[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61180448A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61180448A
JPS61180448A JP2043485A JP2043485A JPS61180448A JP S61180448 A JPS61180448 A JP S61180448A JP 2043485 A JP2043485 A JP 2043485A JP 2043485 A JP2043485 A JP 2043485A JP S61180448 A JPS61180448 A JP S61180448A
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
etching
oxide film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2043485A
Other languages
Japanese (ja)
Inventor
Takaaki Kuwata
孝明 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2043485A priority Critical patent/JPS61180448A/en
Publication of JPS61180448A publication Critical patent/JPS61180448A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To protect a gate electrode from disconnection by a method wherein a silica film is provided by application on the entire surface of a semiconductor substrate for filling recesses produced in an etching process. CONSTITUTION:On a semiconductor substrate 1, an oxide film 2, nitride film 3, and a channel stopper 4 are formed. An insulating film 5 and a photoresist film 6 are formed and then the insulating film 5 is subjected to etching. A process follows wherein the nitride film 3 is removed and the entire surface is covered with a silicon film 9 provided by application for the flattening of the substrate surface. The film 9 is then subjected to baking, which is followed by an etching process wherein the oxide film 2 is removed from the substrate 1. A gate oxide film 7 is formed, whereinto impurity ions 10 are implanted for the control of the FET threshold value. A process is accomplished for the formation of a gate electrode 11 and a source.drain 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法に関し、特に個々の拡散
層間の絶縁分離領域を形成する方法を含む電界効果型の
半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a field-effect semiconductor device including a method of forming an insulating isolation region between individual diffusion layers.

(従来の技術) 従来、電界効果型半導体装置の個々の拡散層間の分離に
はLOC(J8法及び溝型分離法が使用されている。前
者に後者と比較し、微細な拡散層分離を行なうに当り、
絶縁分離の為の酸化膜が拡散層領域に喰い込み、実効的
に拡散層幅が縮まるという不利な点がある為、後者の溝
型分離法の開発が現在性なわれている。現在までに知ら
れている溝型分離法(溝中に絶縁物質を埋込む分離法)
には二つの方法がある。
(Prior art) Conventionally, LOC (J8 method) and trench type separation method have been used to separate individual diffusion layers of field effect semiconductor devices. In this case,
Since there is a disadvantage that the oxide film for insulation isolation digs into the diffusion layer region, effectively reducing the width of the diffusion layer, the latter trench type isolation method is currently being developed. Currently known trench isolation methods (separation methods in which an insulating material is buried in the trenches)
There are two methods.

第2図fa)〜(d)に従来の電界効果型半導体装置の
溝型絶縁分離法の第1の方法’を説明する几めの工程順
に示した断面図である。
FIGS. 2a) to 2(d) are cross-sectional views showing a detailed process order for explaining a first method of trench type insulation isolation of a conventional field effect semiconductor device.

まず、第2図(a)に示すように、半導体基板上に薄い
酸化膜2、窒化膜3を順次成長させ、絶縁分離領域とな
るべき領域の窒化膜3.酸化膜2.半導体基板1t−異
方性エツチングに工って垂直にエツチングして#lを形
成する。次に、溝の底面及び側面を酸化した後、半導体
基板1と同−伝導型の不純物を溝の底面にイオン注入し
、チャンネルストッパ4を形成する。
First, as shown in FIG. 2(a), a thin oxide film 2 and a thin nitride film 3 are sequentially grown on a semiconductor substrate, and the nitride film 3. Oxide film 2. Semiconductor substrate 1t is vertically etched using anisotropic etching to form #l. Next, after oxidizing the bottom and side surfaces of the groove, ions of impurities having the same conductivity type as the semiconductor substrate 1 are implanted into the bottom of the groove to form a channel stopper 4.

次に、第2図(b)に示す工うに、CVD法に工って絶
縁膜5’t−113深さと同一の膜厚だけ半導体基板1
゛の上に成長させる。
Next, as shown in FIG. 2(b), the semiconductor substrate 1 is etched to a thickness equal to the depth of the insulating film 5't-113 using the CVD method.
grow on ゛.

次に、第2図(C)に示す工うに、溝の上にフォトレジ
スト6を形成する。
Next, as shown in FIG. 2(C), a photoresist 6 is formed on the groove.

