[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61170027A - Manufacture of group iii-v semiconductor device - Google Patents

Manufacture of group iii-v semiconductor device

Info

Publication number
JPS61170027A
JPS61170027A JP1125385A JP1125385A JPS61170027A JP S61170027 A JPS61170027 A JP S61170027A JP 1125385 A JP1125385 A JP 1125385A JP 1125385 A JP1125385 A JP 1125385A JP S61170027 A JPS61170027 A JP S61170027A
Authority
JP
Japan
Prior art keywords
film
active layer
implanted
recoil
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1125385A
Other languages
Japanese (ja)
Inventor
Masaaki Kuzuhara
正明 葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1125385A priority Critical patent/JPS61170027A/en
Publication of JPS61170027A publication Critical patent/JPS61170027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To realize the extremely thin active layer having a high activation rate, a high mobility, a deep level, and a low concentration by implanting an inert gas after covering the surface of a semiconductor substrate with specified silicon oxide film (SiNx) during the process of ion implantation of N-type impurity. CONSTITUTION:An SiNx film 2 of 50nm thick having an N composition of 2/3 is spread over a semi-insulating GaAs substrate 1 and further a CVD SiO2 film 3 is deposited on that to 200nm. Only the SiO2 film 3 of the region for forming a device is removed selectively, after which Ar ions 10 is implanted into the overall surface to 1.2X10<13>cm<-2> by 40 keV. Consequently the Si atoms only in the device forming region are recoil-implanted to form an active layer 4. Then it is possible to realize the thickness of an active layer of 30nm which is extremely thin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオン注入法を用いて■−v族半導体装置を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a ■-v group semiconductor device using an ion implantation method.

(従来技術とその問題点) 近年、半導体集積回路の高速化を目的として、ガリウム
砒素(GaAsと記す)半導体を動作層に用いるGaA
s集積回路の開発が活発に行われている。GaAs集積
回路の基本素子としては電界効果トランジスタが一般に
用いられているが、かかる素子の形成方法としてその均
一性、制御性および量産的見地からイオン注入法が広く
用いられている。
(Prior art and its problems) In recent years, with the aim of increasing the speed of semiconductor integrated circuits, GaA, which uses gallium arsenide (abbreviated as GaAs) semiconductor in the active layer, has been developed.
s Integrated circuits are being actively developed. Field effect transistors are generally used as the basic elements of GaAs integrated circuits, and ion implantation is widely used as a method for forming such elements from the viewpoints of uniformity, controllability, and mass production.

近年の08人3集積回路の開発においては、回路の高速
化を図る上で電界効果トランジスタの相互コンダクタン
ス(gm)を高めることが不可欠となっている。!it
nは動作層のキャリア濃度を増加することにより高くす
ることができるが、キャリア濃度の増加は同時に電界効
果トランジスタのしきい値電圧の負側へのシフトを招く
。したがって、しきい値電圧を一定に保ちつつ、9mを
増加させるためには高キャリア濃度でしかも浅い動作層
を形成することが必要である。
In the recent development of integrated circuits, it has become essential to increase the mutual conductance (gm) of field effect transistors in order to increase the speed of the circuits. ! it
Although n can be increased by increasing the carrier concentration of the active layer, increasing the carrier concentration simultaneously causes a shift of the threshold voltage of the field effect transistor to the negative side. Therefore, in order to increase 9m while keeping the threshold voltage constant, it is necessary to form a shallow active layer with high carrier concentration.

浅く高キャリア濃度をもつ動作層を形成する方法として
は、従来2通りの方法が報告されている。
Two methods have been reported to date for forming a shallow active layer with high carrier concentration.

