[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6119730B2 - - Google Patents

Info

Publication number
JPS6119730B2
JPS6119730B2 JP53040203A JP4020378A JPS6119730B2 JP S6119730 B2 JPS6119730 B2 JP S6119730B2 JP 53040203 A JP53040203 A JP 53040203A JP 4020378 A JP4020378 A JP 4020378A JP S6119730 B2 JPS6119730 B2 JP S6119730B2
Authority
JP
Japan
Prior art keywords
yarn
component
filament
polyester
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53040203A
Other languages
Japanese (ja)
Other versions
JPS551303A (en
Inventor
Shiro Kumakawa
Osamu Wada
Yoshuki Sasaki
Shunichi Takeda
Akio Kimura
Toshimasa Shimizu
Hiroyuki Nagai
Takumi Shimazu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4020378A priority Critical patent/JPS551303A/en
Priority to CA324,143A priority patent/CA1112853A/en
Priority to GB7910465A priority patent/GB2019305B/en
Priority to US06/023,918 priority patent/US4209559A/en
Priority to IT48493/79A priority patent/IT1115061B/en
Priority to DE19792912097 priority patent/DE2912097A1/en
Priority to FR7907691A priority patent/FR2422743A1/en
Publication of JPS551303A publication Critical patent/JPS551303A/en
Publication of JPS6119730B2 publication Critical patent/JPS6119730B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシルキー織物用原糸、更に詳しくは、
織物としてからリラツクス処理することによりシ
ルキー効果を現出する。ポリエステル系混繊糸に
関する。 従来、合成繊維、特にポリエステル系フイラメ
ント糸条をして、絹の風合に近づけるべく種々の
試みが為されている。例えば原糸面からは、断面
の異形化により嵩性を与える方法、原糸を構成す
る単繊維の細デニール化或いは低ヤング率化等に
より曲げ硬さを低減させる方法或いは沸水収縮率
を異にするフイラメント糸より成る混繊糸を織物
としてから沸水処理して織物に膨みを持たせる方
法が提案されている。特に異収縮性混繊糸より成
る織物は最近富に脚光を浴びており、その理由の
一つとして収縮差による独特の膨み、表面タツ
チ、好ましいドレープ性等の要求を満足する可能
性を秘めていることが挙げられる。 本発明者等もこの混繊糸に注目し、本絹の風
合、感触、機能性等の殆どを満足させるような素
材、具体的には本絹独得の膨み、表面タツチ(ひ
つかかり、絹鳴り、緩か味)、落ち着いた優雅な
光沢、十分なドレープ性及び反撥性を与える素材
について検討したが混繊糸を使用した場合、上述
の特性を同時に満足させることは極めて困難であ
ることを知つた。というのも混繊糸の場合、飽く
までフイラメント間の収縮差に基く膨みを利用す
るものであるが、この膨み現象が糸条では発現し
ても、織物上即ち、織組織によつて拘束状態にあ
る混繊糸では収縮自体、起り難く、ましてや絹の
特性を得ることが至難の枝であることが判明した
のである。唯、混繊糸自体、沸水収縮率を異にす
るフイラメント糸を高速加工の可能なインターレ
ース処理に対するだけの簡便な手段によつて得る
ことができ、素材製造の面での有位性は否定し難
いものがある。 それ故、本発明の目的は上述の混繊糸独得の特
性を織物上でも充分に発現し得る、素材を提供す
ることにある。 更に、本発明の他の目的は全体的に本絹同様の
風合、感触、機能性、特性を与え得る混繊糸素材
を提供することにある。 本発明者等は上記の目的を達成せんとして種々
検討した結果、沸水収縮率の異るフイラメントよ
りなる混繊糸自身或る拘束力を越えた範囲では例
え沸水処理しても沸水収縮差ひいては膨みを惹起
し得ないが、この沸水収縮差に関係して各フイラ
メントの荷重下の収縮応力が或る範囲を満足する
とき、混繊糸の潜在特性は織物に如何なく反映さ
れることを究明し、本発明に到達したのである。 かくして、本発明によれば トータルデニールが少くとも30deのポリエス
テル系混繊糸であつて、該混繊糸は少くとも下記
成分のフイラメント糸を少くとも50重量%含み、
且つ(A),(B)成分が重量比で20〜80:80:20の割合
で混繊されていることを特徴とするポリエステル
系混繊糸 (A) 成分;単繊維デニールが1de未満でε0.2が−
0.025≦ε0.2<0であるポリエステル系マルチ
フイラメント糸 (B) 成分;単繊維デニールが1〜3deでε0.2がε
0.2<−0.025であるポリエステル系マルチフイ
ラメント糸 〔但しε0.2は、フイラメントの構造一体性パ
ラミーターを意味し、下記式により定義される。 ε0.2=l−l/l l0は試料長10cmのフイラメント糸の一端に0.2
g/deの荷重を吊した時の長さ、l1は前記荷重下
のフイラメント糸を沸水中に浸漬し2分間処理し
た後、沸水中から取り出して25℃に冷却した時の
フイラメント糸の長さ(荷重はそのまま)であ
る。〕 が提供される。 更に、これについて述べると、混繊糸を構成す
る2種以上のフイラメントとして、その荷重下の
収縮応力特性として構造一体性パラメーターε0.
に注目し、ε0.2<−0.025のものは収縮成分とし
て特に好ましく、且つこの単繊維デニールを1〜
3deとすることによつて織物に腰、反撥性を与え
ることができ、一方、前記収縮成分よりε0.2
大きくしかも単繊維デニールが、1de未満のもの
は表面タツチ、膨みに富んだ製品を与えるように
したものである。つまりε0.2<−0.025のフイ
ラメント糸は織物組織内においても尚且つ充分な
収縮を起し他方、0>ε≧−0.025のフイラメン
ト糸は収縮応力が相対的に低いので浮糸的成分を
構成するのである。尚(A)成分としてε0.2≧0の
ものを用いた場合、収縮応力が極めて少く荷重に
より伸長するので得られる織物は膨みに富んだも
のであるものの表面タツチはスポンジー調のタツ
チとなり好ましくない。 本発明において、ポリエステルとはエチレンテ
レフタレート単位を主たる繰返し単位とするポリ
エステルを意味し具体的にはポリエチレンテレフ
タレートを主たる対象とするが、その性質を本質
的に変えない範囲で第3成分を共重合乃至ブレン
ドしたものであつてもよい。かかるポリエステル
の重合度はその用途、紡出、太さに応じて適宜選
定すべきであるがポリエチレンテレフタレートの
場合35℃のo−クロロフエノール溶液で測定した
極限粘度ηが0.40〜0.70程度のものが有利に使用
される。 本発明で沸水処理後、浮糸を構成する(A)成分は
単繊維deが1de未満、ε0.2が0>ε0.2≧−0.025
を満足するフイラメント糸で、特殊な紡糸方法、
例えば本出願人の先願に係る特願昭52−94095号
明細書(特公昭58−37408号;特許第1241147号)
に記載した方法によつて得ることができる。その
概略を示すと、前述のポリエステル系を紡糸ドラ
フト200〜700、好ましくは300〜500、紡糸速度
3000〜5000、好ましくは3300〜4500m/minで溶
融紡糸して、単繊維デニールが1.0de未満のフイ
ラメント糸を得、これを定長下又は20%以下の伸
長を与えつつ100℃以上融点以下好ましくは140℃
〜240℃の温度で0.01〜0.05秒程度熱処理してか
ら巻取ればよい。この場合、紡糸口金の孔径は
0.1〜0.2mm、ポリマーの溶融温度は290℃〜305℃
が適当であり、紡出糸は横吹きの冷却風により冷
却固化するのが好ましい。又、20%以下の緊張熱
処理に当つては工程安定性の面から逆テーパーロ
ール乃至段付ロールを採用するのが好ましい。こ
のようなフイラメントは本絹と同じ程度の単繊維
デニール即ち1de未満好ましくは0.6de以下とする
ことにより柔軟性と反撥性を兼備し、しなやかな
風合を与える。 このようにして得られるフイラメント糸は結晶
性であるがその付加的特長として非晶部の配向度
f(a)が30〜70%の範囲、更には非晶部の密度が
1.335g/cm3以上の範囲にあることが挙げられ
る。特に前者は従来の結晶性ポリエステルフイラ
メント糸には全く見られない構造であつて、これ
は、織物でのアルカリ処理(これはシルキー効果
を増長する手段としてよく知られている)の場合
極細の単繊維と相俟つて相乗的にアルカリにより
アタツクされることを意味す。また後者の密度に
ついてはフイラメント自身の寸法安定性が実用上
満足していることを示す。 一方、高収縮成分たる(B)成分については、ポリ
エステル系の延伸糸、紡糸速度3000m/min以上
で紡出した部分配向糸を50%以上緊張して200℃
前後で熱処理したフイラメント糸等が使用され
る。ここで大事なことはこのフイラメント糸は後
で収縮して芯成分となり、張り腰、反撥性を生み
だすものであるので、(A)成分より単繊維デニール
が大きいことが必要であり、通常1de〜3deの範
囲にあればよい。そして、これら(A)及び(B)成分間
ではε0.2の差が少くとも0.005あれば充分であ
り、これらは互いに異形、異色、異光沢となる如
く適宜組合せて混繊工程に付することができる。
又、(A)成分と(B)成分とは重量比で20〜80:80:20
