JPS61172365A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS61172365A JPS61172365A JP60246491A JP24649185A JPS61172365A JP S61172365 A JPS61172365 A JP S61172365A JP 60246491 A JP60246491 A JP 60246491A JP 24649185 A JP24649185 A JP 24649185A JP S61172365 A JPS61172365 A JP S61172365A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor device
- circuit
- high voltage
- voltage field
- type impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 230000005669 field effect Effects 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000005468 ion implantation Methods 0.000 abstract description 8
- 150000002500 ions Chemical class 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000012212 insulator Substances 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
本発明は高密度実装された半導体装置の製造方法に関ス
るものである。プラズマ、エレクトロルミネッセンス等
のフラットディスプレイ−・パネルや静′電プリンタ等
は高電圧駆動を必要とし、しかも多電極で構成されてい
るので高電圧駆動のできる多数の電極駆動素子が必要で
ある。さらに電極駆動素子が多数になることによシ駆動
素子に信号を送る回路も多数必要でしかも電極と駆動素
子間、駆動素子と信号を送る回路間の結線が一対一の対
応をしているので配線が複雑なものになるだけでなく、
回路の占める割合が大きくなる。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method of manufacturing a semiconductor device that is packed with high density. Plasma, electroluminescence, etc. flat display panels, electrostatic printers, etc. require high voltage drive, and since they are constructed with multiple electrodes, a large number of electrode drive elements capable of high voltage drive are required. Furthermore, as the number of electrode drive elements increases, a large number of circuits are required to send signals to the drive elements, and the connections between the electrodes and the drive elements, and between the drive elements and the circuits that send signals, have a one-to-one correspondence. Not only does the wiring become complicated,
The proportion occupied by the circuit increases.
第1図はフラット・スクリーン・パネルを用い線順次走
査によって文字を表示する文字表示回路の一例である。FIG. 1 is an example of a character display circuit that uses a flat screen panel to display characters by line sequential scanning.
フラット・スクリーン・パネル1゜はX軸、Y軸に多数
の電極を持ち、X−Yマ) IJクスを構成して、その
交点が発光する。フラット・ヌクリーン・バネ1v10
の特徴は薄型で多数の電極を持ち、その交点が高電圧を
印加されることによって発光することである。文字をバ
ネ/l’l。The flat screen panel 1° has a large number of electrodes on the X and Y axes, forming an X-Y matrix, and the intersections of the electrodes emit light. Flat Nuclean Spring 1v10
is characterized by its thin structure and multiple electrodes, whose intersections emit light when a high voltage is applied to them. Spring the letters/l'l.
上に表示する場合X軸、Y軸の両方に数10〜数100
の電極が必要であり、パネル10上に表示する文字数に
よっては1000以上の電極になることも考えられる。When displayed above, number 10 to number 100 are displayed on both the X and Y axes.
electrodes are required, and depending on the number of characters displayed on the panel 10, there may be more than 1000 electrodes.
電極は一木一本独立であり、この電極を駆動するために
一木の電極に対し一つの駆動回路7,9が必要になる。Each tree has an independent electrode, and in order to drive this electrode, one drive circuit 7, 9 is required for each tree.
すなわち高電圧駆動が可能な回路7,9が駆動′ しよ
うとする電極数だけ要求され、駆動回路7゜9の数が膨
大な数になる。また駆動回路7,9を動作させるための
回路、たとえばゲート回路6、記憶回路5、直並列変換
転送回路4、走査回路8等が必要であり、しかも駆動回
路7,9と一対一の対応を成している。さらに回路間の
結線、たとえば直並列変換転送回路4と記憶回路5との
間の結線11、記憶回路5とゲート回路6との間の結線
12、ゲート回路6と駆動回路7との間の結線13、走
査回路8と駆動回路9との間の結線15等は駆動回路と
一対一の対応をなしているので、結線だけでも膨大な数
になる。That is, the number of circuits 7 and 9 that can be driven at high voltage is required as many as the number of electrodes to be driven, and the number of drive circuits 7 and 9 becomes enormous. Further, circuits for operating the drive circuits 7 and 9, such as a gate circuit 6, a memory circuit 5, a serial-to-parallel conversion transfer circuit 4, and a scanning circuit 8, are required, and in addition, a one-to-one correspondence with the drive circuits 7 and 9 is required. has been completed. Furthermore, connections between circuits, such as a connection 11 between the serial/parallel conversion transfer circuit 4 and the storage circuit 5, a connection 12 between the storage circuit 5 and the gate circuit 6, and a connection between the gate circuit 6 and the drive circuit 7 13. Since the connections 15 and the like between the scanning circuit 8 and the drive circuit 9 have a one-to-one correspondence with the drive circuits, the number of connections alone is enormous.
