7月4日付で特許出願した。
As a result of further research, the present inventors found that, instead of graphite powder as disclosed in the above-mentioned Japanese Patent Application Laid-open No. 58-12267, for example, oxidized pitch calcined and crushed products, carbon fiber cord crushed products, and phenol particle calcined products were used as fillers. When using non-graphitizable carbonaceous particles, preferably fired and crushed oxide pitch products, a peripheral seal part that prevents the reaction gas from leaking to the side of the battery due to carbonization firing, and a separator part that substantially isolates the reaction gas. A separator for fuel cells is obtained, which has excellent mechanical strength such as bending strength, improved gas permeability, and excellent thermal and electrical conductivity. In 1982, he discovered that
A patent application was filed on July 4, 2016.

又、燃料電池のセル構成は、5〜8セルに一段づつクー
ラーを挿入しており、それ等が全て部材を積層するとい
う構成になっている。従来、ガス拡散部−セバレーター
−ガス拡散部の順で部材を積層しており、そのための各
部材間の電気的及び熱的接触抵抗の問題がクローズアッ
プされている。
Further, the cell structure of the fuel cell is such that a cooler is inserted one stage at a time in each of 5 to 8 cells, and all of them are constructed by laminating members. Conventionally, members have been stacked in the order of gas diffusion section, separator, and gas diffusion section, and the problem of electrical and thermal contact resistance between the respective members has been attracting attention.

単位セル間の接触抵抗の問題は、前記特開昭59−68
170号公報に記載の如きセパレーター−ガス拡散部を
一体化した電極基板によって解決されるが、セル−イン
タークーラー間の接触抵抗は解決されずに残る。
The problem of contact resistance between unit cells was discussed in Japanese Patent Application Laid-Open No. 59-68.
Although this problem can be solved by using an electrode substrate that integrates a separator and a gas diffusion part as described in Japanese Patent No. 170, the contact resistance between the cell and the intercooler remains unsolved.

従来のインタークーラーは通常カーボン板で作られてい
るが、空気又は温水を供給する孔道を形成させる技術は
知られておらず、片面に溝を切ったカーボン板を貼り合
わせる方法が提案されているのみであった。この様な状
況で、セル・インタークーラー間の接触抵抗の問題が残
ったままになっている。
Conventional intercoolers are usually made of carbon plates, but there is no known technology to form holes for supplying air or hot water, and the only proposed method is to bond carbon plates with grooves cut on one side. Met. Under these circumstances, the problem of contact resistance between the cell and intercooler remains.

カーボン板に中空孔道を形成させる方法としては、一般
的に、ポーリングが行なわれているが、薄板で燃料電池
の如く片長が60〜8Ωcmに及ぶものについては、そ
れも不可能である。
Poling is generally used as a method for forming hollow holes in a carbon plate, but this is not possible for thin plates with lengths ranging from 60 to 8 Ωcm, such as in fuel cells.

(発明の課題) 本発明は、上述の如き欠点を解消Jる燃料電池用セパレ
ーターを提供することを目的とする。即ち、本発明は、
反応ガスを相互に隔11i11すると共に反応ガスの電
池側面への漏出を防止し、更にインタークーラーとして
の機能を兼ねる優れたセパレーターを提供する。
(Problem of the Invention) An object of the present invention is to provide a separator for a fuel cell that eliminates the above-mentioned drawbacks. That is, the present invention
To provide an excellent separator which separates reactive gases from each other, prevents leakage of reactive gases to the side surfaces of a battery, and also functions as an intercooler.

(発明の構成) 本発明のインタークーラー兼用燃料電池用セパレーター
は、対極の反応ガスを相互に隔離するガス隔離セパレー
ター部と、電池の側面への反応ガスの漏出を防止するガ
ス漏出防止縁部とから成り、1対の前記ガス漏出防止縁
部は前記ガス隔離ヒバレータ一部を挟んで相対しており
、前記ガス隔離セパレーター部の両面の各1対の前記ガ
ス漏出防止縁部は互いに直交している。
(Structure of the Invention) The separator for a fuel cell that also serves as an intercooler of the present invention includes a gas isolation separator portion that isolates the reaction gas of the counter electrode from each other, and a gas leakage prevention edge that prevents the reaction gas from leaking to the side of the cell. The pair of gas leak prevention edges are opposed to each other with a part of the gas isolation separator interposed therebetween, and each pair of the gas leak prevention edges on both surfaces of the gas isolation separator portion are orthogonal to each other. .

本発明のセパレーターでは、炭化焼成により前記ガス隔
離セパレーター部と前記ガス漏出防止縁部とが一体化さ
れており、前記ガス隔離セパレーター部の厚みのほぼ中
心部に冷却流体流路用中空孔道群が設けられている。
In the separator of the present invention, the gas isolation separator portion and the gas leakage prevention edge portion are integrated by carbonization firing, and a group of hollow holes for cooling fluid passages is provided approximately at the center of the thickness of the gas isolation separator portion. It is provided.

本発明のインタークーラー兼用燃料電池用セパレーター
の製造方法は、所定形状の金型に、酸化ピッチ焼成破砕
品、炭素!l雑破砕品、フェノール粒子焼成品等の難黒
鉛化炭素質粒子から選択される炭素充填材50〜90重
量%及びバインダー10〜50手量%から成るセパレー
ター用原料混合物、冷却流体流路用中空孔道形成材、前
記セパレーター川原FI混合物を順に供給し、予備成形
してガス隔離レバレータ一部用成形板を製造し、 別に、前記セパレーター用原料混合物を所定形状の金型
に供給し、予備成形してガス漏出防止縁部用成形板を製
造し、 これらの成形板を所定の構造になるように所定形状を有
する金型に積層供給し、プレス成形し、その後1000
℃以上の湯瓜で焼成することから成る。
The method of manufacturing a separator for a fuel cell that also serves as an intercooler of the present invention involves placing a fired and crushed oxide pitch product in a mold of a predetermined shape, carbon! l Separator raw material mixture consisting of 50 to 90% by weight of carbon filler selected from non-graphitizable carbonaceous particles such as coarsely crushed products and fired phenol particles, and 10 to 50% by weight of binder, hollow for cooling fluid flow path The pore forming material and the separator Kawahara FI mixture are sequentially supplied and preformed to produce a molded plate for a part of the gas isolation lever; separately, the separator raw material mixture is supplied to a mold of a predetermined shape and preformed. These molded plates are stacked and fed into a mold having a predetermined shape so as to have a predetermined structure, and then press-molded, and then 1000
It consists of baking hot water melon at a temperature above ℃.

