JPS61173929A - Porous composite material - Google Patents
Porous composite materialInfo
- Publication number
- JPS61173929A JPS61173929A JP1632985A JP1632985A JPS61173929A JP S61173929 A JPS61173929 A JP S61173929A JP 1632985 A JP1632985 A JP 1632985A JP 1632985 A JP1632985 A JP 1632985A JP S61173929 A JPS61173929 A JP S61173929A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- polyamino acid
- composite material
- porous composite
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明はポリアミノ酸ウレタン共重合樹脂からなる多
孔性複合材に関するもので、詳しくは、1.6−ヘキサ
ンポリカーボネートジオールを含むポリウレタン樹脂と
L−グルタミン酸−γ−メチルエステルN−カルボン酸
無水物よりなるポリアミノ酸ウレタン共重合樹脂組成物
を布帛にコーティングし、湿式法によって与えられる高
透湿性、耐薬品性ざら内耐加水分解性等にすぐれた多孔
性複合材を提供しようとするものである。Detailed Description of the Invention <Industrial Application Field> The present invention relates to a porous composite material made of a polyamino acid urethane copolymer resin. A polyamino acid urethane copolymer resin composition consisting of glutamic acid-γ-methyl ester N-carboxylic acid anhydride is coated on a fabric, and it has excellent moisture permeability, chemical resistance, and resistance to hydrolysis in the groin provided by a wet method. It is intended to provide a porous composite material.
〈従来の技術とその問題点〉
従来、ポリアミノ酸樹脂(ポリL−グルタミン酸−γ−
メチルエステル)が耐加水分解性、耐薬品性、透湿性に
すぐれていることは知られているが、反面もろさがあり
、柔軟性を求められる用途には今一つ不適当なため、こ
れをポリウレタン樹脂と共重合してポリアミノ酸ウレタ
ン共重合樹脂として使用されている。<Conventional technology and its problems> Conventionally, polyamino acid resin (poly L-glutamic acid-γ-
It is known that methyl ester) has excellent hydrolysis resistance, chemical resistance, and moisture permeability, but on the other hand, it is brittle and is not suitable for applications that require flexibility, so it is not suitable for polyurethane resins. It is used as a polyamino acid urethane copolymer resin by copolymerizing with.
しかしながら、従来のポリオール成分(例えばポリエー
テルグリコール、ポリエステルグリコール、ポリカプロ
ラクトンなど)とジイソシアナートからなるポリウレタ
ン樹脂にL−グルタミン酸−γ−メチルエステルN−カ
ルボン酸無水物(以下L−GNCAと略称する)を共重
合させたポリアミノ酸ウレタン樹脂は耐加水分解性、耐
薬品性(耐酸、耐アルカリ)が低下しポリアミノ酸樹脂
の特徴を十分に発揮することはできなかった。However, conventional polyurethane resins consisting of polyol components (e.g., polyether glycol, polyester glycol, polycaprolactone, etc.) and diisocyanate are combined with L-glutamic acid-γ-methyl ester N-carboxylic acid anhydride (hereinafter abbreviated as L-GNCA). ) was copolymerized with polyamino acid urethane resin, which had poor hydrolysis resistance and chemical resistance (acid resistance, alkali resistance), and was unable to fully demonstrate the characteristics of polyamino acid resin.
〈問題点を解決するための手段〉
この発明は、従来品が有している上記したような欠点を
解消するべく検討の結果、得られたものである。<Means for Solving the Problems> The present invention was obtained as a result of studies to eliminate the above-mentioned drawbacks of conventional products.
即ち、この発明はポリウレタン樹脂において従来用いら
れていたポリオール成分に代って1.6−ヘキサンポリ
カーボネートジオールを用い、これと有機ジイソシアナ
ートからなるポリウレタン樹脂にL−GNCAを共重合
したもので、得られたポリアミノ酸ウレタン樹脂は従来
の樹脂と比べ、耐加水分解性、耐薬品性が極めて大きく
向上した。That is, this invention uses 1,6-hexane polycarbonate diol in place of the polyol component conventionally used in polyurethane resins, and copolymerizes L-GNCA with a polyurethane resin consisting of 1,6-hexane polycarbonate diol and an organic diisocyanate. The obtained polyamino acid urethane resin has significantly improved hydrolysis resistance and chemical resistance compared to conventional resins.