佐野らは第31回応用物理学会講演予稿集昭59年春季
535ページにおいて、第4図に示した如くSlイオン
の注入エネルギを従来の60 keVから20 keV
に減少させることにより浅い動作層を得ている。この方
法は加速エネルギの低減により注入イオンの投影飛程を
減少させるものである。この方法はプロセスが簡便であ
るという長所を有するが、加速エネルギ20 keVと
いう値は現状のイオン注入機で得られる最低エネルギ値
に相当するため、今後さらに加速エネルギを下げてさら
に浅い動作層を得るのは困難である。また、この方法で
は注入された不純物分布がほぼガウス分布を有すること
から動作層の表面側に低キヤリア濃度領域が存在し、こ
のため、この領域において顕著な光応答が発生したり、
深い単位の影響でトランジスタ特性に強いヒステリシス
が生じ易いという欠点を有していた。
In Proceedings of the 31st Annual Conference of the Japan Society of Applied Physics, Spring 1980, page 535, Sano et al. reported that the implantation energy of Sl ions was increased from the conventional 60 keV to 20 keV, as shown in Figure 4.
A shallow operating layer is obtained by reducing the This method reduces the projected range of implanted ions by reducing the acceleration energy. This method has the advantage of a simple process, but since the acceleration energy value of 20 keV corresponds to the lowest energy value that can be obtained with current ion implanters, the acceleration energy will be lowered further in the future to obtain an even shallower active layer. is difficult. In addition, in this method, since the implanted impurity distribution has a nearly Gaussian distribution, a low carrier concentration region exists on the surface side of the active layer, and therefore a remarkable photoresponse occurs in this region.
It has the disadvantage that strong hysteresis tends to occur in transistor characteristics due to the influence of deep units.

浅い動作層を形成するためのもうひとつの方法は、スル
ー注入法を用いる方法で小野前らが第30回応用物理学
会講演予稿集昭和58年春季461ページにおいて4告
している。第5図はスルー注入により形成した動作層と
直接イオン注入により形成した動作層の注入イオン濃度
分布を比較して示したものである。図に示した如く、ス
ルー注入では基板表面に設けられた絶縁膜中に注入され
た厚さ分だけイオン濃度分布の深さが浅くなる。この場
合、絶縁膜の厚さは通常注入イオンの投影飛程付近に設
定されるため、全注入イオン数の半分は絶縁膜中に、残
り半分は半導体基板中に注入されることになる。直接イ
オン注入により得られる動作層の厚さは、イオンの投影
飛程をRPとすれば、はぼ2R,で表わされるため、上
記スルー注入の場合の動作層厚はほぼR,となる。これ
より、厚さBPの動作層を形成するためには絶縁膜の厚
さも式に設定することが必要であり、動作層厚の制御性
、均一性は、被着する絶縁膜厚の制御性、均一性に大き
く左右される。絶縁膜の形成法としては、CVD法やス
パッタ法が使用されるが、今日これらの方法により再現
性、均一性良く得られる膜厚の最低値は50 nm程度
であり、この値より薄い膜厚では膜厚の制御性やウウハ
内での均一性が著しく低下する。したがって、スルー注
入法により制御性良く得られる動作層厚の最低値も50
 nm程度留りとなる。以上述べた如く、低エネルギ注
入を用いる第1の方法ではイオン注入機の構造から、ま
たスルー注入を用いる第2の方法では被着する絶縁膜の
膜厚の制限からそれぞれ動作層厚の最低値が制限されて
しまい、さらに薄い(例えば20〜30 nm )動作
層厚を実現するのは困難である。
Another method for forming a shallow active layer is the through injection method, which is reported by Onomae et al. in Proceedings of the 30th Japan Society of Applied Physics, Spring 1980, page 461. FIG. 5 shows a comparison of the implanted ion concentration distributions of an active layer formed by through implantation and an active layer formed by direct ion implantation. As shown in the figure, in through implantation, the depth of the ion concentration distribution becomes shallower by the thickness of the implanted into the insulating film provided on the substrate surface. In this case, since the thickness of the insulating film is usually set near the projected range of the implanted ions, half of the total number of implanted ions are implanted into the insulating film and the other half into the semiconductor substrate. The thickness of the active layer obtained by direct ion implantation is expressed as approximately 2R, where RP is the projected range of ions, so the thickness of the active layer in the case of the above-mentioned through implantation is approximately R. From this, in order to form an active layer with a thickness of BP, it is necessary to set the thickness of the insulating film according to the formula, and the controllability and uniformity of the active layer thickness depends on the controllability of the thickness of the deposited insulating film. , highly dependent on uniformity. The CVD method and sputtering method are used to form insulating films, but today the minimum film thickness that can be obtained with good reproducibility and uniformity using these methods is about 50 nm, and film thicknesses thinner than this value are In this case, the controllability of the film thickness and the uniformity within the wafer are significantly reduced. Therefore, the minimum value of the active layer thickness that can be obtained with good controllability by the through injection method is also 50
It remains at about nm. As mentioned above, the first method using low-energy implantation requires a minimum operating layer thickness due to the structure of the ion implanter, and the second method using through implantation requires a minimum operating layer thickness due to limitations on the thickness of the insulating film to be deposited. is limited, and it is difficult to realize even thinner active layer thicknesses (eg, 20-30 nm).

