[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61198746A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61198746A
JPS61198746A JP3926785A JP3926785A JPS61198746A JP S61198746 A JPS61198746 A JP S61198746A JP 3926785 A JP3926785 A JP 3926785A JP 3926785 A JP3926785 A JP 3926785A JP S61198746 A JPS61198746 A JP S61198746A
Authority
JP
Japan
Prior art keywords
region
substrate
element isolating
electron beams
isolating region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3926785A
Other languages
Japanese (ja)
Inventor
Kazuo Tsuru
津留 一夫
Yutaka Etsuno
越野 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3926785A priority Critical patent/JPS61198746A/en
Publication of JPS61198746A publication Critical patent/JPS61198746A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form a minute element isolating region in a short time, by forming may elements on the surface of a semiconductor substrate, projecting electron beams on the substrate region between the elements, and forming the highly resistive element isolating region. CONSTITUTION:On the surface of a P-type Si substrate 1, gate oxide films 2, gate electrodes 3 and N<+> type source and drain regions 5 are formed, and MOS transistor Trs are formed. Then, interlayer insulating films 6 and wirings 7 are formed. Thereafter, electron beams are selectively projected on the substrate 1 between the MOS Trs under the condition of a dose amount of 1X10<15>cm<-2> or more. As a result, in the region, where the electron beams are projected, a highly resistive element isolating region 8 is formed. In this method, a minute element isolating region, having the size approximately close to the size of a mask can be formed. Since the resistance value does not become so large in the dose amount of the electron beams of less than 1X10<15>cm<-2>, the region cannot be utilized as the element isolating region.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特に素子分離技
術の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to improvements in element isolation technology.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体装置の素子分離技術としては、例えばPN
接合分離技術が知られている。しかし、このPN接合分
離技術では不純物拡散を用いるため、素子分離領域の幅
が大きくなるという問題がある。
Conventionally, as an element isolation technology for semiconductor devices, for example, PN
Junction separation techniques are known. However, since this PN junction isolation technique uses impurity diffusion, there is a problem that the width of the element isolation region increases.

また、選択酸化技術も知られているが、いわゆるバーズ
ビークの発生等によりやはりr!111Iな素子分離領
域を形成するのが困難である。
In addition, selective oxidation technology is also known, but due to the occurrence of so-called bird's beak, etc. It is difficult to form a 111I element isolation region.

更に、近年は半導体基板に溝を形成し、この溝内に絶縁
物を埋設するトレンチアイソレーションも行なわれるよ
うになっている。この方法では微細な素子分離領域を形
成することができるが、溝の加工及び溝内への絶縁物等
の埋設に長時間を要するという問題がある。
Furthermore, in recent years, trench isolation, in which a trench is formed in a semiconductor substrate and an insulator is buried in the trench, has also been practiced. Although this method allows the formation of fine element isolation regions, there is a problem in that it takes a long time to process the grooves and bury the insulator or the like in the grooves.

(発明の目的) 本発明は上記事情に鑑みてなされたものであり、微細な
素子分離領域を簡単に形成できる半導体装置の製造方法
を提供しようとするものである。
(Object of the Invention) The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a semiconductor device that can easily form a fine element isolation region.

(発明の概要) 本発明の半導体装置の製造方法は、半導体基板の表面に
多数の素子を形成した後、素子間の基板領域に選択的に
電子線を1X10”cm’以上のドーズ量で照射し、高
抵抗の素子分離領域を形成することを特徴とするもので
ある。
(Summary of the Invention) The method for manufacturing a semiconductor device of the present invention includes forming a large number of elements on the surface of a semiconductor substrate, and then selectively irradiating the substrate region between the elements with an electron beam at a dose of 1×10 cm or more. This structure is characterized by forming a high-resistance element isolation region.