また、従来織布上にコーティングし、水中に浸漬して凝
固させ、溶媒を除去させる湿式法によって、多孔質層を
形成する樹脂としてはポリウレタン樹脂、ポリアミノ酸
樹脂、およびその他の樹脂との共重合物あるいはブレン
ド物が紹介されたり、実用化されている。
〜
しかし、これらは何れも共通の欠点として耐加水分解性
、耐薬品性に劣るのである。In addition, conventional wet methods in which woven fabrics are coated, immersed in water to coagulate, and the solvent is removed have been used to form porous layers such as polyurethane resins, polyamino acid resins, and copolymerized resins with other resins. A product or blend is introduced or put into practical use.
~ However, all of these have a common drawback of poor hydrolysis resistance and chemical resistance.
〈作用〉
1.6−ヘキサンポリカーボネートジオールを含むポリ
ウレタン樹脂とL−GNCAとよりなるこの発明で用い
るポリアミノ酸ウレタン樹脂は非常にすぐれた耐加水分
解性、耐薬品性を有し、湿式法で多孔質皮膜を形成する
と、極めて高透湿の性能を示すのである。<Function> The polyamino acid urethane resin used in this invention, which is composed of a polyurethane resin containing 1.6-hexane polycarbonate diol and L-GNCA, has excellent hydrolysis resistance and chemical resistance, and can be made porous by a wet method. When a thin film is formed, it exhibits extremely high moisture permeability.
そしてこの性能は湿式加工、含浸加工、乾式法など各種
の生地素材の加工に利用することができ、耐洗濯性のす
ぐれた樹脂加工された衣料生地、特に高透湿性があり、
かつ耐久性のあるスポーツ用衣料生地、履物基材として
最適であり、耐薬品性を必要とする研摩布のような産業
資材用途にもすぐれた性能を発揮することができる。This performance can be used for processing various fabric materials such as wet processing, impregnation processing, and dry processing, and resin-treated clothing fabrics with excellent wash resistance, especially high moisture permeability.
It is also ideal as a durable sports clothing fabric and footwear base material, and can also exhibit excellent performance in industrial material applications such as abrasive cloths that require chemical resistance.
次にこの発明で用いる1、6−ヘキサンポリカーボネー
トジオールを含むポリウレタン樹脂とL−GNCAにつ
いて詳しく説明する。Next, the polyurethane resin containing 1,6-hexane polycarbonate diol and L-GNCA used in this invention will be explained in detail.
11.6−ヘキサンポリカーボネートジオール単独また
は用途によっては必要に応じてその他のジオールを加え
、これに有機ジイソシアナートを加え、末端にイソシア
ナートを有するプレポリマーを得る。11. 6-Hexane polycarbonate diol alone or other diols are added as needed depending on the application, and an organic diisocyanate is added thereto to obtain a prepolymer having isocyanate at the terminal.
有機ジイソシアナートとしては、1.6−ヘキサメチレ
ンジイソシアナート、4・、4′ジフエニルメタンジイ
ソシアナート(MDI)、イソホロンジイソシアナート
、トルエン−2,4−ジイソシアナート、4.4′−ジ
シクロヘキシルメタンジイソシアナート(H12MD
I )などが挙げられる。Examples of organic diisocyanates include 1,6-hexamethylene diisocyanate, 4.,4' diphenylmethane diisocyanate (MDI), isophorone diisocyanate, toluene-2,4-diisocyanate, and 4.4-hexamethylene diisocyanate. '-dicyclohexylmethane diisocyanate (H12MD
I), etc.
また1、6−ヘキサンポリカーボネートジオールと併用
する他のジオールとしては、エチレングリコール、1.
4−ブタンジオールなどが使用できる。Other diols used in combination with 1,6-hexane polycarbonate diol include ethylene glycol, 1.
4-butanediol and the like can be used.
次いで別に調整したジアミンのジメチルホルムアミド溶
液に上記のプレポリマーを徐々に加えながら鎖延長を行
なう。Next, chain extension is carried out while gradually adding the above prepolymer to a separately prepared solution of diamine in dimethylformamide.