以上に挙げた2通りの従来方法に対し、さらに薄い動作
層厚が実現可能な方法としてリコイル注入法が考えられ
る。これは1.多層膜より成るターゲット材料にイオン
注入した時に生じる反跳原子(リコイル原子)によるイ
オン注入を利用するものである。例として、シリコン窒
化膜/ GaAsの二層構造にアルゴン(Ar)イオン
を注入し、人rイオンとの核衝突により生じたシリコン
(8i)原子をGaAsにリコイル注入する場合を考え
る。
In contrast to the two conventional methods listed above, the recoil injection method can be considered as a method that can realize an even thinner active layer thickness. This is 1. This method utilizes ion implantation using recoil atoms that occur when ions are implanted into a target material made of a multilayer film. As an example, consider the case where argon (Ar) ions are implanted into a two-layer structure of silicon nitride film/GaAs, and silicon (8i) atoms generated by nuclear collision with human r ions are recoil-injected into GaAs.

リコイルS1原子を生成するための表面膜としてはシリ
コン窒化膜(83Nx)以外にシリコン酸化膜(8i0
t)やアモルファス・シリコン膜(a−8i)が考えら
れるが、以下に挙げる理由により後者2つは使用できな
い。すなわち、8i0.を用いる方法では、リコイルS
1原子以外に多食のりコイル酸素原子がGaAs中に導
入されて深い準位を形成し、これが8+ ドナーから発
生した自由電子を捕捉するため有効なキャリア発生が妨
げられてしまう。
In addition to silicon nitride film (83Nx), silicon oxide film (8i0
t) and an amorphous silicon film (a-8i), but the latter two cannot be used for the following reasons. That is, 8i0. In the method using recoil S
In addition to a single atom, polycarboxylic coil oxygen atoms are introduced into GaAs to form a deep level, which traps free electrons generated from 8+ donors, thereby hindering effective carrier generation.

また、1−84を用いる方法ではりコイル注入後、不用
になったa−8iや8iNxや8i01の場合のように
弗化水素酸を用いて選択的に除去できないため、デバイ
ス製造上の観点からみるとその応用範囲が大巾に限定さ
れてしまう・一方、リコイルSi源として81Nxを用
いた場合においても次に示すような問題点がある。第3
図は、はぼストイキオメトリ組成(すなわち5tsNa
)をもつ8iNz膜を牛絶縁性GaAs基板上に50 
nm被着した後、人rイオンを40 keVでI X 
10”cm−1注入した時GaAs中にリコイル注入さ
れるSlおよびNの原子製置分布を示したものである。
In addition, in the method using 1-84, after the beam coil is implanted, it cannot be selectively removed using hydrofluoric acid as in the case of a-8i, 8iNx, and 8i01 that are no longer used, so from the viewpoint of device manufacturing. As a result, its application range is largely limited.On the other hand, even when 81Nx is used as a recoil Si source, there are the following problems. Third
The figure shows the stoichiometry composition (i.e. 5tsNa
) was deposited on an insulating GaAs substrate.
After nm deposition, human r ions were exposed to IX at 40 keV.
This figure shows the atomic placement distribution of Sl and N that are recoil-injected into GaAs when implanted at 10''cm-1.