次に、第2図Fdlに示す工うに、緩衝弗酸液に工って
、CVD法に工って成長せしめた絶縁膜の膜厚分だけエ
ツチングを行なう。フォトレジスト6を除去し、窒化膜
3及び酸化膜2t−除去し、拡散層上にゲート酸化膜7
全形成する。
Next, as shown in FIG. 2Fdl, etching is performed using a buffered hydrofluoric acid solution by the thickness of the insulating film grown by the CVD method. The photoresist 6 is removed, the nitride film 3 and the oxide film 2t are removed, and a gate oxide film 7 is formed on the diffusion layer.
Fully formed.

第3図(al、 (b)u従来の電界効果型半導体装置
の溝型分離法の第2の方法を説明するための工程順に示
した断面図である。
FIGS. 3A and 3B are cross-sectional views illustrating a second method of trench isolation of a conventional field-effect semiconductor device in the order of steps.

第2図(b)に示した工程までに第1の方法と同じに行
り。
Follow the same procedure as the first method up to the step shown in FIG. 2(b).

次に、第3図(a)に示す工うに、絶縁膜5の上にフォ
トレジスト8を全面に薄く塗布する。
Next, as shown in FIG. 3(a), a photoresist 8 is thinly applied over the entire surface of the insulating film 5. Then, as shown in FIG.

次に第3図(b)に示すように、平行平板型ドライエツ
チング装置によって全面をエツチングし、拡散層領域上
の絶縁膜5のエツチングを行なう、然る後、窒化膜3及
び酸化膜2を除去し、拡散層上にゲート酸化膜(6)を
形成する。
Next, as shown in FIG. 3(b), the entire surface is etched using a parallel plate type dry etching device, and the insulating film 5 on the diffusion layer region is etched. After that, the nitride film 3 and the oxide film 2 are etched. Then, a gate oxide film (6) is formed on the diffusion layer.

(発明が解決しエリとする問題点ン 上記の2法による拡散層間の溝分離を行なう場合以下の
問題がある。
(Problems to be Solved and Eliminated by the Invention) When groove separation between diffusion layers is performed by the above two methods, the following problems occur.

(1)第1の方法 緩衝弗酸液によるエツチングにおいて、エツチングの終
点の設定が困難であり、エツチングの条件に工って、分
離領域の端で凹凸が生じ、ゲート電極形成時において、
凹部に存在するゲート電極材料がエツチングされずに残
り、ゲート電極間ショート2生じるだけでなく、凹部が
深い場合にゲート電極配線の断線を生じることがある。
(1) In the first method of etching using a buffered hydrofluoric acid solution, it is difficult to set the end point of etching, and due to the etching conditions, unevenness occurs at the edge of the separation region, and when forming the gate electrode,
The gate electrode material present in the recess remains unetched, which not only causes a short circuit 2 between the gate electrodes, but also may cause disconnection of the gate electrode wiring if the recess is deep.

さらに、溝上に残すフォトレジストの形成において、目
ずれが生じた場合、拡散層上に絶縁膜が残り、一方の溝
端では溝の底面までエツチングされることが生じる。
Furthermore, if misalignment occurs in the formation of the photoresist left on the groove, the insulating film remains on the diffusion layer, and one end of the groove may be etched to the bottom of the groove.

(2)@2の方法 平行平板型ドライエツチング装置に工って全面エツチン
グを行うvc際し、エツチングの終点の検出が困難であ
る。さらに、幅の広い?flC幅の広い分離領域)中の
絶縁膜5に薄くなり、場所にぶっては、全く存在しなく
なる。従って、第2の方法でに、分離領域の幅には限度
があり、使用可能な分離領域の幅(溝の幅)は限定され
る。
(2) Method @2 When etching the entire surface using a parallel plate type dry etching apparatus, it is difficult to detect the end point of etching. Furthermore, is it wide? The insulating film 5 in the wide isolation region (flC) becomes thin, and in some places, it does not exist at all. Therefore, in the second method, there is a limit to the width of the isolation region, and the usable width of the isolation region (width of the groove) is limited.