ジアミンには4.4′−ジフェニルメタンジアミン、イ
ソホロンジアミン、無水ピペラジン、含水ヒドラジン、
4.4′−ジシクロヘキシルメタンジアミンなどが挙げ
られる。Diamines include 4,4'-diphenylmethane diamine, isophorone diamine, anhydrous piperazine, hydrated hydrazine,
Examples include 4.4'-dicyclohexylmethanediamine.
反応の終点は末端アミノ基の定量を行ない、該末端アミ
ノ基を−NH2基とみなし、重量分率で200〜300
0ppmの範囲の適当な点とする。At the end of the reaction, the terminal amino group is quantified, and the terminal amino group is regarded as -NH2 group, and the weight fraction is 200 to 300.
An appropriate point within the range of 0 ppm is set.
次にポリアミノ酸ウレタン樹脂共重合物の製造は、特開
昭59−36132号に準じて行えばよく、例えば末端
アミノ基を有するポリウレタン樹脂100重量部を含む
溶液にL−GNCA7〜85重量部および必要に応じて
第3級アミン触媒を加え、3〜5時間攪拌し、次いで5
0〜70℃に昇温して1〜2時間攪拌する。Next, the production of the polyamino acid urethane resin copolymer may be carried out according to JP-A-59-36132. For example, in a solution containing 100 parts by weight of a polyurethane resin having terminal amino groups, 7 to 85 parts by weight of L-GNCA and Add tertiary amine catalyst if necessary and stir for 3-5 hours, then
The temperature is raised to 0-70°C and stirred for 1-2 hours.
かくして得られたポリアミノ酸ウレタン樹脂溶液を織布
(例えばナイロン、ポリエステル生地)、不織布上にコ
ーティングし、水または温水に浸漬し、脱DMFさせて
湿式成膜後乾燥させた加工生地は、下記の如く耐加水分
解性、耐薬品性および透湿性がすぐれていることが認め
られた。The polyamino acid urethane resin solution thus obtained is coated on a woven fabric (e.g. nylon, polyester fabric) or non-woven fabric, immersed in water or hot water, DMF removed, wet film formed, and then dried. It was recognized that the material had excellent hydrolysis resistance, chemical resistance, and moisture permeability.
即ち、耐加水分解性については70℃X95%湿度のジ
ャングルテストにおいて湿式多孔質フィルムの破断強度
保持率80%になる日数が比較例(従来品)では10日
であったが、この発明の実施例では200日以上保持し
、大幅な向上が認め、られた。That is, regarding hydrolysis resistance, the number of days for the wet porous film to maintain the breaking strength of 80% in the jungle test at 70°C and 95% humidity was 10 days in the comparative example (conventional product), but in the case of the present invention In the example, it was maintained for more than 200 days and a significant improvement was observed.
また、耐アルカリ性、耐酸性は夫々40%水酸化ナトリ
ウム、35%塩酸中に7日浸漬すると、比較例は分解し
たが、実施例は異常が見られず、耐薬品性がすぐれてい
た。Furthermore, regarding alkali resistance and acid resistance, when immersed for 7 days in 40% sodium hydroxide and 35% hydrochloric acid, respectively, the comparative example decomposed, but no abnormality was observed in the example, and the chemical resistance was excellent.
〈実施例〉 以下、この発明を実施例にて説明する。<Example> This invention will be explained below with reference to Examples.
実施例1
(A)ポリアミノ酸ウレタン樹脂の製造1.6−ヘキサ
ンポリカーボネート128部、エチレングリコール1,
0部、4.4′−ジフェニルメタンジイソシアナート4
0部およびジメチルホルムアミド170部を重合容器に
仕込み、攪拌しながら70〜80℃に1時間保って平均
分子量2000のプレポリマーを得た。Example 1 (A) Production of polyamino acid urethane resin 1. 128 parts of 6-hexane polycarbonate, 1 part of ethylene glycol,
0 parts, 4.4'-diphenylmethane diisocyanate 4
0 parts and 170 parts of dimethylformamide were charged into a polymerization vessel, and maintained at 70 to 80°C for 1 hour while stirring to obtain a prepolymer having an average molecular weight of 2000.