又、本発明のインタークーラー兼用然料電池用セパレー
ターの他の製造方法は、所定形状の金型に、前記セパレ
ーター用原料混合物、冷却流体流路用中空孔道形成材、
前記セパレーター用原料混合物を順に供給し、プレス成
形し、その後1000℃以上の温度で焼成することから
成る。
In addition, another method for producing a separator for a natural battery that also serves as an intercooler according to the present invention is to place the separator raw material mixture, a hollow hole forming material for a cooling fluid flow path, into a mold having a predetermined shape.
The separator raw material mixture is sequentially supplied, press-molded, and then fired at a temperature of 1000° C. or higher.

(好ましい実施態様の解説) 以下、添附の図面を参照して本発明を詳述するが、本発
明はこれらの好ましい態様に限定されるものではない。
(Explanation of Preferred Embodiments) The present invention will be described in detail below with reference to the accompanying drawings, but the present invention is not limited to these preferred embodiments.

第1図に、本発明のインタークーラー兼用燃料電池用セ
パレーターの概略を示す。
FIG. 1 schematically shows a separator for a fuel cell that also serves as an intercooler according to the present invention.

本発明の燃料電池用セパレーター10は、対極の反応ガ
スを相互に隔離する機能を果たすガス隔離セパレーター
部11と、反応ガスが電池側面方向に漏出するのを防ぐ
機能を果たすガス漏出防止縁部12とから成っている。
The fuel cell separator 10 of the present invention includes a gas isolation separator portion 11 that functions to mutually isolate reaction gases of opposite electrodes, and a gas leakage prevention edge portion 12 that functions to prevent the reaction gas from leaking toward the side of the cell. It consists of.

第1図に示したように、ガス漏出防止縁部12はガス隔
離セパレーター部11を挟んで相対する周辺部に1対設
けられており、ガス隔離セパレーター部11の表面と裏
面の各1対のガス漏出防止縁部12は互いに直交するよ
うに設けられている。本発明の燃料電池用セパレーター
10は全体が炭化焼成されて一体化されている。即ち、
前記ガス隔離セパレーター部11と前記ガス漏出防止縁
部12とは一体化されている。
As shown in FIG. 1, a pair of gas leakage prevention edges 12 are provided at opposing peripheral parts with the gas isolation separator section 11 in between, and one pair each on the front and back surfaces of the gas isolation separator section 11. The gas leakage prevention edges 12 are provided so as to be orthogonal to each other. The fuel cell separator 10 of the present invention is entirely carbonized and fired into one piece. That is,
The gas isolation separator section 11 and the gas leakage prevention edge 12 are integrated.

本発明セパレーター10のガス隔離セパレーター部11
には、その厚みのほぼ中心部に冷却用流体(例えば空気
又は温水)を流すための流路としての複数の中空孔道1
3から成る中空孔道群が設けられている。この冷却流体
流路用中空孔道群の各中空孔道13は、互いに且つ電極
基板の電極面及び一側面に対してほぼ平行であり、電極
基板の一端面から相対する端面まで連続している。
Gas isolation separator section 11 of separator 10 of the present invention
has a plurality of hollow holes 1 as channels for flowing cooling fluid (e.g. air or hot water) approximately in the center of its thickness.
A hollow hole path group consisting of 3 is provided. The hollow holes 13 of this cooling fluid channel group are substantially parallel to each other and to the electrode surface and one side surface of the electrode substrate, and are continuous from one end surface to the opposite end surface of the electrode substrate.

冷却流体の流路としての中空孔道13の断面形状は第1
図に示す如く円形である。この各中空孔道13の直径1
は、0.5〜15IIllが好ましく、この直径が0.
5+uaより小さいとセパレーター面積が大ぎくなり中
空孔道の長さが長くなる場合には、冷却流体流動の抵抗
が大きくなり過ぎ、15mmより大きいと中空孔道群を
有するガス隔離セパレーター部11が厚くなり過ぎセパ
レーターを電極基板等と共に積層した際のセルの容積効
率が減少する。
The cross-sectional shape of the hollow hole passage 13 as a flow path for the cooling fluid is the first one.
As shown in the figure, it is circular. The diameter of each hollow hole passage 13 is 1
is preferably 0.5 to 15 IIll, and this diameter is 0.5 to 15 IIll.
If it is smaller than 5+ua, the separator area becomes large and the length of the hollow holes becomes long, and the resistance to the flow of the cooling fluid becomes too large.If it is larger than 15 mm, the gas isolation separator section 11 having the hollow holes becomes too thick. The volumetric efficiency of the cell decreases when the separator is laminated together with the electrode substrate and the like.

本発明セパレーター10は、その中空孔道群を除いた部
分全体が、気密性に優れており、セパレーター ター厚み方向へのガス透過度は10  ci/sec。
The separator 10 of the present invention has excellent airtightness in the entire portion excluding the hollow holes, and the gas permeability in the thickness direction of the separator is 10 ci/sec.

cmHo以下であり、又、機械的強度が大きく、例えば
曲げ強度は500 kQ/cM以上であり、更に、熱及
び電気伝導性に優れており、熱伝導率は4 kcal7
m、hr、 ’C以上、電気抵抗は101IlΩcml
X 下テAFr ル。
cmHo or less, and has high mechanical strength, for example, bending strength of 500 kQ/cM or more, and has excellent thermal and electrical conductivity, with a thermal conductivity of 4 kcal7
m, hr, 'C or more, electrical resistance is 101IlΩcml
X Lower Te AFr Le.