リコイルS1原子の濠度分布はGaAs基板表面で過大
値をとり、深さとともにほぼ直線的に減少する。表面製
置から原子濃度が2桁減少したときの深さは約30 a
mであり極めて薄い動作層が形成されている。しかしな
がら、第3図の場合においてはりコイル8i原子濃度に
比べてリコイルN原子濃度の方が2〜3倍多い。W、 
M、 Duncan等はジャーナル・オブ・アプライド
・フィジイクス(J8人pp1. Phys、)198
4年第56巻1059ページにおいて窒素(5)はGa
As中で深いアクセプタ準位を形成し、自由電子を捕捉
する作用があることを報告しており、8iと同時に注入
されたNは実質上8iイオンの活性化率を低下させ同時
に動作層の移動度を悪化させる原因となる。したがって
、以上の方法により形成したn形層を電界効果トランジ
スタの動作層として用いた場合、低活性化率は電界効果
トランジスタのしきい値電圧の制御性を悪化させ、移動
度の低下はトランジスタ特性を悪化させ、また深い準位
の存在は光応答やヒステリシスの原因となるため、必ず
しも、浅く高キャリア濃度の動作層の利点が十分に生か
されていないという欠点があったO (発明の目的) 本発明の目的は、前記S + NX膜をリコイルSi源
として浅い動作層を形成した場合に生じる問題点を改善
し、活性化率および移動度が高く、深い準位の濃度が低
い極めて薄い(例えば20〜30nm)動作層を実現す
る方法を提供することにある。
The moat distribution of recoil S1 atoms takes an excessive value on the surface of the GaAs substrate and decreases almost linearly with depth. The depth when the atomic concentration decreases by two orders of magnitude from the surface is about 30 a.
m, and an extremely thin active layer is formed. However, in the case of FIG. 3, the recoil N atomic concentration is two to three times higher than the beam coil 8i atomic concentration. W,
M. Duncan et al. Journal of Applied Physics (J8 pp1. Phys,) 198
In Year 4, Volume 56, Page 1059, nitrogen (5) is Ga
It has been reported that N implanted at the same time as 8i substantially reduces the activation rate of 8i ions and at the same time causes movement of the active layer. This may cause the condition to worsen. Therefore, when the n-type layer formed by the above method is used as the active layer of a field effect transistor, a low activation rate deteriorates the controllability of the threshold voltage of the field effect transistor, and a decrease in mobility deteriorates the transistor characteristics. In addition, the existence of deep levels causes photoresponse and hysteresis, so the advantages of a shallow active layer with high carrier concentration are not necessarily fully utilized (Objective of the invention) The purpose of the present invention is to improve the problems that occur when a shallow active layer is formed using the S + NX film as a recoil Si source, and to form an extremely thin active layer with high activation rate and mobility and low concentration of deep levels. The object of the present invention is to provide a method for realizing an active layer (for example 20-30 nm).

(発明の構成) 本発明によれば、■−v族半導体単結晶基板に1形不純
物をイオン注入する工程において、該半導体基板表面を
窒素とシリコンの組成比が4/3より小さいシリコン窒
化膜(SiNx)で覆ったのち、不活性ガスをイオン注
入することを特徴とする■−V族半導体装置の製造方法
が得られる。
(Structure of the Invention) According to the present invention, in the step of ion-implanting a type 1 impurity into a -V group semiconductor single crystal substrate, the surface of the semiconductor substrate is covered with a silicon nitride film having a nitrogen to silicon composition ratio of less than 4/3. A method for manufacturing a (1)-V group semiconductor device is obtained, which is characterized in that after covering with (SiNx), ions of an inert gas are implanted.