上記の工うに、従来の溝型分離法は、二つの方法のいず
れを用いても、拡散層間の絶縁分離全行なうに当り安定
に、かつ分離幅に制限されずに、平坦な絶縁分離領域を
形成することに不可能であるという問題がある。
As described above, the conventional trench type isolation method, whichever is used, can stably perform the entire insulation isolation between the diffusion layers, and can create a flat insulation region without being limited by the isolation width. The problem is that it is impossible to form.

本発明の目的に、電界効果半導体装置の拡散層間の溝型
の絶縁分離領域を形成するに当D1拡散層間の絶縁分離
領域の幅の広さに制限を受けることなく、かつ、安定に
、平坦な絶縁分離領域を形成することを可能ならしめる
半導体装置の製造方法を提供することにある。
For the purpose of the present invention, it is possible to form a trench-type insulation isolation region between diffusion layers of a field effect semiconductor device without being limited by the width of the insulation isolation region between D1 diffusion layers, and to stably and flatten the insulation isolation region between diffusion layers of a field effect semiconductor device. An object of the present invention is to provide a method for manufacturing a semiconductor device that makes it possible to form an insulating isolation region.

(問題点を解決するための手段] 本発明の半導体装置の製造方法は、半導体基板の表面に
酸化膜と窒化膜とを順次被着する工程と、前記窒化膜及
び酸化膜を選択エッチし、次に異方性エツチングにエフ
前記半導体基板の絶縁分離領域に溝を形成する工程と、
前記半導体基板上に固渋にエフ絶縁膜を堆積する工程と
、前記絶縁膜の上に前記溝と同一ハターンの7オトレジ
ストのマスクを形成する工程と、前記フォトレジストを
マスクにして拡散層となるべき領域の上の前記絶縁膜を
等方性エツチングにLD除去する工程と、前記フォトレ
ジスト及び窒化膜を除去する工程と、前記半導体基板の
全表面にシリカフィルムを塗布し前記等方性エツチング
によって生じた溝端部の凹部を埋める工程と、前記シリ
カフィルムをベークする工程と、前記拡散層となるべき
領域上の前記酸化膜を緩衝弗酸[工つてエツチングする
工程と、拡散層となるべき領域上にゲート酸化膜を形成
する工程とを含んで槽底される。
(Means for Solving the Problems) A method for manufacturing a semiconductor device of the present invention includes the steps of sequentially depositing an oxide film and a nitride film on the surface of a semiconductor substrate, and selectively etching the nitride film and the oxide film. Next, forming a groove in the isolation region of the semiconductor substrate by anisotropic etching;
a step of stubbornly depositing an F insulating film on the semiconductor substrate; a step of forming a mask of 7 photoresist having the same pattern as the groove on the insulating film; and a step of forming a diffusion layer using the photoresist as a mask. A step of removing the insulating film on the target area by isotropic etching, a step of removing the photoresist and the nitride film, and a step of applying a silica film on the entire surface of the semiconductor substrate and by the isotropic etching. a step of filling the concave portion at the end of the groove, a step of baking the silica film, a step of etching the oxide film on the region to become the diffusion layer with buffered hydrofluoric acid, and a step of etching the region to become the diffusion layer. The bottom of the tank is formed by forming a gate oxide film thereon.

(実施例) 次に、本発明の実施例について図面を用いて説明する。(Example) Next, embodiments of the present invention will be described using the drawings.

第1図(a)〜[glは本発明の一実施例を説明するた
めの工程順に示した半導体装置の断面図である。
FIGS. 1(a) to 1(gl) are cross-sectional views of a semiconductor device shown in the order of steps for explaining an embodiment of the present invention.

まず、第1図fatに示すように、半導体基板1の上に
薄い酸化膜2t−成長させ、次にこの上に窒化膜3を堆
積する。絶縁分離領域となるべき領域の窒化膜3を除去
し、次に異方性エッチングにより半導体基板if、所定
の深さまで垂直にエツチングし、Ist″形成し、その
底面及び側面に酸化膜を形成し、半導体基板と同一伝導
型の不純物全イオン注入し、チャンネルストッパ4を形
成する。
First, as shown in FIG. 1, a thin oxide film 2t is grown on a semiconductor substrate 1, and then a nitride film 3 is deposited thereon. The nitride film 3 in the region to become the insulation isolation region is removed, and then the semiconductor substrate if is vertically etched to a predetermined depth by anisotropic etching to form Ist'', and an oxide film is formed on the bottom and side surfaces thereof. Then, all ions of impurities having the same conductivity type as that of the semiconductor substrate are implanted to form a channel stopper 4.