本発明セパレーター10のガス漏出防止縁部12の高さ
くガス隔離セパレーター部11の而からの高さ)は、反
応ガス拡散部としての多孔性炭素質層(第3図の14)
の厚みに相当するものであり、一般には2.5m+n以
下である。尚、このガス漏出防止縁部内を反応ガスが電
池側面方向へ透過するガス透過度は、反応ガスの電池側
面への漏出を防ぐように充分低い値であり、一般には1
0−3ci / sec、cml−1g以下である。
The height of the gas leakage prevention edge 12 of the separator 10 of the present invention (height from the gas isolation separator part 11) is the porous carbonaceous layer (14 in FIG. 3) as a reaction gas diffusion part.
It corresponds to the thickness of , and is generally 2.5 m+n or less. The gas permeability of the reaction gas toward the side of the battery through this gas leakage prevention edge is a sufficiently low value to prevent the reaction gas from leaking to the side of the battery, and is generally 1.
0-3ci/sec, cml-1g or less.

本発明のけパレータ−は以下に詳述する方法によって製
造し得るが、重要なことは、ガス隔離セパレーター部1
1とガス漏出防止縁部12が膨化焼成されて一体となっ
ており、1つ前記の如き侵れl、:物性を有しているこ
とである。
The separator of the present invention can be manufactured by the method detailed below, but the important thing is that the gas isolation separator section 1
1 and the gas leakage prevention edge 12 are integrally formed by swelling and firing, and have the physical properties as described above.

本発明のセパレーターを製造する好ましい1つの方法で
は、ガス隔離セパレーター部用成形板とガス漏出防止縁
部用成形板とを別個に予備成形して作り、その後所望の
構造になるように金型内でプレス成形し、更に1000
℃以上の温度で焼成膨化する。
One preferred method of manufacturing the separators of the invention is to separately preform the molded plates for the gas isolation separator section and the gas leakage prevention edge, and then place them in a mold to the desired configuration. Press molded with
Swells when fired at temperatures above ℃.

先ず、ガス隔離セパレーター部用成形板の製造方法につ
いて説明する。
First, a method for manufacturing a molded plate for a gas isolation separator section will be explained.

即ち、゛所定形状の金型に、セパレーター用原料混合物
、冷fJI流体流路用中空孔道形成材及び前記セパレー
ター用原料混合物をこの順に供給し、予備成形してガス
隔離セパレーター部用成形板を得る。
That is, ``a raw material mixture for a separator, a hollow hole passage forming material for a cold fJI fluid flow path, and the raw material mixture for a separator are supplied in this order into a mold having a predetermined shape, and preformed to obtain a molded plate for a gas isolation separator section. .

ここで、セパレーター用原料混合物は、炭素充填材50
〜90重量%、好ましくは60〜80重量%とバインダ
ー10〜50重量%、好ましくは20〜40ffl f
f1%から成る。
Here, the separator raw material mixture contains carbon filler 50
~90% by weight, preferably 60-80% by weight and binder 10-50% by weight, preferably 20-40ffl f
Consists of f1%.

本発明の実施に使用する炭素充填材は、酸化ビッヂ焼成
破砕品、炭素繊維破砕品、フェノール粒子焼成品等の難
黒鉛化炭素質粒子から選択される平均粒径40μ以下、
好ましくは10μ以下の粒子であり、例えば、特公昭5
3−31116号公報に記載の方法でvJ造される酸化
ビッヂを焼成後破砕した材料が好ましく使用できる。尚
、炭素充填材は上記の難黒鉛化炭素質粒子2種以上の混
合物でもよい。
The carbon filler used in the implementation of the present invention is selected from non-graphitizable carbonaceous particles such as oxidized bidge calcined crushed products, carbon fiber crushed products, phenol particle calcined products, etc. with an average particle size of 40 μm or less,
Preferably, the particles are 10μ or less, for example,
A material obtained by firing and crushing oxidized bitge produced by vJ by the method described in Japanese Patent No. 3-31116 can be preferably used. Note that the carbon filler may be a mixture of two or more types of non-graphitizable carbonaceous particles described above.

本発明で使用するバインダーとしては、フェノール樹脂
が好ましい。
As the binder used in the present invention, phenolic resin is preferred.

本発明で使用する冷却流体流路用中空孔道形成材として
は、高分子物質のスダレ状成形物等があり、この高分子
物質としてはポリエチレン、ポリプロピレン、ナイロン
、ポリスチレン、ポリビニルアルコール、ポリ塩化ビニ
ル等があり、炭化収率10重俤%以下のものを適宜選択
づ゛る。
The hollow hole forming material for the cooling fluid flow path used in the present invention includes a sag-like molded product of a polymeric material, and examples of the polymeric material include polyethylene, polypropylene, nylon, polystyrene, polyvinyl alcohol, polyvinyl chloride, etc. Therefore, one with a carbonization yield of 10% by weight or less is selected as appropriate.

炭化収率がこれより高いと中空孔道の形成及び相当直径
の調節に難点を生ずる恐れがある。また、これらの高分
子物質としては、中空孔道形成のために、少なくとも1
00℃にて揮発もしくは溶融流動を示さないものが用い
られる。即ち、前記高分子物質は、成形濡面及び圧力に
おいて、熱変形は許されるが揮発もしくは溶融流動して
はならない。
If the carbonization yield is higher than this, there may be difficulties in forming hollow pores and controlling the equivalent diameter. In addition, these polymeric substances contain at least one
A material that does not volatilize or exhibit melt flow at 00°C is used. That is, the polymeric material is allowed to be thermally deformed on the wet surface and under pressure, but must not volatilize or melt and flow.