(構成の詳細な説明) 本発明は、8iNx/GaAsなる二層構造に不活性ガ
スをイオン注入したときに生じるリコイル81原子とり
コイルNU子のGaAs中への注入量および注入分布が
SiNx膜のN組成Xによって大きく変化することを利
用するものである。−次イオンとしてG5As中に導入
される不活性ガス原子は電気的に不活性であり、キャリ
アの発生には寄与しない。リコイル注入されるN原子と
St原子の注入量の比は、表面膜3iNxのN組成Xと
正の相関関係があり、例えば50 nmの8 iNx膜
を通してGaAsにArイオンを40 keVで注入す
る際、8iNz膜のN組成Xを4/3からその半分の2
73に減じると、GaAs中にリコイル注入されるN原
子と8i原子の比はもとの値の約1/3に減少し、リコ
イルN原子の注入量を減少させるためには8iN。
(Detailed description of the structure) The present invention is characterized in that the injection amount and injection distribution of recoil 81 atoms and coil NU elements into GaAs, which are generated when an inert gas is ion-implanted into a two-layer structure of 8iNx/GaAs, are different from those of the SiNx film. This takes advantage of the fact that the N composition varies greatly depending on the N composition X. - The inert gas atoms introduced into G5As as secondary ions are electrically inactive and do not contribute to the generation of carriers. The ratio of the implanted amount of recoil-implanted N atoms and St atoms has a positive correlation with the N composition X of the surface film 3iNx. For example, when Ar ions are implanted into GaAs at 40 keV through a 50 nm 8iNx film, , the N composition X of the 8iNz film is reduced from 4/3 to 2
73, the ratio of recoil-implanted N atoms to 8i atoms in GaAs is reduced to about 1/3 of the original value, and 8iN is required to reduce the recoil N-atom implantation amount.

膜のN組成Xを減少させることが有効であることがわか
る。ただし、8iNK膜のN組成Xの減少は8iNx膜
の弗化水素酸に対するエツチング速度の低下を招くため
、8iNx膜を後のプロセスで除去する必要がある場合
はむやみにN組成Xを小さくできない。弗化水素酸に対
するエツチング速度はN組成Xが0.6のとき約5nm
/minとなり、実用上はN組成Xの最低値を0.68
度に選ぶのがよいO (実施例) 以下に本発明を実験事実とともに実施例を用いて説明す
る。第1図は面方位(100) L B C(Li q
u idBncapsulmted  Cxochrs
lski)法アンドープーAs基板にN組成x = 2
 / 3をもつSiNx膜を50 nm被着し、続いて
にイオンを40 keVで5 X 10”clIL4室
温注入し、その後表面8iNx嘆を弗化水素酸を用いて
除去した試料のりコイル引原子およびリコイルN原子の
原子濃度分布を二次イオン質量分析(l]IM8)で測
定した結果を示したちのである。5INxVIXの形成
にはモノシラン(8iH,)とアンモニア(NHs)の
熱分解CVD法を用い、N組成Xは、81H,の流量を
一定に保ちつつNH,の流量を減少させることにより小
さくすることができる。
It can be seen that it is effective to reduce the N composition X of the film. However, since a decrease in the N composition X of the 8iNK film causes a decrease in the etching rate of the 8iNx film with hydrofluoric acid, the N composition X cannot be reduced unnecessarily if the 8iNx film needs to be removed in a later process. The etching rate for hydrofluoric acid is approximately 5 nm when the N composition X is 0.6.
/min, and in practice the lowest value of N composition X is 0.68.
(Examples) The present invention will be explained below using examples together with experimental facts. Figure 1 shows the surface orientation (100) L B C (Li q
u idBncapsulmted Cxochrs
lski) method undoped As substrate with N composition x = 2
The samples were deposited with 50 nm of SiNx film with 3/3 ions, followed by room temperature implantation of 5 X 10" ions at 40 keV, and then the surface 8iNx layer was removed using hydrofluoric acid. We show the results of measuring the atomic concentration distribution of recoil N atoms by secondary ion mass spectrometry (l] IM8). 5INxVIX was formed using the thermal decomposition CVD method of monosilane (8iH,) and ammonia (NHs). , N composition X can be reduced by decreasing the flow rate of NH, while keeping the flow rate of 81H constant.