の範囲にあることが必要でこの範囲外では柔軟
性、膨み、更には反撥性等を同時に満足すること
はできない。 この混繊工程は(A),(B)夫々の成分を予め静電気
乃至流体で開繊してから両者を合糸する方法、或
いは流体攬乱域へ引揃え状態で導入して混繊、交
絡させる方法等、これまで知られている如何なる
混繊手段も採用できる。唯、生産性、糸の取扱い
性(製織性)等を考慮するとインターレース処理
が最も好ましい。この技術については既に特公昭
36−12230号公報、特公昭37−1175号公報に記載
されているとおり(A),(B)成分を引揃えてネツトオ
ーバーフイード量が実質零の状態で、乱流ノズル
に供給して混繊すればよい。この場合、混繊の目
安は所謂インターレース度によつて決められ、通
常5ケ/m〜80ケ/m程度のインターレース度を
得るようにすればよい。 かくして得られる混繊糸のトータルデニールは
少くとも30deであることが必要で、これ未満で
は織物を構成する糸条として太さ不足あるいは混
繊糸に必要な充分なフイラメント数が確保できな
くなる。尚、混繊糸製造の時点で(A),(B)成分と同
じか又はそれ以下の重量割合で他のフイラメント
糸特にε0.2が正の値を示す単糸デニールが3〜
5deのフイラメント糸を併用させてもよい。この
場合の効果としては、織物をリラツクス収縮処理
すると、組織内で収縮と伸長との複雑な作用によ
り、3層構造が形成され、表面層による膨み、表
面タツチ、内層に至る程腰、反撥に対する効果が
発揮されまさに本絹同等のものが得られる。 次に上述の混繊糸は通常収縮処理することなく
織(編)成工程に付されるが、この場合、目的と
する織物に応じて無撚又は有撚(追撚)使いにす
るか決めればよく、更に糸使いの面でも無撚及
び/又は追撚状態で軽、緯に種々組合せて用いる
ことができる。 かかる織物はその後の精練仕上げ工程で熱水沸
水(これらは精練浴、染液の形で適用されること
もある)に浸漬しながら収縮処理を施すとフイラ
メント間の収縮応力差に基き、シルクライフの膨
み、表面タツチ効果が得られる。この場合、併せ
てアルカリ処理(減量)を施すことも絹独得のド
レープ性並びに弾性の発現にとつて有利である
が、一般には精練後の織物を充分収縮させクリン
プ率を増加させた状態でプリセツトを行つてか
ら、アルカリ処理を施せば大なる繊維間空隙が得
られひいては軽糸と緯糸間の接圧を効果的に減じ
ることができる。 以上の如く、本発明によれば荷重下においても
充分に潜在的収縮差を現出する混繊糸を提供する
ことが可能であるが、これにより、従来の絹様と
称される合繊繊維では、同時に満足し得なかつた
諸特性を共存可能ならしめたのである。 実施例 1 〔I〕 混繊糸の製造 (i) 糸使い
The present invention relates to raw yarn for silky textiles, more specifically,
A silky effect is created by relaxing treatment after fabrication. Regarding polyester blend yarn. Conventionally, various attempts have been made to make synthetic fibers, particularly polyester filament yarns, to have a texture similar to that of silk. For example, from the yarn perspective, there are methods to give bulk by making the cross section irregular, methods to reduce bending hardness by making the single fibers that make up the yarn finer in denier or lower Young's modulus, or methods to reduce boiling water shrinkage rate. A method has been proposed in which a mixed yarn made of filament yarns is made into a woven fabric and then treated with boiling water to give the woven fabric swell. In particular, textiles made of mixed yarns with different shrinkage properties have been attracting a lot of attention recently, and one of the reasons for this is that they have the potential to satisfy requirements such as unique bulges due to differential shrinkage, surface touch, and favorable drapability. One example is that The present inventors have also focused on this blended yarn, and have developed a material that satisfies most of the texture, feel, functionality, etc. of real silk. We considered materials that would provide silky texture, loose taste), a calm and elegant luster, sufficient drapability, and repellency, but it was extremely difficult to satisfy all of the above characteristics at the same time when using mixed fiber yarns. I learned. This is because, in the case of mixed fiber yarns, the swell caused by the difference in shrinkage between filaments is utilized, but even if this swell phenomenon occurs in the yarn, it is restricted on the fabric, that is, by the woven structure. It was found that shrinkage itself is difficult to occur in mixed fiber yarns in this state, and it is even more difficult to obtain the characteristics of silk. However, the mixed fiber yarn itself can be obtained by simple means such as filament yarns with different boiling water shrinkage rates for interlace processing that can be processed at high speed, and its superiority in terms of material manufacturing cannot be denied. There are some things that are difficult. Therefore, an object of the present invention is to provide a material that can sufficiently exhibit the characteristics unique to the above-mentioned mixed fiber yarn even on a woven fabric. Furthermore, another object of the present invention is to provide a mixed fiber yarn material that can provide overall feel, feel, functionality, and properties similar to real silk. As a result of various studies to achieve the above object, the inventors of the present invention found that even if treated with boiling water, the difference in boiling water shrinkage and therefore expansion will occur even if the mixed fiber yarn itself exceeds a certain constraining force. However, when the shrinkage stress under load of each filament satisfies a certain range in relation to this difference in boiling water shrinkage, the latent properties of the mixed fiber yarn are reflected in the fabric in some way. However, the present invention was achieved. Thus, according to the present invention, there is provided a polyester blend yarn having a total denier of at least 30 de, the blend yarn containing at least 50% by weight of filament yarn having the following components:
A polyester blend yarn characterized in that components (A) and (B) are mixed in a weight ratio of 20 to 80:80:20. (A) component; single fiber denier is less than 1 de. ε 0 . 2 is −
Polyester multifilament yarn (B) with 0.025≦ε 0 . 2 < 0 Component; Single fiber denier is 1 to 3 de and ε 0 . 2 is ε
0.2 < -0.025 polyester multifilament yarn [where ε 0.2 means the structural integrity parameter of the filament and is defined by the following formula. ε 0 . 2 = l 1 − l 0 / l 1 l 0 is 0.2 at one end of the filament thread with a sample length of 10 cm.
The length when a load of g/de is suspended, l 1 is the length of the filament yarn when the filament yarn under the load is immersed in boiling water and treated for 2 minutes, then taken out from the boiling water and cooled to 25°C. (the load remains the same). ] will be provided. Furthermore, to discuss this, the structural integrity parameter ε 0 is the shrinkage stress characteristic of two or more types of filaments that make up a mixed yarn under load.
2 , those with ε 0 . 2 <-0.025 are particularly preferable as shrinkage components, and the single fiber denier is 1 to 1.
By setting it to 3de, it is possible to give stiffness and resilience to the fabric.On the other hand, when ε 0.2 is larger than the shrinkage component and the single fiber denier is less than 1de, the fabric has a rich surface touch and bulge . It is designed to give products. In other words, filament yarns with ε 0.2 < -0.025 still cause sufficient shrinkage within the fabric structure, while filament yarns with 0 > ε ≧ -0.025 have relatively low shrinkage stress, so they constitute a float-like component. It is. When using component (A) with ε 0 . 2 ≧0, the shrinkage stress is extremely small and the fabric stretches under load, so although the fabric obtained is full of bulge, the surface touch becomes spongy. Undesirable. In the present invention, polyester means polyester having ethylene terephthalate units as the main repeating unit, and specifically, polyethylene terephthalate is the main target, but a third component may be copolymerized or It may be a blend. The degree of polymerization of such polyester should be appropriately selected depending on its use, spinning, and thickness, but in the case of polyethylene terephthalate, the intrinsic viscosity η measured in an o-chlorophenol solution at 35°C is about 0.40 to 0.70. used to advantage. In the present invention, after boiling water treatment, component (A) constituting the floating yarn has a single fiber de of less than 1 de and ε 0.2 of 0>ε 0.2 ≧−0.025 .
A special spinning method using filament yarn that satisfies
For example, the specification of Japanese Patent Application No. 52-94095 (Japanese Patent Publication No. 58-37408; Patent No. 1241147) related to the applicant's earlier application.
It can be obtained by the method described in . Briefly, the above-mentioned polyester system is spun at a spinning draft of 200 to 700, preferably 300 to 500, and a spinning speed of 300 to 500.
Melt-spun at 3000 to 5000 m/min, preferably 3300 to 4500 m/min to obtain a filament yarn with a single fiber denier of less than 1.0 de, which is preferably spun at 100°C or above and below the melting point while giving a constant length or 20% or less elongation. is 140℃
It is sufficient to perform a heat treatment at a temperature of ~240°C for about 0.01 to 0.05 seconds and then wind it up. In this case, the pore size of the spinneret is
0.1~0.2mm, polymer melting temperature is 290℃~305℃
is suitable, and the spun yarn is preferably cooled and solidified by side-blown cooling air. In addition, in the case of stress heat treatment of 20% or less, it is preferable to use an inverted tapered roll or a stepped roll from the viewpoint of process stability. Such filaments have a single fiber denier similar to that of real silk, that is, less than 1 de, preferably 0.6 de or less, so that they have both flexibility and resilience, and give a supple texture. The filament yarn obtained in this way is crystalline, but its additional feature is that the degree of orientation f(a) of the amorphous part is in the range of 30 to 70%, and the density of the amorphous part is in the range of 30 to 70%.