中空孔道の相当直径を好ましい範囲に調節するために使
用できるスダレ状成形物は、前記高分子物質を金型に溶
融状態で射出成形する方法、又は前記高分子物質のベレ
ット若しくは粉末を金型内で加圧成形する方法で作られ
る。各単位スダレの断面寸法は、直径(第2図d)が0
.55〜18.0IIIIIlとなるように選択する。
A sag-shaped molded product that can be used to adjust the equivalent diameter of the hollow hole to a preferred range can be obtained by injection molding the polymer material in a molten state into a mold, or by injection molding a pellet or powder of the polymer material into a mold. It is made using pressure molding method. The cross-sectional dimensions of each unit sudare are 0 in diameter (Fig. 2 d).
.. 55 to 18.0IIII.

第2図に示すように、冷却流体の流れ方向に平行な円形
単位スダレ間の間隔(T)は3〜50IllIllとし
、冷却流体の流れに直角な方向の円形単位スダレ間の間
隔(’L )は30〜200fillの範囲から目的に
より選ばれる。これらスダレ状成形物は金型内でガス隔
離セパレーター部用成形板を成形する際、このガス隔離
セパレーター部のほぼ中央部に位置するように、セパレ
ーター用原料混合物の上に載せればよく、その後の加圧
成形、後硬化の工程を経て、炭化焼成により炭化する部
分を除いて、大部分が熱分解により揮散してセパレータ
ー内に中空孔道を形成する。
As shown in Figure 2, the interval (T) between the circular unit sudare parallel to the flow direction of the cooling fluid is 3 to 50IllIll, and the interval ('L) between the circular unit sudare in the direction perpendicular to the flow of the cooling fluid. is selected from the range of 30 to 200 fill depending on the purpose. When molding a molded plate for a gas isolation separator part in a mold, these sag-like molded products can be placed on top of the separator raw material mixture so as to be located approximately in the center of the gas isolation separator part, and then After the pressure forming and post-curing steps, most of the material, except for the part that is carbonized by carbonization firing, is evaporated by thermal decomposition to form hollow pores in the separator.

一般にこのような中空孔道形成に際して、炭化焼成時の
成形体は全体として10〜20%の線収縮率を示すこと
が確かめられているので、この収縮を勘案して、原料の
スダレ状成形物の相当直径を選ぶことにより、好ましい
中空孔道の相当直径が得られるように任意に調節するこ
とができる。
Generally, when forming such hollow pores, it has been confirmed that the molded product during carbonization and firing shows a linear shrinkage rate of 10 to 20% as a whole. By selecting the equivalent diameter, it can be arbitrarily adjusted to obtain a preferred equivalent diameter of the hollow hole channel.

尚、」二記スダレ状成形物は、本発明の中空孔道形成材
を例示したものであり、本発明はこれのみに限定されな
い。又、同様に前記の高分子物質も同様な特性を有する
ものならば前記以外のものも使用し得る。
Incidentally, the sag-shaped molded product described in "2" is an example of the hollow pore-forming material of the present invention, and the present invention is not limited thereto. Similarly, polymer materials other than those described above may also be used as long as they have similar characteristics.

本発明のガス隔離セパレーター部用成形板製造のだめの
予備成形条件はプレス温IJi70〜130℃。
The preforming conditions for producing the molded plate for the gas isolation separator section of the present invention are a press temperature IJi of 70 to 130°C.

好ましくは100〜120℃、プレス圧力30〜200
 k(1/ crJ 、好ましくは80〜150 ko
/ cniで5分〜30分である。
Preferably 100-120°C, press pressure 30-200
k (1/crJ, preferably 80-150 ko
/cni is 5 to 30 minutes.

次に、ガス漏出防止縁部用成形板は、前記セパレーター
用原料混合物を所定形状の金314に供給し、上記と同
様の条件で予備成形して製造し得る。
Next, the molded plate for the gas leakage prevention edge can be manufactured by supplying the separator raw material mixture to gold 314 of a predetermined shape and preforming it under the same conditions as above.

このようにして予備成形した成形板を、例えば第1図に
示すような所定の構造を与えるような所定形状の金型に
入れてプレス成形する。プレス成形条件は温度120〜
200℃、好ましくは130〜160℃、圧力30〜2
00 k(1/ ci 、好ましくは80〜150 k
(J/ctlで10〜20分である。プレス成形後、温
度130〜160℃、圧力0.5 kg/ CI4以下
で少なくとも2時間後硬化させると好ましい結果が得ら
れる。
The thus preformed molded plate is press-formed by placing it in a mold having a predetermined shape that provides a predetermined structure as shown in FIG. 1, for example. Press molding conditions are temperature 120~
200°C, preferably 130-160°C, pressure 30-2
00 k (1/ci, preferably 80-150 k
(J/ctl for 10 to 20 minutes. After press molding, post-curing at a temperature of 130 to 160°C and a pressure of 0.5 kg/CI4 or less for at least 2 hours will give preferable results.

その後1000℃以上の湿度で炭化焼成すると一体化し
た本発明のセパレーターが得られる。
Thereafter, carbonization is performed at a humidity of 1000° C. or higher to obtain an integrated separator of the present invention.

尚、本発明のセパレーターは以下のように一体成形する
こともできる。即ち、(例えば第1図に示すような構造
を与える)所定形状を有する金型内に前記セパレーター
用原料混合物、前記冷却流体流路用中空孔道形成材、前
記セパレーター用原料混合物を順に供給し、前記条件で
プレス成形し、好ましくは後硬化させ、1000℃以上
の温度で炭化焼成する。
Incidentally, the separator of the present invention can also be integrally molded as follows. That is, the separator raw material mixture, the cooling fluid channel hollow hole forming material, and the separator raw material mixture are sequentially supplied into a mold having a predetermined shape (for example, giving a structure as shown in FIG. 1), It is press-molded under the above conditions, preferably post-cured, and then carbonized and fired at a temperature of 1000° C. or higher.