第1図に示されるように、N組成Xを2/3に減少させ
たものでもリコイル8i原子の濃度分布はGsAa基板
表面で最大値をとり、深さとともにほぼ直線的に減少す
る。また、表面濃度から原子濃度が2桁減少したときの
深さは約30 nrnであり極めて薄い動作層厚が実現
されている。さらlζ、表面から15 amに渡りては
8i原子濃度の方がN原子濃度より高くなっており、N
組成Xが4/3をもつ5iNzを用いた場合(第3図)
に比べてN原子による深い準位の影響が大巾に低減でき
ていることがわかる。次に、本発明による極薄動作層の
デバイス応用上の有効性を調べるため、W8ixゲート
によるセルファライン方式の電界効果トランジスタを作
製した。デバイス作製手順は第2図に示す通りである。
As shown in FIG. 1, even when the N composition X is reduced to 2/3, the concentration distribution of recoil 8i atoms takes a maximum value at the surface of the GsAa substrate and decreases almost linearly with depth. Further, the depth when the atomic concentration is reduced by two orders of magnitude from the surface concentration is approximately 30 nrn, and an extremely thin active layer thickness is realized. Further lζ, the 8i atom concentration is higher than the N atom concentration over 15 am from the surface;
When using 5iNz with composition X of 4/3 (Figure 3)
It can be seen that the influence of the deep level caused by N atoms can be greatly reduced compared to the above. Next, in order to investigate the effectiveness of the ultra-thin active layer according to the present invention in device applications, a self-line field effect transistor using a W8ix gate was fabricated. The device manufacturing procedure is as shown in FIG.

まず、半絶縁性GaAs基板1上に厚さ50 nmのN
組成2/3をもつ5iNz膜2を全面被着し、さらにそ
の上にCVD5tO,膜3を200 nm堆積する。(
第2図(a))次にデバイスを形成する領域のS io
@ llX3のみを選択的に除去し、その後人rイオン
10を40 keVで1.2XlO”Cl71”全面注
入する。これによりデバイス形成領域においてのみ81
原子がリコイル注入されて動作層4が形成される。(第
2図(b) ) Arイオン注入後、S i O!膜3
および8iNx膜2の両方を除去し新たにアニール保e
k膜として屈折率1.75をもつCVD  5ioxN
、膜5を90 nm被着する。動作+4のアニールは赤
外線フラッジ−・アニールにより950℃、4秒間行う
。(第2図←))その後了ニール保穫膜を除去し、ゲー
ト金属としてWSlxを500 nm被着する。8F、
ガスによるドライ・エツチングによりゲート長1μmの
ゲート電極6を形成した後、(@2図(d))ソースお
よびドレイン領域のための1層としてStイオン11を
100 keVでl ×10”CI+!−”注入してn
+コンタクト層8を形成する。(第2図(e) ) −
”層のアニールは900℃、4秒間同じ<5IOxNア
保護膜を用いて行う。(第2図(f))次に、ソースお
よびドレイン用オーミック電極9としてAuGe/Ni
を蒸着し、420℃のアロイング工程の後、パッド電極
としてT i / Auを蒸着してデバイスが完成する
。(第2図(g))得られた電界効果トランジスタのし
きい値電圧は約−〇、3vであり、l1m値としては平
均で250 m8/闘、最大値として310 m8/a
mという高い値が得られ、本発明の有効性が実証された
First, a layer of N with a thickness of 50 nm was placed on a semi-insulating GaAs substrate 1.
A 5iNz film 2 having a composition of 2/3 is deposited over the entire surface, and a CVD 5tO film 3 is further deposited to a thickness of 200 nm thereon. (
FIG. 2(a)) Sio of the area where the device will be formed next
@llX3 only is selectively removed, and then human r ions 10 are implanted over the entire surface at 40 keV with 1.2XlO"Cl71". As a result, only 81
The active layer 4 is formed by recoil injection of atoms. (Fig. 2(b)) After Ar ion implantation, S i O! membrane 3
and 8iNx film 2 and newly annealed
CVD 5ioxN with refractive index 1.75 as k film
, deposit 90 nm of film 5. Operation +4 annealing is performed by infrared flood annealing at 950° C. for 4 seconds. (Fig. 2 ←)) After that, the anneal protection film is removed, and 500 nm of WSlx is deposited as a gate metal. 8F,
After forming a gate electrode 6 with a gate length of 1 μm by dry etching with gas (@2 (d)), St ions 11 were added as a layer for the source and drain regions at 100 keV l×10”CI+!- ``Inject n
+Contact layer 8 is formed. (Figure 2(e)) -
The layer is annealed at 900°C for 4 seconds using the same <5IOxN a protective film (Fig. 2(f)). Next, AuGe/Ni is used as the source and drain ohmic electrodes 9.
After an alloying process at 420° C., Ti/Au is deposited as a pad electrode to complete the device. (Figure 2 (g)) The threshold voltage of the obtained field effect transistor is approximately -0.3V, and the l1m value is 250 m8/a on average and 310 m8/a as the maximum value.
A high value of m was obtained, demonstrating the effectiveness of the present invention.