次VC11図に示す文字表示回路の動作を述べる。。Next, the operation of the character display circuit shown in Figure VC11 will be described. .
文字発生回路1から出されたデータを直並列変換転送回
路4に送り、直並列変換転送回路4は制御回路2よりク
ロック信号をもらってデータを自己内部へ転送する。デ
ータが直並列変換転送回路4に満たされると制御回路2
よりの制御信号Aの時間230間にデータを記憶回路5
に送る。時間23が終り制御信号AがLowになると直
並列変換転送回路4に新たなデータが文字発生回路1よ
り送られる。記憶回路5に入ったデータは制御回路2よ
りの制御信号Bによって時間24の間、ゲート回路6を
通して駆動回路7に送られる。一方、データ回路3よシ
走査回路8に信号を送シ、走査信号を駆動回路9に送る
。時間24の間は走査側(走査信号によシ駆動回路9を
動作させる側)、とデータ側(データ信号によシ駆動回
路7を動作させる側)よシ高電圧信号がバネ)v10側
に出力され文字が発光する。The data output from the character generation circuit 1 is sent to the serial/parallel conversion/transfer circuit 4, and the serial/parallel conversion/transfer circuit 4 receives a clock signal from the control circuit 2 and transfers the data internally. When the data is filled in the serial/parallel conversion transfer circuit 4, the control circuit 2
The data is stored in the storage circuit 5 during the time 230 of the control signal A.
send to When the time 23 ends and the control signal A becomes Low, new data is sent from the character generation circuit 1 to the serial/parallel conversion transfer circuit 4. The data entered in the memory circuit 5 is sent to the drive circuit 7 through the gate circuit 6 during a time period 24 by the control signal B from the control circuit 2. On the other hand, the data circuit 3 sends a signal to the scanning circuit 8, and sends a scanning signal to the drive circuit 9. During time 24, high voltage signals from the scanning side (the side that operates the drive circuit 9 based on the scanning signal) and the data side (the side that operates the drive circuit 7 based on the data signal) are applied to the spring) v10 side. It is output and the characters light up.
バネ/L/10は以上のように電極間に高電圧を印加し
て電極間にある発光体を発光させるが、そのためには電
極駆動素子は高電圧、大電流でスイッチング動作可能な
ものが必要である。バイポーラ素子には、このような要
求を充すものがあるが、単一素子としての性能であシ、
同一基板(たとえばシリコン基板)上に通常の工程で集
積化されたものはなくセラミック基板に厚膜配線抵抗と
単一の上記バイポーラ素子を用いて数回路分を搭載した
混成集積回路に留まっている。混成集積回路も出力線1
本に対し入力線が1木あシ、第1図における駆動回路部
分7,9を混成集積化したにすぎない。このため回路間
の結線の本数は減らず、回路および結線が膨大なものに
なシ、回路が多くのヌベーヌを占有し、パネル10の薄
型化の利点がそこなわれる。As mentioned above, the Spring/L/10 applies a high voltage between the electrodes to cause the light emitting body between the electrodes to emit light, but in order to do so, the electrode drive element must be capable of switching operation with high voltage and large current. It is. Some bipolar devices meet these requirements, but their performance as a single device is limited.
There are no integrated circuits that are integrated on the same substrate (for example, a silicon substrate) using normal processes, but are limited to hybrid integrated circuits in which several circuits are mounted on a ceramic substrate using a thick film wiring resistor and a single bipolar element. . Hybrid integrated circuit also has output line 1
The input line for the book is one tree, and the drive circuit parts 7 and 9 in FIG. 1 are simply integrated in a hybrid manner. For this reason, the number of connections between circuits is not reduced, and the number of circuits and connections is enormous, the circuits occupy a large amount of space, and the advantage of making the panel 10 thinner is lost.
本発明は上述する従来装置の欠点に鑑み成されたもので
あシ、入出力線が整置された高密度実装半導体装置の製
造方法を提供することを目的とする。The present invention has been made in view of the above-mentioned drawbacks of the conventional devices, and an object of the present invention is to provide a method for manufacturing a high-density packaging semiconductor device in which input/output lines are arranged in order.