(発明の作用効果) 以上のように本発明の燃料電池用セパレーターは、優れ
た気密性、即ち低ガス透引り大きい機械的強度、例えば
曲げ強度並びに良好な熱的及び電気的伝導性、即ち高い
熱伝導率及び低い電気抵抗を有しており、燃料電池用セ
パレーターとして特に適している。
(Operations and Effects of the Invention) As described above, the fuel cell separator of the present invention has excellent airtightness, that is, low gas permeability, high mechanical strength, such as bending strength, and good thermal and electrical conductivity. It has high thermal conductivity and low electrical resistance, making it particularly suitable as a fuel cell separator.

本発明のセパレーターを用いた燃料電池用電極基板の1
例の概略を第3図に示す。第3図中、14は例えば特開
昭59−96661号公報に開示されている反応ガス拡
散部としての多孔性炭素質層であり、15は反応ガス流
路用中空孔道である。勿論、これは単なる1例であり、
本発明はこれに限定されるものではない。例えば特開昭
58−117649号、特開昭59−37662号、特
開昭59−46763号、特開昭59−63664号及
び特開昭59−66063号に開示されている基板又は
多孔性炭素質層等、ガス拡散部として有用なものが使用
可能である。
1 of fuel cell electrode substrate using separator of the present invention
An example is schematically shown in FIG. In FIG. 3, numeral 14 is a porous carbonaceous layer as a reaction gas diffusion section disclosed in, for example, Japanese Unexamined Patent Publication No. 59-96661, and numeral 15 is a hollow hole for a reaction gas flow path. Of course, this is just one example;
The present invention is not limited to this. For example, the substrate or porous carbon disclosed in JP-A-58-117649, JP-A-59-37662, JP-A-59-46763, JP-A-59-63664 and JP-A-59-66063 A material useful as a gas diffusion part, such as a carbonaceous layer, can be used.

本発明のセパレーターを使用すると、従来反応ガスの電
池側面への漏出を防ぐために必要とされていたシール手
段が不要になる。又、ガス漏出防止縁部も一体的に炭化
焼成されているため熱的及び電気抵抗が小さくなる。
Use of the separator of the present invention eliminates the need for sealing means conventionally required to prevent leakage of reactant gas to the side of the cell. Furthermore, since the gas leakage prevention edge is also integrally carbonized and fired, the thermal and electrical resistance is reduced.

更に、セパレーターがインタークーラーを兼ねるため、
従来のけバレーターシートとインタークーラー間の熱的
及び電気的接触抵抗が皆無となる。
Furthermore, since the separator also serves as an intercooler,
The thermal and electrical contact resistance between the conventional vaporizer sheet and intercooler is completely eliminated.

26一 この結果、積層した場合の全体としての電気抵抗及び熱
抵抗が激減するなど、多大の効果が発揮される。
26 - As a result, great effects such as a drastic reduction in electrical resistance and thermal resistance as a whole when laminated are exhibited.

(実施例) 以下、非限定実施例によって本発明を説明する。(Example) The invention will now be illustrated by means of non-limiting examples.

ベレット状の市販ポリプロピレン(東燃石油(株)製1
品番J−215)を、スクリュー型射出成形機を用いて
、温度230℃、射出圧力500 ko/crlの条件
で溶融して押出し、約50℃に保持された金型に流し込
み、第2図に示す如き円形単位スダレを連結した形状の
スダレ状ポリプロピレン成形物(冷却流体流路用中空孔
道形成材)を作った。
Commercially available pellet-shaped polypropylene (manufactured by Tonen Sekiyu Co., Ltd. 1)
Product number J-215) was melted and extruded using a screw injection molding machine at a temperature of 230°C and an injection pressure of 500 ko/crl, and poured into a mold maintained at about 50°C. A sag-shaped polypropylene molded product (hollow hole forming material for cooling fluid flow path) having a shape in which circular unit sudares were connected as shown was made.

使用金型は第2図のスダレ状成形物の断面が直径(d)
 3.5 +n+aの円で、T = 10+ni、 l
−= 100+nmを与える溝をステンレス板に切削加
工したもので、ステンレス製の蓋板をつけ分割できるも
のとした。
The cross section of the molded material shown in Figure 2 is diameter (d).
3.5 In a circle of +n+a, T = 10+ni, l
- = 100+nm grooves were cut into a stainless steel plate, and a stainless steel cover plate was attached so that it could be divided.

実施例2 特公昭53−31116号に記載の方法で製造した酸化
ビツヂ(平均粒径10μ以下)を800℃で焼成し、破
砕して平均粒径10μ以下とした。
Example 2 Oxidized bits (average particle size 10μ or less) produced by the method described in Japanese Patent Publication No. 53-31116 were calcined at 800°C and crushed to have an average particle size of 10μ or less.

上記酸化ピッチ焼成破砕品65重量%とフェノール樹脂
(旭有機材製、 RM−210) 35重量%とを羽根
ミキサーで混合して原料混合物とした。
A raw material mixture was prepared by mixing 65% by weight of the calcined and crushed oxidized pitch product with 35% by weight of a phenol resin (RM-210, manufactured by Asahi Yokuzai) using a blade mixer.

得られた原料混合物をプレス成形用金型に供給し、次に
、実施例1で製造した冷却流体流路用中空孔道形成材(
スダレ略#状ポリプロピレン成形物)を供給した。次い
で、iio℃、 100 kQ/ciで予備成形してガ
ス隔離セパレーター部用成形板を得た。
The obtained raw material mixture was supplied to a press molding die, and then the hollow hole channel forming material for cooling fluid flow path produced in Example 1 (
A roughly #-shaped polypropylene molded product) was supplied. Next, a molded plate for a gas isolation separator portion was obtained by preforming at io°C and 100 kQ/ci.

別に、上記原料混合物を所定形状の金型に供給し、11
0℃、 100 kQ/ctlで予備成形してガス漏出
防止縁部用成形板を作成した。
Separately, the raw material mixture was supplied to a mold of a predetermined shape, and 11
A molded plate for the gas leakage prevention edge was prepared by preforming at 0° C. and 100 kQ/ctl.