別に調合したイソホロンジアミン13.6部、およびジ
メチルホルムアミド562部からなる溶液を攪拌しつつ
上記で得たプレポリマーを室温下で少量づつ添加しなが
ら末端アミノ基の測定を行ない、1120ppmとなっ
た時点でプレポリマーの添加を止め、反応を停止した。While stirring a separately prepared solution consisting of 13.6 parts of isophoronediamine and 562 parts of dimethylformamide, the prepolymer obtained above was added little by little at room temperature, and the terminal amino groups were measured, and when the terminal amino group reached 1120 ppm. The addition of the prepolymer was stopped at , and the reaction was terminated.
得られたポリウレタン樹脂溶液は濃度20%、粘度25
.ooocps/atao℃でおッたJこのポリウレタ
ン樹脂溶液600部にジメチルホルムアミド300部お
よび10%トリブチルアミン1部を加え、攪拌しながら
30℃でL−GNCA50部を加え、3時間保持した。The obtained polyurethane resin solution has a concentration of 20% and a viscosity of 25
.. 300 parts of dimethylformamide and 1 part of 10% tributylamine were added to 600 parts of this polyurethane resin solution, which was heated at ooocps/atao°C, and 50 parts of L-GNCA was added at 30°C with stirring and maintained for 3 hours.
次に60℃に昇温し、1時間攪拌してポリアミノ酸ウレ
タン樹脂溶液を得た。Next, the temperature was raised to 60°C and stirred for 1 hour to obtain a polyamino acid urethane resin solution.
この溶液は濃度20%、粘度20000CDS/at3
0℃であった。This solution has a concentration of 20% and a viscosity of 20000CDS/at3.
It was 0°C.
(B)多孔性複合材の製造
(A)で得られたポリアミノ酸ウレタン樹脂溶液をナイ
ロンタフタに1009/メ塗布して20℃の水に30分
浸漬したのち、十分乾燥すると、ミクロポーラス状の白
色膜を有するナイロンタフタが得られた。(B) Manufacture of porous composite material The polyamino acid urethane resin solution obtained in (A) was applied to nylon taffeta with 1009/metal coating, immersed in water at 20°C for 30 minutes, and thoroughly dried. A nylon taffeta with a white film was obtained.
また、従来のポリウレタン樹脂およびポリアミノ酸ウレ
タン樹脂で同様の方法にて樹脂膜を作成し、比較すると
第1表の通りであった。In addition, resin films were prepared using conventional polyurethane resins and polyamino acid urethane resins in the same manner, and the results were as shown in Table 1 for comparison.
またガラス板に(A>で得られたポリアミノ酸ウレタン
を10009/麓塗布して、20℃の水に60分浸漬し
たのち乾燥し、厚み450μの多孔質フィルムを作り、
該フィルムの物性も測定し、第1表に示した。In addition, the polyamino acid urethane obtained in (A>) was coated on a glass plate, immersed in water at 20°C for 60 minutes, and then dried to form a porous film with a thickness of 450μ.
The physical properties of the film were also measured and are shown in Table 1.
実施例2
(A>ポリアミノ酸ウレタン樹脂の製造実施例1で用い
た1、6−ヘキサンポリカーボネートジオール140部
、H12M D I 36.7部を重合容器に仕込み、
攪拌しながら100℃に4時間゛た保ったのち、DMF
177部を投入しプレポリマーを得た。Example 2 (A> Production of polyamino acid urethane resin 140 parts of 1,6-hexane polycarbonate diol used in Example 1 and 36.7 parts of H12M DI were charged into a polymerization container.
After keeping it at 100℃ for 4 hours while stirring, DMF
177 parts were added to obtain a prepolymer.
別に調合したイソホロンジアミン11.9部とDMF5
78部からなる溶液を攪拌しつつプレポリマーを室温下
で少量づつ添加しながら末端アミノ基9B4ppmで反
応を停止した。11.9 parts of isophoronediamine and DMF5 prepared separately
While stirring the solution consisting of 78 parts, the prepolymer was added little by little at room temperature, and the reaction was stopped at 4 ppm of terminal amino group 9B.