次に、第1図tblに示す工うに、CVD法に工って絶
縁膜51&:溝の深さと同一の膜厚だけ半導体基板上に
成長させる。
Next, as shown in FIG. 1, an insulating film 51&: is grown on the semiconductor substrate to a thickness equal to the depth of the groove using the CVD method.

次に、第1図(C)に示す工うに、溝を形成する際使用
したフォトマスクの明部及び暗部を逆転させたパターン
を有するフォトマスクを使用し、溝上に7オトレジスト
6を形成する。
Next, as shown in FIG. 1C, a photoresist 6 is formed on the groove using a photomask having a pattern in which the bright and dark areas of the photomask used to form the groove are reversed.

次に、第1図(d)に示す工うに、CVD法によって成
長した絶縁膜を緩衝弗酸に工ってエツチングする。この
時、本発明では、過度にエツチングを行なっても問題と
にならない九め、溝上のフォトレジスト6を残す場合、
目金せずれが生じても、拡散層上に絶縁物質膜が残らな
い様に過度のエツチングを行うことが可能である。
Next, as shown in FIG. 1(d), the insulating film grown by the CVD method is etched in buffered hydrofluoric acid. At this time, in the present invention, when leaving the photoresist 6 on the groove, which does not cause any problem even if excessively etched,
Even if misalignment occurs, it is possible to perform excessive etching so that no insulating material film remains on the diffusion layer.

次に、第1図t6)に示すように、窒化膜3を除去し、
半導体基板上全面にシリカフィルム9t−塗布し、緩衝
弗酸によるエツチングで生じた、溝の端部における凹部
を埋め、半導体基板表面を平坦化する。この時、絶縁膜
5のエツチング全過度に行なっt場合にもシリカフィル
ム9Vc工つて、その凹部を埋めることが可能である。
Next, as shown in FIG. 1 t6), the nitride film 3 is removed,
A silica film 9t is applied over the entire surface of the semiconductor substrate, filling in the recesses at the ends of the grooves caused by etching with buffered hydrofluoric acid, and flattening the surface of the semiconductor substrate. At this time, even if the insulating film 5 is not fully etched, the silica film 9Vc can be used to fill the recess.

然る後、シリカフィルム9をスチーム雰囲気中でベーク
を行なう。
After that, the silica film 9 is baked in a steam atmosphere.

シリカフィルム90組gは、ベークを行なった後に絶縁
膜5(例えば、酸化膜、リンガラス膜又はホウ素リンガ
ラス膜)と同一になる様に設定する。
The 90 sets of silica films g are set to be the same as the insulating film 5 (for example, an oxide film, a phosphorus glass film, or a boron phosphorus glass film) after baking.

スに、第1図(f)に示すように、緩衝弗酸に工り半導
体基板1t−全面エツチングして拡散層上の薄い酸化膜
2t−除去する。然る後、ゲート酸化膜7を形成し、電
界効果型トランジスタのしきい値全制御するための不純
物10のイオン注入全行なう。
First, as shown in FIG. 1(f), the entire surface of the semiconductor substrate 1t is etched using buffered hydrofluoric acid to remove the thin oxide film 2t on the diffusion layer. Thereafter, a gate oxide film 7 is formed, and impurity 10 is ion-implanted to fully control the threshold voltage of the field effect transistor.

次に、第1図(g)に示すように、半導体基板上にゲー
ト電極となるべき材料t−E長させ、バターニングして
ゲート電極11を形成する。次に、半導体基板と逆導電
型の不純物をイオン注入してソース・ドレイン12を形
成する。然る後、層間絶縁膜13を成長せしめ、所定の
位置にコンタクト孔を開孔し、金、@配朦14を施す。
Next, as shown in FIG. 1(g), a material to be a gate electrode is placed on the semiconductor substrate to a length tE, and then patterned to form a gate electrode 11. Next, the source/drain 12 is formed by ion-implanting an impurity having a conductivity type opposite to that of the semiconductor substrate. Thereafter, an interlayer insulating film 13 is grown, a contact hole is opened at a predetermined position, and a gold layer 14 is formed.