得られたガス漏出防止縁部用成形板を切断して所望1ノ
°イズのガス漏出防止縁部用単板を得た。
The obtained gas leakage prevention edge forming plate was cut to obtain a gas leakage prevention edge veneer having a desired 1 noise.

上記のガス隔離セパレーター 部用成形板及びガス漏出
防止縁部用単板を第1図に示す如き所望の構造が得られ
るように所定形状の金型に入れ、140℃、 50k(
1/cIlでプレス成形した。その後、約150℃、 
0.4 kQ/ciで後硬化させ、更に1500℃で炭
化焼成した。
The above molded plate for the gas isolation separator part and the veneer plate for the gas leakage prevention edge were placed in a mold of a predetermined shape to obtain the desired structure as shown in Fig. 1, and heated at 140°C and 50k (
Press molding was performed at 1/cIl. After that, about 150℃,
It was post-cured at 0.4 kQ/ci and further carbonized and fired at 1500°C.

得られたセパレーターの物性を以下に示す。The physical properties of the obtained separator are shown below.

ガス透過率(at  N2. 0.2kO/ cd  
G )1.8x 10−?ci / sec、cmH(
+(但し、中空孔道部は除く) 電気抵抗 7.6        IIIΩ、Cll1熱伝導度 4.7        kcal/n+、hr、 ℃曲
げ強度 860         k(J/Cd中空孔道直径 3.11IIIll ガス漏出防止縁部高さ 2、Oam 側面へのガス透過率(at  N2. 0.2kO/ 
cII!G )5.4x 10=     cd / 
sec、cmHQ
Gas permeability (at N2. 0.2kO/cd
G) 1.8x 10-? ci/sec, cmH(
+ (excluding the hollow hole) Electrical resistance 7.6 IIIΩ, Cll1 thermal conductivity 4.7 kcal/n+, hr, °C Bending strength 860 k (J/Cd hollow hole diameter 3.11IIIll Gas leakage prevention edge Height 2, Oam Gas permeability to the side (at N2. 0.2kO/
cII! G)5.4x 10=cd/
sec, cmHQ

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明セパレーターの斜視図であり、第2図は
本発明で使用する冷却流体流路用中空孔道形成材の1例
の概略図であり、第3図は本発明のセパレーターを燃料
電池に使用する際の電極基板の概略図である。
FIG. 1 is a perspective view of the separator of the present invention, FIG. 2 is a schematic diagram of an example of a hollow hole forming material for a cooling fluid flow path used in the present invention, and FIG. 3 is a perspective view of the separator of the present invention. FIG. 2 is a schematic diagram of an electrode substrate when used in a battery.

Claims (17)

