[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61176111A - Manufacture of compound semiconductor thin film - Google Patents

Manufacture of compound semiconductor thin film

Info

Publication number
JPS61176111A
JPS61176111A JP1674485A JP1674485A JPS61176111A JP S61176111 A JPS61176111 A JP S61176111A JP 1674485 A JP1674485 A JP 1674485A JP 1674485 A JP1674485 A JP 1674485A JP S61176111 A JPS61176111 A JP S61176111A
Authority
JP
Japan
Prior art keywords
gas
substrate
thin film
compound semiconductor
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1674485A
Other languages
Japanese (ja)
Other versions
JP2549835B2 (en
Inventor
Hideaki Iwano
岩野 英明
Hiroyuki Oshima
弘之 大島
Hiroshi Komatsu
博志 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60016744A priority Critical patent/JP2549835B2/en
Publication of JPS61176111A publication Critical patent/JPS61176111A/en
Application granted granted Critical
Publication of JP2549835B2 publication Critical patent/JP2549835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture the compound semiconductor thin film of good quality in an excellent reproducible manner as well as to enable to manufacture a heterointerfaced compound semiconductor film having a steep compositional change. CONSTITUTION:A GaAs single crystal substrate 109 is provided on a substrate holder 108, hydrogen gas and arsine gas are fed into a reaction furnace 102 from a gas system 110 as carrier gas. The light source 105 of argon ion laser is turned ON under the above-mentioned condition, and an ultrathin oxide film is removed and a clean surface is obtained by projecting a visible laser beam on the substrate surface. Then, the laser beam is cut off, the vapor of organic metal compound such as trimethylgallium and the like is introduced from a gas system 101 as the bubbling gas of hydrogen gas, the switch of argon ion laser is turned ON, the argon ion laser is made to irradiate on the surface of the substrate, and the temperature of the substrate is raised. Also, nitrogen gas is blown on the back side of the substrate at the same time through a pipe plate 111, the rise in temperature of the substrate holder is prevented by heat conduction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体薄膜の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a compound semiconductor thin film.

〔従琴の技術〕[Jukin technology]

近年、ガリウムひ素(aa All )等の璽−V族化
合物半導体薄膜、硫化亜鉛(zna)等の1−■族化合
物半導体薄膜の製造方法として、有機金属化合物(例え
ばトリメチルガリウム(TMez) 、ジエチル亜鉛(
DIZ?1.)等)の原料と、7に−77(k8H,)
In recent years, organometallic compounds (e.g. trimethyl gallium (TMez), diethyl zinc) have been (
DIZ? 1. ) etc.) and -77 (k8H,) to 7.
.

偕化水素(H,S)等の水素化物を所定量混合し、格子
定数の合う基板上に、薄膜成長させる化学気相成長法C
以下 MOOVD法と称する)が活発に研究されている
。このMO(!VD法は、大面積の薄部形成が可能であ
り量産性に優れている友め、従来半導体レーザの製造に
使用されている液相エビタ千シャル法(I、PK法)に
比べて1歩留りやコストの面で有利であると考えられて
いる。従来のMO−OVD法は高周波忙よる加熱あるい
け抵抗熱源による加熱、あるいけ赤外線ランプによる加
熱等により、600℃〜800℃程度に771’l熱さ
れたJIg板上に原料ガスを流して、エピタキシャル成
長させるものであった。
Chemical vapor deposition method C in which a predetermined amount of hydride such as hydrogen chloride (H, S) is mixed and a thin film is grown on a substrate with matching lattice constants.
(hereinafter referred to as MOOVD method) is being actively researched. This MO(!VD method is a companion to the liquid-phase Evita-Kensharu method (I, PK method), which is conventionally used in the production of semiconductor lasers, because it allows the formation of thin parts over a large area and is superior in mass productivity. It is considered to be advantageous in terms of yield and cost compared to conventional MO-OVD methods, which use high frequency heating, heating with a resistive heat source, heating with an infrared lamp, etc. Epitaxial growth was carried out by flowing source gas onto a JIg plate heated to approximately 771'l.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では、基板周囲のガスも加熱さ
れ、ガス/l”−気相中で分解反応をしながら基板表面
に到達するので、気相中での中間生成物の種類、量h=
−宇せず、膜質の再現性hL悪いという問題点を有して
いる。
However, in the above-mentioned conventional technology, the gas around the substrate is also heated and reaches the substrate surface while undergoing a decomposition reaction in the gas/l'' gas phase, so the type and amount of intermediate products in the gas phase h =
- However, there is a problem that the reproducibility of the film quality is poor.