このようにして本発明による半導体装置が製造される。In this way, the semiconductor device according to the present invention is manufactured.

(発明の効果) 本発明に、以上説明したLうに、電界効果型の半導体装
置の拡散層間の溝型絶縁分離領域を形成する場合に次の
効果がある。
(Effects of the Invention) As explained above, the present invention has the following effects when forming a groove-type insulating isolation region between diffusion layers of a field effect semiconductor device.

(1)絶縁分離領域の幅に制限がない4ため、拡散層パ
ターンの設計上の自由度が増す。
(1) Since there is no limit to the width of the isolation region4, the degree of freedom in designing the diffusion layer pattern increases.

(2)絶縁分離領域の端における段差が無い友め、ゲー
ト電極形成時におけるゲート電極形成材料の残り、又は
ゲート電極の断線がない。
(2) There is no step difference at the edge of the insulation isolation region, there is no remaining gate electrode forming material during gate electrode formation, or there is no disconnection of the gate electrode.

(3)拡散層上のCVD法に工って成長した絶縁膜を緩
衝弗酸に工って除去する場合、過度のエツチングを行な
っt場合でも、後のシリカフィルム塗布に工って、段差
が千朔化されるため、プロセス的な余裕度が増大する。
(3) When removing an insulating film grown by the CVD method on the diffusion layer using buffered hydrofluoric acid, even if excessive etching is performed, steps may be removed by applying the silica film later. Because the process is scaled up, the process margin increases.

(41溝上に残すフォトレジストのパターニングに、。(For patterning the photoresist left on the 41 grooves.

溝を形成し友フォトマスクの明部及び暗部を逆転し次パ
ターンを有するフォトマスクを使用するため、マスクパ
ターン設計が容易になるだけでなく、溝上に残すフォト
レジストを溝エリも外側に張り出させる必要がないため
、拡散層間隔を短縮することが可能である。
By forming grooves and reversing the bright and dark areas of the companion photomask, a photomask with the next pattern is used, which not only simplifies mask pattern design, but also allows the photoresist left on the grooves to extend outward from the groove area. Since it is not necessary to do so, it is possible to shorten the distance between the diffusion layers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)に本発明の一実施例を説明するた
めの工程順に示した半導体装置の断面図、第2図(a)
〜(d)に従来の半導体装置の溝型絶縁分離法の第1の
方法を説明するための工程順に示した半導体装置の断面
図、再3図(a)、 (b)は従来の半導体装置の溝型
絶縁分離法の第2の方法を説明するための工程順に示し
た半導体装置の断面図である。 1・・・・・・半導体基板、2・・・・・・薄い酸化膜
、3・・・・・・窒化膜、4・・・・・・チャンネルス
トッパ、5・・・・・・Me膜(CVi)法に工って成
長させた酸化膜、リンガラス膜又はホウ素リンガラス膜
)、6・・・・・・フォトしノジスト、7・〜・・・−
ゲート酸化膜、8・・・・・・フォトレジスト、9・・
・・・・シリカフィルム、10・・・・・・しきい値制
御のためイオン注入された不純物、11・・・・・・ケ
ート電極、12・・・・・ソース・ドレイン、13・・
・・・・層間絶縁膜、14・・・・・・金属配線。 芽 II!I $/WJ 耳 2 図
FIGS. 1(a) to 1(g) are cross-sectional views of a semiconductor device shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
- (d) are cross-sectional views of a semiconductor device shown in the order of steps to explain the first method of trench type insulation isolation of a conventional semiconductor device, and Figures 3 (a) and 3 (b) are cross-sectional views of a conventional semiconductor device. FIG. 3 is a cross-sectional view of a semiconductor device shown in the order of steps for explaining a second trench-type insulation isolation method. 1...Semiconductor substrate, 2...Thin oxide film, 3...Nitride film, 4...Channel stopper, 5...Me film (oxide film, phosphorus glass film, or boron phosphorus glass film grown using the CVi method), 6... photo-coated nodist, 7...-
Gate oxide film, 8... Photoresist, 9...
...Silica film, 10...Ion-implanted impurity for threshold control, 11...Cate electrode, 12...Source/drain, 13...
...Interlayer insulating film, 14...Metal wiring. Bud II! I $/WJ Ear 2 Figure