It is mentioned that it is in the range of 1.335 g/cm 3 or more. In particular, the former has a structure that is completely absent from conventional crystalline polyester filament yarns, and this is due to the fact that when fabrics are treated with alkali (which is a well-known means of enhancing the silky effect), ultra-fine monomers are formed. This means that it is attacked synergistically by alkali in combination with fiber. The latter density also indicates that the dimensional stability of the filament itself is satisfactory for practical purposes. On the other hand, for component (B), which is a high shrinkage component, polyester-based drawn yarn, partially oriented yarn spun at a spinning speed of 3000 m/min or more, is heated to 200°C under tension of 50% or more.
Filament threads, etc. that have been heat-treated at the front and back are used. The important thing here is that this filament yarn will later shrink and become a core component, creating tension and resilience, so it is necessary that the single fiber denier is larger than that of component (A), and usually 1 de~ It should be in the 3de range. It is sufficient that the difference in ε 0.2 between these components (A) and (B) is at least 0.005, and these components are combined as appropriate so that they have different shapes, different colors, and different luster, and are subjected to the blending process. be able to.
In addition, the weight ratio of component (A) and component (B) is 20 to 80:80:20.
Outside this range, flexibility, swelling, repulsion, etc. cannot be satisfied at the same time. This fiber blending process can be carried out by first opening each component (A) and (B) with static electricity or fluid and then combining the two, or by introducing the components in an aligned state into a fluid disturbance area to mix and entangle the fibers. Any known fiber mixing method can be used, such as a method of mixing fibers. However, in consideration of productivity, thread handling (weavability), etc., interlace treatment is most preferable. This technology has already been developed by Tokko Akira.
As described in Japanese Patent Publication No. 36-12230 and Japanese Patent Publication No. 37-1175, components (A) and (B) are arranged and mixed by feeding them to a turbulent nozzle with the net overfeed amount being substantially zero. All you have to do is thread it. In this case, the standard for mixing fibers is determined by the so-called degree of interlacing, and it is usually sufficient to obtain an interlacing degree of about 5 strands/m to 80 strands/m. The total denier of the blended yarn thus obtained must be at least 30 de; if it is less than this, the threads constituting the fabric will be insufficiently thick or the blended yarn will not have a sufficient number of filaments. In addition, at the time of manufacturing the mixed fiber yarn, other filament yarns with a weight ratio equal to or less than that of components (A) and (B), especially single yarns with a positive value of ε 0.2 and a denier of 3 to 3.
5de filament yarn may also be used. The effect in this case is that when the fabric is subjected to relaxation contraction treatment, a three-layer structure is formed due to the complex action of contraction and expansion within the tissue. It has the same effect as real silk. Next, the above-mentioned mixed fiber yarn is usually subjected to a weaving (knitting) process without being subjected to shrinkage treatment, but in this case, it is decided whether to use untwisted or twisted (additional twist) depending on the intended fabric. Furthermore, in terms of yarn use, it can be used in various combinations in non-twisted and/or additionally twisted states, light and weft. In the subsequent scouring and finishing process, such fabrics undergo shrinkage treatment while immersed in hot boiling water (these are sometimes applied in the form of scouring baths or dye liquors), and the silk life decreases based on the shrinkage stress difference between the filaments. This creates a bulge and surface touch effect. In this case, it is also advantageous to perform alkali treatment (reducing weight) to develop silk's unique drapability and elasticity, but in general, presetting is performed after the scouring fabric has been sufficiently shrunk to increase the crimp rate. If this is followed by alkali treatment, large interfiber voids can be obtained and the contact pressure between the light yarn and the weft can be effectively reduced. As described above, according to the present invention, it is possible to provide a mixed fiber yarn that exhibits a sufficient potential shrinkage difference even under load. At the same time, various characteristics that could not be satisfied were made possible to coexist. Example 1 [I] Production of mixed fiber yarn (i) Yarn usage