【特許請求の範囲】[Claims] (1)対極の反応ガスを相互に隔離するガス隔離セパレ
ーター部と、電池の側面への反応ガスの漏出を防止する
ガス漏出防止縁部とから成り、1対の前記ガス漏出防止
縁部が前記ガス隔離セパレーター部を挟んで相対してお
り、前記ガス隔離セパレーター部の両面の各1対の前記
ガス漏出防止縁部が互いに直交しており、炭化焼成によ
り前記ガス隔離セパレーター部と前記ガス漏出防止縁部
とが一体化されており、前記ガス隔離セパレーター部の
厚みのほぼ中心部に冷却流体流路用中空孔道群を設けて
あるインタークーラー兼用燃料電池用セパレーター。
(1) Consisting of a gas isolation separator section that isolates the reactive gases of the counter electrodes from each other, and a gas leakage prevention edge that prevents the leakage of the reaction gas to the side surface of the battery, the pair of gas leakage prevention edges are connected to the gas leakage prevention edge that They face each other with a gas isolation separator section in between, and each pair of gas leakage prevention edges on both sides of the gas isolation separator section are orthogonal to each other, and carbonization sintering allows the gas isolation separator section and the gas leakage prevention edge to intersect with each other at right angles. A separator for a fuel cell that also serves as an intercooler, in which the gas isolation separator part is integrated with the edge part, and a group of hollow holes for a cooling fluid flow path is provided approximately at the center of the thickness of the gas isolation separator part.
(2)前記冷却流体流路用中空孔道群の各中空孔道が、
互いに且つ電極基板の電極面及び一側面に対してほぼ平
行であり、電極基板の一端面から相対する端面まで連続
しており、0.5〜15mmの直径を有することを特徴
とする特許請求の範囲第1項に記載のセパレーター。
(2) Each hollow hole path of the cooling fluid flow channel hollow hole path group is
The electrodes are substantially parallel to each other and to the electrode surface and one side of the electrode substrate, are continuous from one end surface of the electrode substrate to the opposite end surface, and have a diameter of 0.5 to 15 mm. The separator according to scope 1.
(3)前記セパレーターの前記冷却流体流路用中空孔道
群を除く部分が、10^−^7cm^2/sec.cm
Hg以下のガス透過度、500kg/cm^2以上の曲
げ強度、4kcal/m.hr.℃以上の熱伝導率及び
10mΩcm以下の電気抵抗を有することを特徴とする
特許請求の範囲第1項又は第2項に記載のセパレーター
(3) The portion of the separator excluding the hollow hole group for the cooling fluid flow path is 10^-^7cm^2/sec. cm
Gas permeability below Hg, bending strength above 500kg/cm^2, 4kcal/m. hr. The separator according to claim 1 or 2, which has a thermal conductivity of .degree. C. or more and an electrical resistance of 10 m.OMEGA.cm or less.
(4)前記セパレーターの前記ガス漏出防止縁部の電池
側面方向へのガス透過度が10^−^3cm^2/se
c.cmHg以下であることを特徴とする特許請求の範
囲第1項乃至第3項のいずれかに記載のセパレーター。
(4) The gas permeability of the gas leakage prevention edge of the separator in the side direction of the battery is 10^-^3cm^2/se.
c. The separator according to any one of claims 1 to 3, characterized in that the separator has a temperature of not more than cmHg.
(5)前記ガス漏出防止縁部の高さが2.5mm以下で
あることを特徴とする特許請求の範囲第1項乃至第4項
のいずれかに記載のセパレーター。
(5) The separator according to any one of claims 1 to 4, wherein the height of the gas leakage prevention edge is 2.5 mm or less.
(6)1000℃以上の温度で焼成されていることを特
徴とする特許請求の範囲第1項乃至第5項のいずれかに
記載のセパレーター。
(6) The separator according to any one of claims 1 to 5, which is fired at a temperature of 1000°C or higher.
(7)特許請求の範囲第1項乃至第6項のいずれかに記
載のインタークーラー兼用燃料電池用セパレーターの製
造方法であり、 所定形状の金型に、酸化ピッチ焼成破砕品、炭素繊維破
砕品、フェノール粒子焼成品等の難黒鉛化炭素質粒子か
ら選択される炭素充填材50〜90重量%及びバインダ
ー10〜50重量%から成るセパレーター用原料混合物
、冷却流体流路用中空孔道形成材、前記セパレーター用
原料混合物を順に供給し、予備成形してガス隔離セパレ
ーター部用成形板を製造し、 別に、前記セパレーター用原料混合物を所定形状の金型
に供給し、予備成形してガス漏出防止縁部用成形板を製
造し、 これらの成形板を所定の構造になるように所定形状を有
する金型に積層供給し、プレス成形し、その後1000
℃以上の温度で焼成することから成る方法。
(7) A method for manufacturing a separator for a fuel cell that also serves as an intercooler according to any one of claims 1 to 6, wherein a mold having a predetermined shape is filled with a fired and crushed oxide pitch product, a crushed carbon fiber product, A raw material mixture for a separator comprising 50 to 90% by weight of a carbon filler selected from non-graphitizable carbonaceous particles such as baked products of phenol particles and 10 to 50% by weight of a binder, a material for forming hollow pores for a cooling fluid flow path, and the separator. The raw material mixture for the separator is sequentially supplied and preformed to produce a molded plate for the gas isolation separator section, and separately, the raw material mixture for the separator is supplied to a mold of a predetermined shape and preformed for the gas leakage prevention edge. Molded plates are manufactured, these molded plates are stacked and supplied to a mold having a predetermined shape so as to have a predetermined structure, press molded, and then 1000
A method consisting of firing at a temperature above ℃.
(8)炭素充填材が粒径40μ以下の粒子であることを
特徴とする特許請求の範囲第7項に記載の方法。
(8) The method according to claim 7, wherein the carbon filler is particles with a particle size of 40 μm or less.
(9)バインダーがフェノール樹脂であることを特徴と
する特許請求の範囲第7項又は第8項に記載の方法。
(9) The method according to claim 7 or 8, wherein the binder is a phenolic resin.
(10)冷却流体流路用中空孔道形成材が、少なくとも
100℃で揮発もしくは溶融流動を示さない高分子物質
であることを特徴とする特許請求の範囲第7項乃至第9
項のいずれかに記載の方法。
(10) Claims 7 to 9, characterized in that the hollow hole forming material for the cooling fluid flow path is a polymeric substance that does not volatilize or exhibit no melt flow at at least 100°C.
The method described in any of the paragraphs.
(11)高分子物質が、ポリエチレン、ポリプロピレン
、ナイロン、ポリスチレン、ポリビニルアルコール及び
ポリ塩化ビニルで構成される群から選択され、前記高分
子物質の炭化収率が10重量%以下であることを特徴と
する特許請求の範囲第10項に記載の方法。
(11) The polymeric substance is selected from the group consisting of polyethylene, polypropylene, nylon, polystyrene, polyvinyl alcohol, and polyvinyl chloride, and the carbonization yield of the polymeric substance is 10% by weight or less. 11. The method according to claim 10.
(12)冷却流体流路用中空孔道形成材が前記高分子物
質のスダレ状成形物であることを特徴とする特許請求の
範囲第10項又は第11項に記載の方法。
(12) The method according to claim 10 or 11, wherein the hollow hole forming material for the cooling fluid flow path is a sag-like molded product of the polymeric substance.
(13)スダレ状成形物が、前記高分子物質を金型に溶
融状態で射出成形して製造されたもの、又は前記高分子
物質のペレット若しくは粉末を金型内で加圧成形して製
造されたものであり、単位スダレの断面の直径が0.5
5〜18.0mmであることを特徴とする特許請求の範
囲第12項に記載の方法。
(13) The sag-like molded product is manufactured by injection molding the polymeric substance in a molten state into a mold, or by pressure-molding pellets or powder of the polymeric substance in a mold. The cross-sectional diameter of the unit sudare is 0.5
13. The method according to claim 12, characterized in that the diameter is 5 to 18.0 mm.
(14)冷却流体の流れ方向に平行な単位スダレ問の間
隔が10〜50mmであり、冷却流体の流れに直角な方
向の単位スダレ間の間隔が30〜150mmであること
を特徴とする特許請求の範囲第12項又は第13項に記
載の方法。
(14) A patent claim characterized in that the interval between the unit gaps in the direction parallel to the flow direction of the cooling fluid is 10 to 50 mm, and the interval between the unit gaps in the direction perpendicular to the flow of the cooling fluid is 30 to 150 mm. The method according to item 12 or 13.
(15)予備成形条件が、プレス温度70〜130℃、
プレス圧力30〜200kg/cm^2であることを特
徴とする特許請求の範囲第7項乃至第14項のいずれか
に記載の方法。
(15) The preforming conditions are a press temperature of 70 to 130°C;
The method according to any one of claims 7 to 14, characterized in that the press pressure is 30 to 200 kg/cm^2.
(16)プレス成形条件が、金型加熱温度120〜20
0℃、成形圧30〜200kg/cm^2であることを
特徴とする特許請求の範囲第7項乃至第15項のいずれ
かに記載の方法。
(16) Press molding conditions are mold heating temperature 120-20
The method according to any one of claims 7 to 15, characterized in that the temperature is 0°C and the molding pressure is 30 to 200 kg/cm^2.
(17)特許請求の範囲第1項乃至第6項のいずれかに
記載のインタークーラー兼用然料電池用セパレーターの
製造方法であり、所定形状の金型に、酸化ピッチ焼成破
砕品、炭素繊維破砕品、フェノール粒子焼成品等の難黒
鉛化炭素質粒子から選択される炭素充填材50〜90重
量%及びバインダー10〜50重量%から成るセパレー
ター用原料混合物、冷却流体流路用中空孔道形成材、前
記セパレーター用原料混合物を順に供給し、温度120
〜200℃、圧力30〜200kg/cm^2でプレス
成形し、1000℃以上の温度で焼成することから成る
方法。
(17) A method for manufacturing a separator for a natural battery that also serves as an intercooler according to any one of claims 1 to 6, in which a mold having a predetermined shape is filled with a fired and crushed oxide pitch product and a crushed carbon fiber product. , a raw material mixture for a separator comprising 50 to 90% by weight of a carbon filler selected from non-graphitizable carbonaceous particles such as fired products of phenol particles, and 10 to 50% by weight of a binder; a hollow pore forming material for a cooling fluid flow path; The raw material mixture for the separator is supplied in order, and the temperature is 120.
A method consisting of press forming at ~200°C and a pressure of 30-200 kg/cm^2 and firing at a temperature of 1000°C or higher.
JP59140251A 1984-04-06 1984-07-06 Separator which also serves as inter cooler for fuel cell and its manufacture Pending JPS6119070A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59140251A JPS6119070A (en) 1984-07-06 1984-07-06 Separator which also serves as inter cooler for fuel cell and its manufacture
US06/718,380 US4664988A (en) 1984-04-06 1985-04-01 Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof
CA000478145A CA1259100A (en) 1984-04-06 1985-04-02 Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof
GB08508687A GB2158286B (en) 1984-04-06 1985-04-03 Fuel cell electrode substrates
FR8505143A FR2562721B1 (en) 1984-04-06 1985-04-04 ELECTRODE SUBSTRATE FOR FUEL CELL COMPRISING A SEPARATOR AS INTERMEDIATE COOLER AND METHOD FOR PREPARING THE SAME
DE19853512865 DE3512865A1 (en) 1984-04-06 1985-04-06 ELECTRODE MATERIAL FOR FUEL CELLS AND METHOD FOR THE PRODUCTION THEREOF
US07/004,612 US4956131A (en) 1984-04-06 1987-01-20 Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140251A JPS6119070A (en) 1984-07-06 1984-07-06 Separator which also serves as inter cooler for fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPS6119070A true JPS6119070A (en) 1986-01-27