以下図示する実施例と共に詳細に説明する。This will be explained in detail below along with the illustrated embodiments.
第1図より明らかな様に直並列変換転送回路4、記憶回
路5、ゲート回路6、駆動回路7とそれぞれの間の接続
がフラット・ディスプV−・パネル10の電極と一対一
の対応を成すが文字発生回路1、制御回路2から上記直
並列変換回路4、上記記憶回路5、上記ゲート回路6へ
至る線数はデータ入力線、クロック線、制御信号線、電
源線等の数本の線で済む。同様の事が走査回路8、駆動
回路9についても言える。As is clear from FIG. 1, the connections between the serial-parallel conversion transfer circuit 4, memory circuit 5, gate circuit 6, and drive circuit 7 are in one-to-one correspondence with the electrodes of the flat display V-panel 10. The number of lines from the character generation circuit 1 and control circuit 2 to the serial/parallel converter circuit 4, the memory circuit 5, and the gate circuit 6 is several lines such as data input lines, clock lines, control signal lines, power supply lines, etc. That's enough. The same thing can be said about the scanning circuit 8 and the driving circuit 9.
第1図の直並列変換転送回路4をたとえばシフトレジス
タに、記憶回路5をたとえばラッチに、高電圧駆動回路
7を特願昭51−1221で開示した高耐圧電界効果半
導体装置を用いたものに、それぞれ置き換えて1チツプ
内に集積化したものが第3図に示す破線の内部である。The serial-to-parallel conversion transfer circuit 4 in FIG. 1 may be used as a shift register, the memory circuit 5 may be used as a latch, and the high voltage drive circuit 7 may be a high voltage field effect semiconductor device disclosed in Japanese Patent Application No. 51-1221. , respectively, and integrated into one chip is shown inside the broken line in FIG.
第3図にお贋てSRI〜SRnはシフトレジスタ、LI
〜LnHラッチ、G、〜Gnはゲート、D 1− D
nは駆動回路(もしくは駆動素子)を示す。高耐圧電界
効果半導体とシフトレジスタ、ラッチ、ゲート回路等の
論理回路を1チツプ上に集積化することによシ各回路間
の結線11,12.13は必要がなく各回路も個別部品
を用いて作製することもなくなシ、放熱等を考慮して集
積回路チップを実装する物質(たとえばセラミック基板
)を選ぶことにより集積回路チップに集積化するbit
数n(第3図における添字n)を適当に選ぶことができ
る。このように高耐圧電界効果半導体装置とシフトレジ
スタ、ラッチ、ゲート等の論理回路とを一体化すること
によシ配線数を極力減らすことができ、通常用いられる
TTLレベルでの駆動を可能にすることができる。In Fig. 3, SRI to SRn are shift registers, LI
~LnH latch, G, ~Gn is gate, D 1- D
n indicates a drive circuit (or drive element). By integrating high-voltage field-effect semiconductors and logic circuits such as shift registers, latches, and gate circuits on one chip, there is no need for connections 11, 12, and 13 between each circuit, and each circuit uses individual components. Bits can be integrated into an integrated circuit chip by selecting a material (for example, a ceramic substrate) to mount the integrated circuit chip in consideration of heat dissipation etc.
The number n (subscript n in FIG. 3) can be chosen appropriately. By integrating a high-voltage field-effect semiconductor device with logic circuits such as shift registers, latches, and gates, the number of wiring lines can be reduced as much as possible, making it possible to drive at the normally used TTL level. be able to.
高耐圧電界効果半導体装置と一体化する論理回路の内容
は回路素子の数および回路間の結線の数を極力減らすた
めに、少なくともバネ/l/ 10の電極と一対一に対
応する回路を含むことが必要でバネ/L’lOの電極と
一対一に対応する出力線に対して入力線が非常に少なく
なるように設計されなければならない。The content of the logic circuit integrated with the high-voltage field-effect semiconductor device must include at least a circuit that corresponds one-to-one with the spring/l/10 electrode in order to reduce the number of circuit elements and the number of connections between circuits as much as possible. It must be designed so that the number of input lines is very small compared to the output lines that correspond one-to-one with the electrodes of spring/L'lO.