その結果、濃度20%、粘度18000cps/at3
0℃のポリウレタン樹脂溶液を得た。As a result, the concentration was 20%, the viscosity was 18000 cps/at3
A polyurethane resin solution at 0°C was obtained.
このポリウレタン樹脂溶液とL−GNCAを実施例1の
(A)と同様な反応方法にて濃度20%、粘度1500
0cps/at30℃のポリアミノ酸ウレタン樹脂溶液
を得た。This polyurethane resin solution and L-GNCA were reacted in the same manner as in Example 1 (A) to a concentration of 20% and a viscosity of 1500.
A polyamino acid urethane resin solution of 0 cps/at 30°C was obtained.
(B)多孔性複合材の製造
実施例1の(B)と同様の方法にてミクロポーラス状の
白色膜が得られた。(B) Production of porous composite material A microporous white membrane was obtained in the same manner as in Example 1 (B).
これを実施例1と同様にポリウレタン樹脂、ポリアミノ
酸ウレタンと比較したところ第1表の結果が得られた。When this was compared with polyurethane resin and polyamino acid urethane in the same manner as in Example 1, the results shown in Table 1 were obtained.
比較例1
平均分子量2000の1.4−ブタンジオール−アジピ
ン酸ポリエステル140部、イソホロンジイソシアナー
ト31.1部を重合容器に仕込み、攪拌しながら100
℃に4時間保ったのち、DMF171部を投入してプレ
ポリマーを得た。Comparative Example 1 140 parts of 1.4-butanediol-adipate polyester with an average molecular weight of 2000 and 31.1 parts of isophorone diisocyanate were charged into a polymerization container, and 100 parts of
After keeping at ℃ for 4 hours, 171 parts of DMF was added to obtain a prepolymer.
別に調合したインホロンジアミン11.9部とDMF5
61部からなる溶液を攪拌しつつ、プレポリマーを室温
下で少量づつ添加しながら末端アミン基1250ppm
で反応を停止すると、濃度20%、粘度16000cp
s/at30’cのポリウレタン樹脂溶液を得た。11.9 parts of inphorondiamine and DMF5 prepared separately
While stirring a solution consisting of 61 parts, 1250 ppm of terminal amine groups were added while adding the prepolymer little by little at room temperature.
When the reaction is stopped, the concentration is 20% and the viscosity is 16,000 cp.
A polyurethane resin solution of s/at 30'c was obtained.
このポリウレタン樹脂溶液とL−GNCAを実施例1の
(A)と同様の方法で反応すると、濃度20%、粘度1
9000cps/at30’cのポリアミノ酸ウレタン
樹脂溶液を得た。When this polyurethane resin solution and L-GNCA were reacted in the same manner as in Example 1 (A), the concentration was 20% and the viscosity was 1.
A polyamino acid urethane resin solution of 9000 cps/at30'c was obtained.
このポリアミノ酸ウレタン樹脂溶液を実施例1の(B)
と同様の方法でナイロンタフタに加工すると、ミクロポ
ーラス状の白色膜を有したナイロンタフタが得られた。This polyamino acid urethane resin solution was prepared as (B) in Example 1.
When processed into nylon taffeta in the same manner as above, nylon taffeta with a microporous white film was obtained.
これを実施例1および2と比較したところ第1表の結果
を得た。When this was compared with Examples 1 and 2, the results shown in Table 1 were obtained.
比較例2
エチレングリコール、1.4−ブタンジオールとアジピ
ン酸からなる平均分子!2000のポリエステル120
部、エチレングリコール8.7部、DMF400部を重
合容器に仕込み、攪拌しながらMDI50部を投入して
80℃に2時間保ったのち、DMF315部を投入する
と、濃度20%粘度10000cps/at30℃のボ
リウL/タン樹脂溶液を得た。Comparative Example 2 Average molecule consisting of ethylene glycol, 1,4-butanediol and adipic acid! 2000 polyester 120
1 part, 8.7 parts of ethylene glycol, and 400 parts of DMF were placed in a polymerization vessel, and 50 parts of MDI was added while stirring and maintained at 80°C for 2 hours. Then, 315 parts of DMF was added, resulting in a polymer with a concentration of 20% and a viscosity of 10,000 cps/at 30°C. A Boliu L/Tan resin solution was obtained.