すなわち、素子間の基板領域に電子線を照射すると、そ
の領域の基板シリコンは結晶構造が乱れる等して絶縁物
に近い高抵抗の領域となるため、その領域を素子分離領
域として利用することができる。本発明において、電子
線のドーズ量を1×1015IJ4以上としたのは、次
のような理由による。つまり、シリコンに照射される電
子線のドーズ量と電子線が照射された領域の抵抗値とは
第2図に示すような関係を有し、1XlX101S ゛
2未満のドーズ量では抵抗値がそれほど大きくならない
ので、電子線を照射してもその領域を素子分離領域とし
て利用することができないためである。ただし、電子線
が照射されて高抵抗となった領域は熱工程を受けると結
晶構造の乱れ等が徐々に緩和されるので、電子線の照射
による素子弁IaI!領域の形成工程は素子形成工程の
後に行なう必要がある。このような方法によれば、微細
な素子分離領域を短時間で形成することができる。
In other words, when an electron beam is irradiated onto a substrate region between elements, the crystal structure of the silicon substrate in that region is disturbed, resulting in a high resistance region similar to that of an insulator, which makes it impossible to use that region as an element isolation region. can. In the present invention, the reason why the dose of the electron beam is set to 1×10 15 IJ4 or more is as follows. In other words, the dose of the electron beam irradiated onto silicon and the resistance value of the area irradiated with the electron beam have a relationship as shown in Figure 2, and the resistance value is not so large when the dose is less than 1X101S゛2. This is because the region cannot be used as an element isolation region even if it is irradiated with an electron beam. However, when the region that has become highly resistive due to electron beam irradiation is subjected to a thermal process, the disorder of the crystal structure is gradually alleviated. The region forming process needs to be performed after the element forming process. According to such a method, a fine element isolation region can be formed in a short time.

〔発明の実施例〕 以下、本発明をMOS型半導体装置の製造に適用した実
施例を第1図(a)〜(C)を参照して説明する。
[Embodiments of the Invention] Hereinafter, embodiments in which the present invention is applied to manufacturing a MOS type semiconductor device will be described with reference to FIGS. 1(a) to 1(C).

まず、P型シリコン基板1表面にゲート酸化膜2を形成
した後、全面に不純物ドープ多結晶シリコン膜を堆積し
、パターニングしてグー1〜電極3を形成する(第1図
(a)図示)。次に、素子分離領域を覆う図示しないレ
ジストパターンを形成した後、このレジストパターン及
びゲート電極3をマスクとして例えばヒ素をイオン注入
し、アニールを行なうことによりN+型ソース、ドレイ
ン領域4.5を形成してMOSトランジスタを形成する
(同図(b)図示)。次いで、前記レジストパターンを
除去した後、層間絶縁膜6を形成し、コンタクトホール
を開孔した後、全面に例えばへ2膜を蒸着し、バターニ
ングして配線7を形成する。その後、MOS l−ラン
ジスタ間の基板1に選択的に電子線を加速エネルギー2
MeV以上、ドーズ11X1015c!R4以上の条件
で照射する。
First, a gate oxide film 2 is formed on the surface of a P-type silicon substrate 1, and then an impurity-doped polycrystalline silicon film is deposited on the entire surface and patterned to form electrodes 1 to 3 (as shown in FIG. 1(a)). . Next, after forming a resist pattern (not shown) covering the element isolation region, ions of, for example, arsenic are implanted using this resist pattern and the gate electrode 3 as masks, and annealing is performed to form N+ type source and drain regions 4.5. Then, a MOS transistor is formed (as shown in FIG. 3(b)). Next, after removing the resist pattern, an interlayer insulating film 6 is formed, a contact hole is formed, and then, for example, a 2-layer film is deposited on the entire surface and patterned to form a wiring 7. After that, an electron beam is selectively applied to the substrate 1 between the MOS transistors with an acceleration energy of 2
More than MeV, dose 11X1015c! Irradiate under conditions of R4 or higher.

この結果、電子線が照射された領域にはシート抵抗10
000Ω/口以上の高抵抗の素子分離領域8が形成され
る(同図(C)図示)。
As a result, the area irradiated with the electron beam has a sheet resistance of 10
An element isolation region 8 having a high resistance of 000 Ω/region or more is formed (as shown in FIG. 3(C)).

このような方法によれば、電子線を収束させる方法ある
いは電子線の回折による広がりの程度にもよるが、はぼ
マスクの寸法に近い寸法の極めて微細な素子分離領域8
を形成することができる。
According to such a method, depending on the method of converging the electron beam or the degree of spreading due to diffraction of the electron beam, extremely fine element isolation regions 8 with dimensions close to those of the mask can be formed.
can be formed.

また、素子分離領域8を形成するのに要する時間も使用
する装置によるが、パンデグラーフ型では約10分の照
射時間でドーズ量を 1×1015CI114程度とすることができ、製造時
間を極めて短時間とすることができる。
Additionally, the time required to form the element isolation region 8 also depends on the equipment used, but with the Pandegraaf type, the dose amount can be reduced to approximately 1×1015 CI114 with an irradiation time of about 10 minutes, which makes the manufacturing time extremely short. It can be done.