【表】 尚、(A)成分のフイラメント糸は、極限粘度が
0.61のチツプを295℃で溶融し、孔径0.15mm、
孔数70の口金よりドラフト420、紡糸(引取)
速度3800m/minで引取り、捲取前に逆テーパ
ーローラーを介して緊張率2%、ローラー温度
170℃、処理時間0.03secで緊張熱処理して得
た。 又、(B)成分は通常の延伸糸の製法に準じて(A)
成分の製造の際に用いたポリエステルチツプを
溶融後1500m/minの紡糸速度で一旦、未延伸
糸として捲取つた後、延伸機で延伸温度85℃、
延伸倍率6.5で熱延伸して得た。 (ii) 混繊糸の製造 (A),(B)成分を特公昭37−1175号公報第3図に
示されたインターレースノズルを用いて(圧空
圧3.1Kg/Gオーバーフイード率0.3%)インタ
ーレース度60ケ/mの混繊糸を得た。 (iii) 織物の製造(平組織のジヨーゼツト) (ii)項で得た混繊糸を経、緯に用い、経密度69
本/cm、緯密度38本/cmで織成後ロータリーワ
ツシヤーを利用して97℃の熱水中で12分間収縮
処理を行う。 次いで、収縮処理後の織物を経方向に3%オー
バーフイードしつつプリセツトした後12%のアル
カリ減量(98℃、アルカリ濃度18g/lの浴で25
分間処理)を行つた。この織物は風合、表面タツ
チ、手触り、ドレープ性等の面で平均して絹のそ
れに酷似していた。 因みに上記織物の特性を、本絹ジヨーゼツト
或いは従来のポリエステルジヨーゼツトと比較
して第1表に示す。
[Table] In addition, the filament yarn of component (A) has an intrinsic viscosity of
0.61 chip is melted at 295℃, pore size is 0.15mm,
Draft 420 from a spindle with 70 holes, spinning (collection)
Taken off at a speed of 3800 m/min, tension rate 2% and roller temperature before winding up through a reverse tapered roller.
Obtained by tension heat treatment at 170°C for a treatment time of 0.03 seconds. In addition, component (B) is prepared as (A) according to the usual method for producing drawn yarn.
After melting the polyester chips used in the production of the components, they were once wound up as an undrawn yarn at a spinning speed of 1500 m/min, and then stretched using a drawing machine at a drawing temperature of 85°C.
It was obtained by hot stretching at a stretching ratio of 6.5. (ii) Production of mixed fiber yarn (A) and (B) components were interlaced using the interlace nozzle shown in Figure 3 of Japanese Patent Publication No. 37-1175 (air pressure 3.1 kg/G overfeed rate 0.3%). A blended yarn with a fiber density of 60 strands/m was obtained. (iii) Manufacture of woven fabric (flat weave jersey) Using the mixed yarn obtained in (ii) for the warp and weft, the warp density was 69.
After weaving at a fiber density of 38 fibers/cm and a weft density of 38 fibers/cm, shrinkage treatment is performed in hot water at 97°C for 12 minutes using a rotary washer. Next, the fabric after the shrinkage treatment was preset while overfeeding by 3% in the warp direction, and then the alkali loss was reduced by 12% (25
(1 minute treatment) was performed. On average, this fabric closely resembled that of silk in terms of texture, surface touch, touch, drapability, etc. Incidentally, the properties of the above-mentioned fabric are shown in Table 1 in comparison with that of this silk dioset and a conventional polyester dioset.