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の表面に酸化膜と窒化膜とを順次被着する
工程と、前記酸化膜及び窒化膜を選択エッチし次に異方
性エッチングにより前記半導体基板の絶縁分離領域に溝
を形成する工程と、前記半導体基板上にCVD法により
絶縁膜を堆積する工程と、前記絶縁膜の上に前記溝と同
一パターンのフォトレジストのマスクを形成する工程と
、前記フォトレジストをマスクにして拡散層となるべき
領域の上の前記絶縁膜を等方性エッチングにより除去す
る工程と、前記フォトレジスト及び窒化膜を除去する工
程と、前記半導体基板の全表面にシリカフィルムを塗布
し前記等方性エッチングによって生じた溝端部の凹部を
埋める工程と、前記シリカフィルムをベークする工程と
、前記拡散層となるべき領域上の前記酸化膜を緩衝弗酸
によってエッチングする工程と、拡散層となるべき領域
上にゲート酸化膜を形成する工程とを含むことを特徴と
する半導体装置の製造方法。
a step of sequentially depositing an oxide film and a nitride film on a surface of a semiconductor substrate; a step of selectively etching the oxide film and the nitride film, and then forming a groove in an insulating isolation region of the semiconductor substrate by anisotropic etching; , a step of depositing an insulating film on the semiconductor substrate by a CVD method, a step of forming a photoresist mask with the same pattern as the groove on the insulating film, and a step of forming a diffusion layer using the photoresist as a mask. a step of removing the insulating film on the target area by isotropic etching, a step of removing the photoresist and the nitride film, and a step of applying a silica film on the entire surface of the semiconductor substrate and removing the insulating film formed by the isotropic etching. a step of baking the silica film, a step of etching the oxide film on the region to become the diffusion layer with buffered hydrofluoric acid, and forming a gate on the region to become the diffusion layer. 1. A method of manufacturing a semiconductor device, comprising the step of forming an oxide film.
JP2043485A 1985-02-05 1985-02-05 Manufacture of semiconductor device Pending JPS61180448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2043485A JPS61180448A (en) 1985-02-05 1985-02-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2043485A JPS61180448A (en) 1985-02-05 1985-02-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61180448A true JPS61180448A (en) 1986-08-13

Family

ID=12026935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2043485A Pending JPS61180448A (en) 1985-02-05 1985-02-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61180448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265535A (en) * 1988-04-15 1989-10-23 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265535A (en) * 1988-04-15 1989-10-23 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPS63234534A (en) Manufacture of semiconductor element
JP2749750B2 (en) Manufacturing method of integrated circuit chip
JPS58202545A (en) Manufacture of semiconductor device
JPH1145874A (en) Manufacture of semiconductor device
US4170500A (en) Process for forming field dielectric regions in semiconductor structures without encroaching on device regions
JP3196830B2 (en) Semiconductor device and manufacturing method thereof
JPH04275436A (en) Soimos transistor
JPS61180448A (en) Manufacture of semiconductor device
JPS60145664A (en) Manufacture of semiconductor device
JPH0786595A (en) Semiconductor device and manufacturing method thereof
JPH05226655A (en) Method for manufacturing semiconductor device
US5620911A (en) Method for fabricating a metal field effect transistor having a recessed gate
JP2672596B2 (en) Method for manufacturing semiconductor device
JPH01114042A (en) Manufacture of semiconductor device
JPH03109739A (en) Manufacture of thin-film semiconductor device
JPH0228330A (en) Manufacturing method of semiconductor device
KR100290912B1 (en) Method for fabricating isolation region of semiconductor device
JPH0377376A (en) Manufacturing method of semiconductor device
KR100245087B1 (en) Device isolation insulating film formation method of semiconductor device
JPS61160976A (en) Manufacture of semiconductor device
JPH02161752A (en) Manufacture of semiconductor device
JPS62217629A (en) semiconductor equipment
JPS6116545A (en) Manufacture of semiconductor integrated device
JPS63257245A (en) Manufacture of semiconductor integrated circuit device
JPH0786205A (en) Semiconductor device and its manufacture