次に高耐圧電界効果半導体装置と論理回路とを同一半導
体基板に集積化するには同一の素子製造工程でなければ
なら彦い。本実施例の高耐圧電界効果半導体装置は二重
拡散技術(Di ffusionSelf Align
ment 技術以下DSA技術と略す)を用いて作製す
ることとし論理回路も同様にDSA技術を用いて作製す
る。Next, in order to integrate a high voltage field effect semiconductor device and a logic circuit on the same semiconductor substrate, it is necessary to use the same element manufacturing process. The high-voltage field-effect semiconductor device of this embodiment uses double diffusion technology (DiffusionSelf Align).
ment technology (hereinafter abbreviated as DSA technology), and the logic circuit is similarly manufactured using DSA technology.
本実施例の半導体装置の製造工程について第4図を参照
して次に述べる。The manufacturing process of the semiconductor device of this example will be described below with reference to FIG.
P型め半導体基板30に薄い絶縁物層31(たとえば5
i02)を付はイオンの注入を阻止するマスク効果を持
つ物質(たとえばフォトレジスト)32を塗布し部分的
にn型イオンを薄い絶縁物層31上よシ注入し基板30
にn型イオン注入層41を形成する。次に厚い絶縁物質
層33(例えば5iOz)を酸化によって形成し通常の
写真食刻技術を用いて開口34.35.36.37を形
成し半導体基板300表面を露出したあと開口34゜3
6に薄いS i0238,39を形成し開口35゜37
よJP型不純物をイオン注入もしくは通常の拡散工程を
用いて拡散し、P型不純物層42を形成する。薄いSi
O□38.39を除去し、開口34.35,36.37
よシN型不純物をP型の場合と同様に拡散し、N型不純
、物層43−1゜43−2.43−3.43−4を形成
する。N型不純物層43−1.43−3はP型不純物層
42を形成する時に開けた開口35.37を用いて形成
している。その後論理回路部分に素子をデプレッション
モードにするためにイオン注入技術を用いてn型イオン
注入層44を形成することを除いて通常の金属酸化物半
導体装置を製造する工程を経て最終形状を第4図−(d
)に示しである。この様に高耐圧電界効果半導体装置と
論理回路とをDSA技術を用いて製造することによυ、
それぞれを別工程で製造しパッケージに実装してから互
いに接続して用いるよシ製造工程が簡略化されかつ同一
半導体基板30に製造しているため複雑な回路量接続を
半導体装置内部で処理し回路作製を容易なものにしてい
る。A thin insulating layer 31 (for example, 5
i02) is applied by applying a substance (for example, photoresist) 32 having a masking effect to prevent ion implantation, and partially implanting n-type ions onto the thin insulating layer 31 to form a substrate 30.
An n-type ion implantation layer 41 is formed. Next, a thick insulating material layer 33 (eg, 5 iOz) is formed by oxidation, and openings 34, 35, 36, 37 are formed using conventional photolithography techniques to expose the surface of the semiconductor substrate 300, and then the openings 34°3 are formed.
Form a thin Si0238, 39 on 6 and open the opening 35°37
A P-type impurity layer 42 is formed by diffusing JP-type impurities using ion implantation or a normal diffusion process. Thin Si
Remove O□38.39 and open openings 34.35, 36.37
The N-type impurity is then diffused in the same manner as in the P-type case to form N-type impurity layers 43-1, 43-2.43-3.43-4. The N-type impurity layers 43-1 and 43-3 are formed using the openings 35 and 37 opened when forming the P-type impurity layer 42. Thereafter, the final shape is obtained through the process of manufacturing a normal metal oxide semiconductor device, except for forming an n-type ion implantation layer 44 using ion implantation technology in order to put the device into depression mode in the logic circuit portion. Figure-(d
) is shown. In this way, by manufacturing high-voltage field-effect semiconductor devices and logic circuits using DSA technology, υ,
Each component is manufactured in a separate process, mounted on a package, and then connected to each other for use.The manufacturing process is simplified, and since they are manufactured on the same semiconductor substrate 30, complex circuit connection is processed inside the semiconductor device and the circuit This makes production easy.