【表】【table】

【表】 実施例 2 実施例1で得た混繊糸及び実施例1で比較用と
して挙げた従来品の素材であるポリエステル混繊
糸の夫々(試料長20cm)に0.15g/deの荷重を吊
した状態で30分間沸水処理した後風乾して夫々の
嵩高度を測定した所、前者は6.8cm3/g、後者は
5.6cm3/gであつた。 尚、比較用のポリエステル混繊糸のε0.2、沸
水収縮率は以下の通りである。 ε0.2(沸水収縮率) 高収縮成分(30/12) −0.034(12%) 低収縮成分(30/24) −0.030(8%)。
[Table] Example 2 A load of 0.15 g/de was applied to each of the mixed fiber yarn obtained in Example 1 and the polyester mixed fiber yarn (sample length 20 cm), which is the material of the conventional product cited for comparison in Example 1. The bulk height of each was measured after being suspended in boiling water for 30 minutes and then air-dried.The former was 6.8cm 3 /g, and the latter was
It was 5.6 cm 3 /g. Incidentally, the ε 0.2 and boiling water shrinkage rate of the polyester blend yarn for comparison are as follows. ε 0.2 (Boiling water shrinkage rate) High shrinkage component (30/12) -0.034 (12%) Low shrinkage component (30/24) -0.030 (8%).