(発明の効果) 本発明の方法を用いることにより、30 nmという極
めて薄い動作層厚を実現することができ、300 ms
/mlを越える高いpmをもつ電界効果トランジスタの
作製が可能となる。また、N組成が2/3である8iN
z膜を使用することにより使用後の弗化水素酸による8
iNx膜の剥離が容易で、しかもリコイルN原子による
深い準位の影響を抑えて光応答やヒステリシスの少ない
良好なトランジスタ特性を得ることができる。
(Effects of the Invention) By using the method of the present invention, an extremely thin active layer thickness of 30 nm can be achieved, and a 300 ms
It becomes possible to fabricate a field effect transistor having a high pm of more than /ml. In addition, 8iN whose N composition is 2/3
8 by using hydrofluoric acid after use by using Z membrane.
The iNx film can be easily peeled off, and the influence of deep levels caused by recoil N atoms can be suppressed to obtain good transistor characteristics with little photoresponse and hysteresis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるリコイル原子濃度分布を示す図、
第2図(a)から(g)は本発明の実施列を工程順に示
すための断面図、第3図は8i1N4膜を用いてリコイ
ル注入したときのりコイル原子濃度分布を示す図、第4
図は従来例によるイオン注入分布を示す図、第5図は別
の従来例によるイオン注入分布を示す図である。 1・・・半絶縁性GaAs基板、2 ・S iNX膜(
x=2/3)3・・・8i01膜、      4・・
動作層5・・・S i OxNyl臭、    6・・
・ゲート電極7・・・ホトレジスト、    8・・n
4コンタクト層9・・・オーミック°成極、  1o・
・・居イオン11・・・8iイオン、 代7人弁二士内原  晋 第1図 0O11 :I伝 さ  (μ笥) 、41!Z図 第2図 第 3 図 0                     0.1
5児 二 Cpm) 第 4図 5光2  (メ常) 第5図 0   0、l    0.2 う茄さ (l笥〕
FIG. 1 is a diagram showing the recoil atom concentration distribution according to the present invention,
Figures 2 (a) to (g) are cross-sectional views showing the implementation rows of the present invention in process order; Figure 3 is a diagram showing the glue coil atomic concentration distribution when recoil implantation is performed using an 8i1N4 film; Figure 4
This figure shows an ion implantation distribution according to a conventional example, and FIG. 5 is a diagram showing an ion implantation distribution according to another conventional example. 1... Semi-insulating GaAs substrate, 2 ・SiNX film (
x=2/3) 3...8i01 film, 4...
Operating layer 5...S i OxNyl odor, 6...
・Gate electrode 7...photoresist, 8...n
4 Contact layer 9...Ohmic polarization, 1o.
・・Iion 11...8i ion, Dai 7 Ben two master Susumu Uchihara 1st figure 0O11: Idensa (μ笥), 41! Z diagram Figure 2 Figure 3 Figure 0 0.1
5 children 2 Cpm) Fig. 4 5 light 2 (Mejo) Fig. 5 0 0, l 0.2 Ukasa (l 笥)