作製された半導体装置の内部の構成は第5図の如くとな
シ、半導体装置の外側に高耐圧電界効果半導体装置を一
列に並べた領域62を配し、中央に論理回路領域63を
配し、さらに入力端子領域64を1ケ所にまとめること
により高電圧を印加した場合の論理回路63への影響を
少なくしている。半導体基板の一部を拡大して詳細な構
成を第6図に示す。この図において、5Ri−i+sR
i。The internal configuration of the fabricated semiconductor device is as shown in FIG. 5, with a region 62 in which high-voltage field effect semiconductor devices are arranged in a row arranged on the outside of the semiconductor device, and a logic circuit region 63 arranged in the center. Furthermore, by consolidating the input terminal area 64 in one place, the influence on the logic circuit 63 when a high voltage is applied is reduced. FIG. 6 shows a detailed structure of a partially enlarged semiconductor substrate. In this figure, 5Ri-i+sR
i.
S Ri+1はシフトレジスタ、Ll−1、LI 、
L1+1はラッチ、G1−1t・G、i 、 Gi刊は
ゲートを模式的に示し、これらは第3図に対応している
。各論理回路間は図示する如く配線されておシ、これら
の論理回路にはクロック、データ、制御侶号A。S Ri+1 is a shift register, Ll-1, LI,
L1+1 schematically shows a latch, and G1-1t.G,i, Gi edition schematically shows a gate, and these correspond to FIG. The logic circuits are wired as shown in the figure, and these logic circuits have a clock, data, and control module A.
Bが導かれる。Di−□y DB + DI+1は半導
体基板の外周縁部に形成された高耐圧電界効果半導体装
置を示し、Sはソース、gはゲー)dclはドレインで
あって、Wは半導体基板65Vc形成された上記高耐圧
電界効果半導体装置と、上記半導体基板を搭載したセラ
ミック基板66の配線67間を接続するワイヤである。B is guided. Di-□y DB + DI+1 indicates a high voltage field effect semiconductor device formed on the outer peripheral edge of the semiconductor substrate, S is the source, g is the gate) dcl is the drain, and W is the semiconductor substrate formed at 65Vc. This is a wire that connects the high voltage field effect semiconductor device and the wiring 67 of the ceramic substrate 66 on which the semiconductor substrate is mounted.
62.63は前記各領域を示す。62 and 63 indicate the respective areas.
以上のように本発明は高電圧駆動回路と論理回路を一体
化し、一体化した半導体装置の出力線数に対し、入力線
数を極力減じ多電極表示装置等の電極を多量に有し、か
つ高電圧駆動が必要な表示装置等の回路作製を容易にし
たものである。即ち、表示装置等の多電極ラインを有す
る被駆動体を駆動する半導体回路基板の構成として、被
駆動体の電極ラインに接続される多出力線を有する高電
圧動作の高耐圧電界効果半導体装置を半導体回路基板の
周辺部に整列させ、高耐圧電界効果半導体装置の出力線
数よシ少ない入出力線数を有する低電圧動作の論理回路
部を半導体回路基板の中央部に配置している。これによ
って高電圧が印加されて動作する領域は半導体回路基板
の周辺に沿って設けられることになり絶縁破壊等に対し
て回路基板としての信頼性が向上するとともに被駆動体
との電気的接続も容易となる。高耐圧性をもたないかつ
集積度の高い論理回路部は高電圧領域から離間されてお
り、高電圧に起因する誤動作等も生じない。高耐圧電界
効果半導体装置を駆動制御する論理回路は上記出力線数
と入力線数との関係を保つ限り、限定されるものではな
い。すなわち出力線数に対し入力線数が非常に少なくで
きる回路であれば集積化技術で可能な限シの回路を同一
半導体装置内に集積化されてもよい。また高耐圧電界効
果半導体装置と論理回路が同一製造工程を経て同一半導
体基板上に作製する事によシ、通常の金属酸化物半導体
装置の製造技術で、しかも少ない製造工程で高電圧駆動
金属酸化物半導体装置の製造を可能にしている。しかが
って実施例において高耐圧電界効果半導体、論理回路と
もにDSA技術を用いているが、同一技術を用い上記出
力線数と入力線数との関係を保つ限、?DSA技術以外
の技術を用いても木発明の理念よシ逸脱するものではな
い。木発明による高電圧駆動金属酸化物半導体装置はフ
ラット、ディスプレー・パネルだけでなく静電プリンタ
等の高電圧、大電流駆動が必要な装置にも用いることの
できるものである。As described above, the present invention integrates a high voltage drive circuit and a logic circuit, reduces the number of input lines as much as possible compared to the number of output lines of the integrated semiconductor device, and has a large number of electrodes such as a multi-electrode display device. This facilitates the production of circuits such as display devices that require high voltage drive. That is, as a configuration of a semiconductor circuit board for driving a driven object having multiple electrode lines such as a display device, a high voltage field effect semiconductor device operating at a high voltage and having multiple output lines connected to the electrode lines of the driven object is used. A low-voltage operation logic circuit section is arranged at the periphery of the semiconductor circuit board and has a smaller number of input/output lines than the number of output lines of the high-voltage field-effect semiconductor device, and is arranged