Claims (1)

【特許請求の範囲】 1 トータルデニールが少くとも30deのポリエ
ステル系混繊糸であつて、該混繊糸は少くとも下
記成分のフイラメント糸を少くとも50重量%含
み、且つ(A),(B)成分が重量比で20〜80:80〜20の
割合で混繊されていることを特徴とするポリエス
テル系混繊糸。 (A) 成分;単繊維デニールが1de未満でε0.2が−
0.025≦ε0.2<0であるポリエステル系マルチ
フイラメント糸 (B) 成分;単繊維デニールが1〜3deでε0.2がε
0.2<−0.025であるポリエステル系マルチフイ
ラメント糸 〔但しε0.2はフイラメントの構造一体性パラ
メーターを意味し、下記式により定義される。 ε0.2=l−l/l l0は試料長10cmのフイラメント糸の一端に0.2
g/deの荷重を吊した時の長さ、l1は前記荷重下
のフイラメント糸を沸水中に浸漬し2分間処理し
た後、沸水中から取り出して20℃に冷却した時の
フイラメント糸の長さ(荷重はそのまま)であ
る。〕 2 (A)成分の非晶部配向度f(a)が30〜70%である
特許請求の範囲第1項記載のポリエステル系混繊
糸 〔但しf(a)は次の定義に従う。 ここでΔnは偏光顕微鏡を用いてセナルモ法に
より測定した複屈折率、fcはX線回析法により求
めた結晶配向度(%)、χρは密度法により求め
た結晶化度(%)である。 3 (A)成分の非晶部密度ρaが1.335g/cm3以上
である特許請求の範囲第1項または第2項記載の
ポリエステル系混繊糸 〔但しρaは次の定義に従う。 ここでρはn−ヘプタン−四塩化炭素系の密度
勾配管中25℃で測定した密度、χXはX線解析に
よる常法で求めた結晶化度(%)である。〕 4 高々50重量%以下で、下記成分(C)が混繊され
てなる特許請求の範囲第1項記載のポリエステル
系混繊糸 (C) 成分;単繊維デニールが3〜5deで、ε0.2
0<ε≦0.03であるポリエステル系マルチフイ
ラメント糸
[Scope of Claims] 1. A polyester blend yarn having a total denier of at least 30 de, the blend yarn containing at least 50% by weight of filament yarn of the following components, and (A), (B ) components are mixed in a weight ratio of 20 to 80:80 to 20. (A) Component; Single fiber denier is less than 1 de and ε 0.2 is -
Polyester multifilament yarn (B) with 0.025≦ε 0 . 2 < 0 Component; Single fiber denier is 1 to 3 de and ε 0 . 2 is ε
0.2 < -0.025 polyester multifilament yarn [where ε 0.2 means the structural integrity parameter of the filament and is defined by the following formula. ε 0 . 2 = l 1 − l 0 / l 1 l 0 is 0.2 at one end of the filament thread with a sample length of 10 cm.
The length when a load of g/de is suspended, l 1 is the length of the filament yarn when the filament yarn under the load is immersed in boiling water and treated for 2 minutes, then taken out from the boiling water and cooled to 20°C. (the load remains the same). 2. The polyester blend yarn according to claim 1, wherein the degree of amorphous orientation f(a) of component (A) is 30 to 70% [However, f(a) follows the following definition. Here, Δn is the birefringence measured by the Senalmo method using a polarizing microscope, fc is the crystal orientation degree (%) determined by the X-ray diffraction method, and χρ is the crystallinity degree (%) determined by the density method. . 3. The polyester blend yarn according to claim 1 or 2, wherein the amorphous part density ρa of component (A) is 1.335 g/cm 3 or more [However, ρa follows the following definition. Here, ρ is the density measured at 25° C. in an n-heptane-carbon tetrachloride-based density gradient tube, and χ X is the crystallinity (%) determined by a conventional method using X-ray analysis. ] 4. Polyester blend yarn (C) according to claim 1, which is a blend of the following component (C) in an amount of at most 50% by weight or less . . Polyester multifilament yarn where 2 is 0<ε≦0.03
JP4020378A 1978-03-27 1978-04-07 Polyester blended yarn Granted JPS551303A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4020378A JPS551303A (en) 1978-04-07 1978-04-07 Polyester blended yarn
CA324,143A CA1112853A (en) 1978-03-27 1979-03-26 Linear crystalline terephthalate polyester yarn and textile goods made therefrom
GB7910465A GB2019305B (en) 1978-03-27 1979-03-26 Linear crystalline terephthalate polyester yarn and textile goods made therefrom
US06/023,918 US4209559A (en) 1978-03-27 1979-03-26 Linear crystalline terephthalate polyester yarn and textile goods made therefrom
IT48493/79A IT1115061B (en) 1978-03-27 1979-03-27 LINEAR CRYSTALLINE POLYTHEREPHTHALATE WIRE AND CLOTHES MADE WITH IT
DE19792912097 DE2912097A1 (en) 1978-03-27 1979-03-27 POLYESTER YARN AND TEXTILE PRODUCTS MADE FROM IT
FR7907691A FR2422743A1 (en) 1978-03-27 1979-03-27 LINEAR CRYSTALLINE POLYTEREPHTHALATE FIBER AND TEXTILES MADE FROM THIS FIBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4020378A JPS551303A (en) 1978-04-07 1978-04-07 Polyester blended yarn