Family

ID=15264427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140251A Pending JPS6119070A (en) 1984-04-06 1984-07-06 Separator which also serves as inter cooler for fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS6119070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007407A1 (en) * 2001-07-09 2003-01-23 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing separator for fuel cell
JP2004273449A (en) * 2003-02-18 2004-09-30 Unitika Ltd Separator for fuel cell and manufacturing method of the same
JP2005317372A (en) * 2004-04-28 2005-11-10 Unitika Ltd Glass-like carbon structure and its manufacturing method
CN100456545C (en) * 2001-07-09 2009-01-28 本田技研工业株式会社 Method of manufacturing separator for fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007407A1 (en) * 2001-07-09 2003-01-23 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing separator for fuel cell
US7138206B2 (en) 2001-07-09 2006-11-21 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing separator for fuel cell
CN100456545C (en) * 2001-07-09 2009-01-28 本田技研工业株式会社 Method of manufacturing separator for fuel cell
JP2004273449A (en) * 2003-02-18 2004-09-30 Unitika Ltd Separator for fuel cell and manufacturing method of the same
JP2005317372A (en) * 2004-04-28 2005-11-10 Unitika Ltd Glass-like carbon structure and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0122150B1 (en) Integral gas seal for fuel cell gas distribution assemblies and method of fabrication
JP5179698B2 (en) One-shot production of membrane-based electrochemical cell stacks
CA1301832C (en) Fabrication of ceramic trilayers for a monolithic solid oxide fuel cell
US4855092A (en) Process for preparing a carbonaceous fuel cell electrode substrate incorporating three-layer separator
CN100570925C (en) The manufacture method of pem fuel cell separator plate
US4956131A (en) Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof
EP1356532B1 (en) Electrochemical polymer electrolyte membrane cell stacks
EP0174762B1 (en) Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell
US7695846B2 (en) Membrane based electrochemical cell stacks
US6511766B1 (en) Low cost molded plastic fuel cell separator plate with conductive elements
JPS60236461A (en) Electrode substrate for fuel cell and its manufacture
US20120021329A1 (en) Membrane electrode assembly and method of manufacturing the same, as well as fuel cell
JP2003022816A (en) Fiber orientation adjusted separator plate for fuel cell, and manufacturing method
EP1280217A2 (en) Fuel-cell separator, production of the same, and fuel cell
USH16H (en) Fuel cell electrode and method of preparation
JP5368828B2 (en) Separation plate for fuel cell stack and method for producing the same
JPS6119070A (en) Separator which also serves as inter cooler for fuel cell and its manufacture
CN100565971C (en) Fuel cell separator plate assembly
JPS6348766A (en) Composite electrode substrate having different rib height and its manufacture
CN1553532A (en) High-efficient fuel battery guide bipolar plates and producing method thereof
JPS6119069A (en) Electrode substrate for fuel cell and its manufacture
JPH076773A (en) Compound electrode base board having different rib height and manufacture thereof
JP2008159587A5 (en)
JP2001307748A (en) Solid polymer fuel battery
JPS6093759A (en) Gas diffusion electrode substrate of fuel cell