at the center of the semiconductor circuit board. As a result, the area where high voltage is applied and operates is provided along the periphery of the semiconductor circuit board, which improves the reliability of the circuit board against dielectric breakdown, etc., and also improves electrical connection with driven objects. It becomes easier. The highly integrated logic circuit section, which does not have high voltage resistance, is separated from the high voltage region, and malfunctions caused by high voltage do not occur. The logic circuit for driving and controlling the high voltage field effect semiconductor device is not limited as long as the above relationship between the number of output lines and the number of input lines is maintained. That is, as long as the number of input lines can be significantly reduced relative to the number of output lines, as many circuits as possible using integration technology may be integrated in the same semiconductor device. In addition, by fabricating high-voltage field-effect semiconductor devices and logic circuits on the same semiconductor substrate through the same manufacturing process, high voltage drive metal oxide This makes it possible to manufacture physical semiconductor devices. Therefore, in the embodiment, DSA technology is used for both the high-voltage field-effect semiconductor and the logic circuit, but as long as the same technology is used and the relationship between the number of output lines and the number of input lines is maintained, what is the problem? The use of technologies other than DSA technology does not deviate from the idea of tree invention. The high-voltage driven metal oxide semiconductor device according to the invention can be used not only for flat display panels but also for devices that require high-voltage and large-current drive, such as electrostatic printers.
従って木発明によれば、フラット・ディスプレー・パネ
ルや静電プリンタ等の多電極・高電圧・駆動装置のシス
テムを小型化、軽量化、低コスト化することができる。Therefore, according to the invention, it is possible to reduce the size, weight, and cost of multi-electrode, high-voltage, and drive device systems such as flat display panels and electrostatic printers.
第1図は従来技術を用いて作製した場合のフラット・デ
ィスプレー・パネルの駆動回路と論理回路のブロック図
、第2図は第1図に示す回路の動作を制御する制御信号
の一例を示すタイミングチャート、第3図は第1図に示
す論理回路を集積化した場合の一例を示すブロック図、
第4図は本発明の1実施例の説明に供する高耐圧電界効
果半導体装置、および論理回路を同一半導体基板内に製
造した場合の製造工程を示す断面図、第5図は第4図に
示す半導体装置のレイアウトの一例を示す平面図、第6
図は半導体基板の一部拡大平面図である。
SR1〜n・・・シフトレジスタ、 L1〜n・・・
ラッチ、 61〜n・・ゲート、 D1〜n・・・駆動
回路、30・・・半導体基板、 31.33.38.3
9・・・SiO□、 34.35,36.37・・・
開口、41・・・n型イオン注入層、 42・・・P型
不純物層、 43−1.43−2.43−3.43−4
・N型不純物層、 44・・・n型イオン注入層、51
.52.53,54,55.56・・・Al電極、 6
1・・・半導体基板、 62・・・高耐圧電界効果半導
体装置、 63・・・論理回路、 64・・・入力端子
。
代理人 弁理士 福 士 愛 彦(他2名)第1図
第4図
第5図
第6図Figure 1 is a block diagram of the drive circuit and logic circuit of a flat display panel manufactured using conventional technology, and Figure 2 is a timing diagram showing an example of a control signal that controls the operation of the circuit shown in Figure 1. 3 is a block diagram showing an example of the case where the logic circuit shown in FIG. 1 is integrated;
FIG. 4 is a cross-sectional view showing the manufacturing process when a high-voltage field-effect semiconductor device and a logic circuit are manufactured on the same semiconductor substrate to explain one embodiment of the present invention, and FIG. Plan view showing an example of the layout of a semiconductor device, No. 6
The figure is a partially enlarged plan view of a semiconductor substrate. SR1~n...Shift register, L1~n...
Latch, 61-n...gate, D1-n...driver circuit, 30...semiconductor substrate, 31.33.38.3
9...SiO□, 34.35, 36.37...