Claims (1)

【特許請求の範囲】[Claims] III−V族半導体単結晶基板にn形不純物をイオン注入
する工程において、該半導体基板表面を窒素とシリコン
の組成比が4/3より小さいシリコン窒化膜(SiN_
x)で覆ったのち、不活性ガスをイオン注入することを
特徴とするIII−V族半導体装置の製造方法。
In the step of ion-implanting n-type impurities into a III-V group semiconductor single crystal substrate, the surface of the semiconductor substrate is covered with a silicon nitride film (SiN_
1. A method for manufacturing a III-V semiconductor device, which comprises covering the device with x) and then ion-implanting an inert gas.
JP1125385A 1985-01-24 1985-01-24 Manufacture of group iii-v semiconductor device Pending JPS61170027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1125385A JPS61170027A (en) 1985-01-24 1985-01-24 Manufacture of group iii-v semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125385A JPS61170027A (en) 1985-01-24 1985-01-24 Manufacture of group iii-v semiconductor device

Publications (1)

Publication Number Publication Date
JPS61170027A true JPS61170027A (en) 1986-07-31

Family

ID=11772771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125385A Pending JPS61170027A (en) 1985-01-24 1985-01-24 Manufacture of group iii-v semiconductor device

Country Status (1)

Country Link
JP (1) JPS61170027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500946A (en) * 1986-10-08 1989-03-30 ヒユーズ・エアクラフト・カンパニー T-gate electrode for field effect transistor and field effect transistor forming it
JPH021136A (en) * 1987-10-23 1990-01-05 Vitesse Semiconductor Corp Dielectric cap for iii-v device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500946A (en) * 1986-10-08 1989-03-30 ヒユーズ・エアクラフト・カンパニー T-gate electrode for field effect transistor and field effect transistor forming it
JPH021136A (en) * 1987-10-23 1990-01-05 Vitesse Semiconductor Corp Dielectric cap for iii-v device

Similar Documents

Publication Publication Date Title
JPH02253632A (en) Manufacture of field effect transistor
JPS6063961A (en) Manufacture of semiconductor device
JPH0714064B2 (en) Method for passivating the surface of a compound semiconductor
US20040207029A1 (en) Junction field effect metal oxide compound semiconductor integrated transistor devices
CN114256065A (en) Method for manufacturing gate oxide layer of SiC MOSFET device
TW201820423A (en) Oxide semiconductor device and method for manufacturing same
US4772489A (en) Method of annealing a compound semiconductor substrate
JPS5915388B2 (en) semiconductor equipment
US4305086A (en) MNOS Memory device and method of manufacture
JPS62271475A (en) Semiconductor device
JPS61170027A (en) Manufacture of group iii-v semiconductor device
US3936321A (en) Method of making a compound semiconductor layer of high resistivity
JPS631072A (en) Thin-film field-effect transistor
JPS61170028A (en) Manufacture of group iii-v semiconductor device
JPH039612B2 (en)
JPS61239672A (en) Manufacture of iii-v semiconductor device
JP2792948B2 (en) Method for manufacturing semiconductor device
JPS61170026A (en) Manufacture of group iii-v semiconductor device
JPS6273627A (en) Manufacture of iii-v semiconductor device
JPS62190768A (en) Semiconductor device
JPS6273628A (en) Manufacture of iii-v semiconductor device
TW241378B (en) Method for increasing the characteristic of thin film transistor
JPH0571193B2 (en)
JPS61114582A (en) Semiconductor device
JPH04111431A (en) Manufacture of field-effect transistor