Publications (2)

Publication Number Publication Date
JPS551303A JPS551303A (en) 1980-01-08
JPS6119730B2 true JPS6119730B2 (en) 1986-05-19

Family

ID=12574213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4020378A Granted JPS551303A (en) 1978-03-27 1978-04-07 Polyester blended yarn

Country Status (1)

Country Link
JP (1) JPS551303A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668122A (en) * 1979-11-02 1981-06-08 Toray Industries Polyester multifilament blended fiber yarn
JPS56148931A (en) * 1980-04-22 1981-11-18 Toray Industries Latent crimped yarn and method
JPS575940A (en) * 1980-06-12 1982-01-12 Nippon Ester Co Ltd Production of fabric
JPS5735030A (en) * 1980-08-07 1982-02-25 Teijin Ltd Production of "kasuri" like knitted fabric having silky feeling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505650A (en) * 1973-05-26 1975-01-21
JPS5063272A (en) * 1973-10-11 1975-05-29
JPS50111315A (en) * 1971-08-24 1975-09-02 Du Pont
JPS5266758A (en) * 1975-12-01 1977-06-02 Teijin Ltd Manufacture of combination yarn

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111315A (en) * 1971-08-24 1975-09-02 Du Pont
JPS505650A (en) * 1973-05-26 1975-01-21
JPS5063272A (en) * 1973-10-11 1975-05-29
JPS5266758A (en) * 1975-12-01 1977-06-02 Teijin Ltd Manufacture of combination yarn

Also Published As

Publication number Publication date
JPS551303A (en) 1980-01-08

Similar Documents

Publication Publication Date Title
CA2310686C (en) Soft stretch yarns and their method of production
JP3736298B2 (en) Blended yarn
KR100635857B1 (en) A air jet textured yarn with different shrinkage and excellent melange effect, and a process of preparing for the same
JPS6119730B2 (en)
JP4284758B2 (en) Method for producing polyester composite yarn
JP3304875B2 (en) Crimped yarn, woven or knitted fabric and method for producing the same
JP3418265B2 (en) Method for producing cation-mix-like fine fiber
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
KR100624147B1 (en) An air textured micro-yarn with excellent suede effect, and a process of preparing for the same
KR20020078701A (en) Polyester mixtured yarn and polyester fabrics
JP3531531B2 (en) Long / short fiber composite yarn and woven / knitted fabric using the yarn
JP3572696B2 (en) Polyester bulky fabric
JP3452154B2 (en) Method for producing polyester composite yarn and polyester woven / knitted fabric
JP3470618B2 (en) Polyester fabric
JP3541790B2 (en) Soft stretch yarn, manufacturing method and fabric
JP3484822B2 (en) Polyester multifilament composite yarn and method for producing the same
JPS6136102B2 (en)
JPS591810B2 (en) Manufacturing method for strong linen woven and knitted fabrics
JP3509995B2 (en) Polyester composite yarn with strong dyeability
JPH08113870A (en) Production of cloth made of combined polyester filament yarn having fluff
JP2005113369A (en) Method for producing soft stretch yarn
JP2001271239A (en) Combined filament yarn with difference in shrinkage and method for producing the same
JPS6130053B2 (en)
JP2005146503A (en) Soft stretch yarn and fabric