Opening, 41... N-type ion implantation layer, 42... P-type impurity layer, 43-1.43-2.43-3.43-4
・N-type impurity layer, 44...n-type ion implantation layer, 51
.. 52.53, 54, 55.56...Al electrode, 6
DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 62... High voltage field effect semiconductor device, 63... Logic circuit, 64... Input terminal. Agent Patent Attorney Aihiko Fuku (2 others) Figure 1 Figure 4 Figure 5 Figure 6
Claims (1)
動用出力線数を有し高電圧動作する高耐圧電界効果半導
体装置を前記被駆動体の駆動用半導体回路基板の周辺部
に整列させ、前記駆動用出力線数より少ない線数の信号
入力線を有しかつ前記高耐圧電界効果半導体装置へ信号
を出力する出力端を有し低電圧動作する論理回路部を前
記半導体回路基板の中央部に配置して成る半導体装置の
製造方法において、前記高耐圧電界効果半導体装置と前
記論理回路部は各々に対応する位置に形成されたマスク
パターンを介してP型不純物とN型不純物を基板内へ導
入せしめることにより同時形成されることを特徴とする
半導体装置の製造方法。1. A high voltage field effect semiconductor device that operates at a high voltage and has a number of driving output lines corresponding to the number of lines of input line groups arranged in a row on the driven object is installed around the driving semiconductor circuit board of the driven object. A logic circuit section that operates at a low voltage and has a signal input line with a smaller number of lines than the number of drive output lines and has an output terminal that outputs a signal to the high voltage field effect semiconductor device and operates at a low voltage is connected to the semiconductor device. In the method of manufacturing a semiconductor device disposed in the center of a circuit board, the high-voltage field effect semiconductor device and the logic circuit portion are doped with P-type impurities and N-type impurities through mask patterns formed at corresponding positions. A method for manufacturing a semiconductor device, characterized in that the semiconductor device is simultaneously formed by introducing impurities into a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60246491A JPS61172365A (en) | 1985-10-31 | 1985-10-31 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60246491A JPS61172365A (en) | 1985-10-31 | 1985-10-31 | Manufacture of semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10229676A Division JPS5327374A (en) | 1976-08-26 | 1976-08-26 | High voltage drive metal oxide semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61172365A true JPS61172365A (en) | 1986-08-04 |
Family
ID=17149187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60246491A Pending JPS61172365A (en) | 1985-10-31 | 1985-10-31 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61172365A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4928791A (en) * | 1972-07-14 | 1974-03-14 |
-
1985
- 1985-10-31 JP JP60246491A patent/JPS61172365A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4928791A (en) * | 1972-07-14 | 1974-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02106968A (en) | Semiconductor integrated circuit device and forming method thereof | |
EP0080361A2 (en) | Complementary metal-oxide semiconductor integrated circuit device of master slice type | |
US5111271A (en) | Semiconductor device using standard cell system | |
US4608748A (en) | Method of manufacturing a memory FET with shorted source and drain region | |
US5973366A (en) | High voltage integrated circuit | |
JP2822781B2 (en) | Master slice type semiconductor integrated circuit device | |
JPS62245661A (en) | Semiconductor memory | |
JPH07114281B2 (en) | Driver-Built-in active matrix substrate | |
US4194214A (en) | Integration of high voltage driver and low voltage logic in a semiconductor device | |
JPH06151780A (en) | Semiconductor device | |
JPH1065146A (en) | Semiconductor integrated circuit device | |
JPS61172365A (en) | Manufacture of semiconductor device | |
JPH0415618B2 (en) | ||
EP0097375A1 (en) | Three-dimensional semiconductor device | |
JPS58194355A (en) | Semiconductor integrated circuit device | |
CN115917630A (en) | Row driving signal enhancement circuit, shift register unit and display panel | |
US20030049891A1 (en) | Utilization of MACRO power routing area for buffer insertion | |
JPH04164371A (en) | Semiconductor integrated circuit | |
JP2830781B2 (en) | Master slice type gate array | |
JPS57202776A (en) | Semiconductor device | |
JPS6146974A (en) | Electroluminescence apparatus | |
JPH04372168A (en) | Forming method for layout pattern data | |
JPH03169073A (en) | Semiconductor integrated circuit device | |
KR100216734B1 (en) | Common anode parallel thyristor and the manufacturing method of the module thereof | |
US20020003311A1 (en) | Semiconductor device with high resistance element and process for manufacturing the same |