このポリウレタン樹脂溶液を実施例1の(B)と同様な
方法でナイロンタフタに加工すると、ミクロポーラス状
の白色膜を有したナイロンタフタが得られた。その性能
は第1表に示した。When this polyurethane resin solution was processed into nylon taffeta in the same manner as in Example 1 (B), nylon taffeta having a microporous white film was obtained. Its performance is shown in Table 1.
第1表
註 *耐加水分解性は破断強度の保持率80%になる日
数である。Notes to Table 1 *Hydrolysis resistance is the number of days in which the retention rate of breaking strength is 80%.
〈発明の効果〉
以上の通り、この発明の多孔性複合材は耐加水分解性、
耐薬品性にすぐれ、かつ高透湿性があることが認められ
た。<Effects of the Invention> As described above, the porous composite material of this invention has hydrolysis resistance,
It was found to have excellent chemical resistance and high moisture permeability.
Claims (1)
,6−ヘキサンポリカーボネートジオールを含むポリウ
レタン樹脂とL−グルタミン酸−γ−メチルエステルN
−カルボン酸無水物を重合させて得られる組成物を布帛
にコーティングした後、水中に浸漬してなる多孔性複合
材。1 in a water-soluble solvent mainly composed of dimethylformamide.
, 6-hexane polycarbonate diol-containing polyurethane resin and L-glutamic acid-γ-methyl ester N
- A porous composite material obtained by coating a fabric with a composition obtained by polymerizing a carboxylic acid anhydride and then immersing it in water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1632985A JPS61173929A (en) | 1985-01-29 | 1985-01-29 | Porous composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1632985A JPS61173929A (en) | 1985-01-29 | 1985-01-29 | Porous composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61173929A true JPS61173929A (en) | 1986-08-05 |
JPH0432736B2 JPH0432736B2 (en) | 1992-06-01 |
Family
ID=11913405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1632985A Granted JPS61173929A (en) | 1985-01-29 | 1985-01-29 | Porous composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61173929A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014065226A (en) * | 2012-09-26 | 2014-04-17 | Unitika Trading Co Ltd | Moisture permeable waterproof fabric for medical care |
-
1985
- 1985-01-29 JP JP1632985A patent/JPS61173929A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014065226A (en) * | 2012-09-26 | 2014-04-17 | Unitika Trading Co Ltd | Moisture permeable waterproof fabric for medical care |
Also Published As
Publication number | Publication date |
---|---|
JPH0432736B2 (en) | 1992-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0458803B2 (en) | ||
US3664979A (en) | Polyurethane elastomer and method for preparation of same | |
GB2157703A (en) | Breathable, non-poromeric polyurethane films | |
US3463748A (en) | Method of curing polyurethanes with diamine-ketone mixtures treated with anhydrous drying compounds | |
JP4144245B2 (en) | Moisture curable adhesive | |
JPS61173929A (en) | Porous composite material | |
JPH055241B2 (en) | ||
JPS619423A (en) | Polyurethane polymer | |
JPH0552329B2 (en) | ||
JPH0552331B2 (en) | ||
JP3054424B2 (en) | Thermoplastic polyurethane | |
JPS60206817A (en) | Production of polyurethane | |
JPH10279675A (en) | Polyester polyol composition for polyurethane, polyurethane resin composition prepared therefrom, and use of polyurethane resin composition | |
JPH0543792A (en) | Polyamino acid urethane resin and product using the same | |
JPH0458491B2 (en) | ||
JPH0432856B2 (en) | ||
JPH0582408B2 (en) | ||
JPH0552330B2 (en) | ||
JPH09118734A (en) | Urethane resin composition and coated molding | |
JPH01131228A (en) | Composition for forming moisture-permeable polyurethane polymer | |
JP2969460B2 (en) | Method for producing aqueous polyurethane dispersion | |
JPH07103212B2 (en) | Method for producing polyamino acid urethane resin | |
JPS62181317A (en) | Production of molded article by hardening reaction of polyamino acid urethane resin | |
JPH0678416B2 (en) | Method for producing polyamino acid urethane resin | |
JPH01144470A (en) | Coating composition |