なお、上記実施例では本発明方法をMOS型半導体装置
の製造に適用した場合について述べたが、バイポーラ型
半導体装置等信の半導体装置の製造にも同様に適用でき
ることは勿論である。
In the above embodiments, the method of the present invention is applied to the manufacture of MOS type semiconductor devices, but it goes without saying that it can be similarly applied to the manufacture of MOS type semiconductor devices such as bipolar type semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明方法によれば、微細な素子分離
領域を短時間で形成することができ、ひいては半導体装
置の微細化を達成できる等顕著な効果を奏するものであ
る。
As detailed above, according to the method of the present invention, it is possible to form a fine element isolation region in a short time, and as a result, it is possible to achieve remarkable effects such as miniaturization of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の実施例におけるMOS
型半導体装置の製造方法を示す断面図、第2図は電子線
のドーズ量と電子線が照射された領域の抵抗値との関係
を示す線図である。 1・・・P型シリコン基板、2・・・ゲート酸化膜、3
・・・ゲート電極、4.5・・・N+型ソース、ドレイ
ン領域、6・・・層間絶縁膜、7・・・配線、8・・・
素子分離領域。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 F゛−ズ゛童(Cm−2)
FIGS. 1(a) to (C) show MOS in the embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the dose of the electron beam and the resistance value of the region irradiated with the electron beam. 1...P-type silicon substrate, 2...gate oxide film, 3
... Gate electrode, 4.5... N+ type source, drain region, 6... Interlayer insulating film, 7... Wiring, 8...
Element isolation area. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 F゛-Z゛do (Cm-2)

Claims (1)

【特許請求の範囲】 半導体基板の表面に多数の素子を形成した後、素子間の
基板領域に選択的に電子線を 1×10^1^5cm^−^2(以上のドーズ量で照射
し、高抵抗の素子分離領域を形成することを特徴とする
半導体装置の製造方法。
[Claims] After forming a large number of elements on the surface of a semiconductor substrate, an electron beam is selectively irradiated onto the substrate region between the elements at a dose of 1×10^1^5 cm^-^2 (or more). A method of manufacturing a semiconductor device, comprising forming a high-resistance element isolation region.
JP3926785A 1985-02-28 1985-02-28 Manufacture of semiconductor device Pending JPS61198746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3926785A JPS61198746A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3926785A JPS61198746A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61198746A true JPS61198746A (en) 1986-09-03

Family

ID=12548364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3926785A Pending JPS61198746A (en) 1985-02-28 1985-02-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61198746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021190667A (en) * 2020-06-05 2021-12-13 信越半導体株式会社 Manufacturing method for high-frequency semiconductor device, and high-frequency semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021190667A (en) * 2020-06-05 2021-12-13 信越半導体株式会社 Manufacturing method for high-frequency semiconductor device, and high-frequency semiconductor device

Similar Documents

Publication Publication Date Title
DE69026503T2 (en) Process for the production of components with self-aligned field-effect transistors made of polisilicon and the structure resulting therefrom
US4268321A (en) Method of fabricating a semiconductor device having channel stoppers
JPS5961185A (en) Manufacture of metal insulator semiconductor field-effect semiconductor device
JPH0481866B2 (en)
TW461092B (en) Masked ROM and manufacturing process therefor
JPS61198746A (en) Manufacture of semiconductor device
JPH05283687A (en) Production of semiconductor element
JPS582067A (en) Manufacture of semiconductor device
JPS62265765A (en) Semiconductor device and manufacture thereof
US4814290A (en) Method for providing increased dopant concentration in selected regions of semiconductor devices
JPH0316150A (en) Manufacture of semiconductor element
JPS6074663A (en) Manufacture of complementary type semiconductor device
JP2606444B2 (en) Method for manufacturing semiconductor device
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPH0616559B2 (en) Method for manufacturing semiconductor device
JP3253712B2 (en) Method for manufacturing semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JPH03209816A (en) Manufacture of semiconductor device
JP2774535B2 (en) Method for manufacturing semiconductor device
JPS6251248A (en) Manufacture of semiconductor device
JPH0214561A (en) Manufacture of semiconductor device
JPH03215971A (en) Manufacture of complementary semiconductor device
JPH04283966A (en) Manufacture of mos semiconductor device
JPH10163490A (en) Manufacture of transistor
JPH01241861A (en) Manufacture of semiconductor device