更に、例えば、侃hs/At aa hs等のへテロ接
合を形成する場合には、反応炉中に導入する原料ガスの
交換に時間がかかり、その間には、反応管、ガス配管中
の残留ガスh=、m@の異なる成*f行なってしまうt
め、急峻な組成変化のある膜形成は困難であるという問
題点を有している。
Furthermore, for example, when forming a heterojunction such as 侃hs/At aahs, it takes time to replace the raw material gas introduced into the reactor, and during that time, residual gas in the reaction tube and gas piping is removed. Different formations of h=, m@*f are performed t
Therefore, it is difficult to form a film with a steep compositional change.

そこで本発明はこのような問題点を解決するもので、そ
の目的と干るところは、良質の化合物半導体薄膜を再現
性よく製造し、得る方法を提供し、更に半導体レーザ等
の光学素子に用いられる超格子構造等を形成する為に必
要な急峻な組成変化のあるヘテロ界面を有する化合物半
導体薄膜の製造を可能にする方法を提供するところにあ
る。
The present invention is intended to solve these problems, and its main purpose is to provide a method for manufacturing and obtaining a high-quality compound semiconductor thin film with good reproducibility, and to provide a method for manufacturing and obtaining a high-quality compound semiconductor thin film, which can also be used in optical elements such as semiconductor lasers. An object of the present invention is to provide a method that enables the production of a compound semiconductor thin film having a heterointerface with a steep compositional change necessary for forming a superlattice structure or the like.

r間哩廃を解決するための手段〕 本発明の化合物半導体薄膜の製造方法は、可視域の波長
範囲を有する光源装置により、反応炉中の原料ガス雰囲
気中に置かれ几基板の表面上に光照射を行ない、同時に
前記基板裏面上に冷却ガスを吹きつけ基板上忙薄嘆形成
することを特徴とする。
Means for Solving the Problem of Time Loss] The method for producing a compound semiconductor thin film of the present invention uses a light source device having a wavelength range in the visible range to illuminate the surface of a substrate placed in a raw material gas atmosphere in a reactor. The method is characterized in that light is irradiated and at the same time cooling gas is blown onto the back surface of the substrate to form a thin film on the substrate.

〔作用〕[Effect]

本発明の1肥の構成によれば、加熱源となる可視域波長
の光は、基板表面に吸収される以外には原料ガス、反応
炉材料とほとんど相互作用をしないため、基板表面のみ
が加熱される。その為、薄膜成長け、基板表面上でのガ
ス分解、再配列、結晶化の素過稈を得るため、表面上の
温度条件、原料ガスの流量、ガス圧力などの条件を一定
にすれば一定の特性の薄膜が得らhるのである。
According to the first configuration of the present invention, the visible wavelength light that serves as the heating source has almost no interaction with the raw material gas and the reactor material other than being absorbed by the substrate surface, so only the substrate surface is heated. be done. Therefore, in order to grow a thin film, and obtain an elementary excess of gas decomposition, rearrangement, and crystallization on the substrate surface, if conditions such as the temperature condition on the surface, the flow rate of raw material gas, and the gas pressure are kept constant, A thin film with the following characteristics can be obtained.

ま之、ヘテロ接合を形成する几めKは、fslの組成の
薄膜ht影形成れた後、加熱光源の光を遮蔽すれば、基
板裏面からの冷却により原料ガスの分解は起こらなくな
り、ガス成分の変更をし、残留ガス成分を充分排気した
後、t42の組成の薄膜の形成を、加熱光源の光を等板
表面に照射して再開すれば、ヘテロ接合界面に%性の異
なる嘆は形成されず、急峻なヘテロ接合を形成で角るの
である。
However, in order to form a heterojunction, if the light from the heating light source is blocked after the formation of a thin film with the composition fsl, decomposition of the source gas will not occur due to cooling from the back side of the substrate, and the gas components will be If the formation of a thin film with a composition of t42 is resumed by irradiating the same plate surface with the light of the heating light source after sufficiently exhausting the residual gas components, a difference in percentage will be formed at the heterojunction interface. Instead, it forms a steep heterojunction.

〔爽施例〕[Refreshing example]

第1図は本発明の実施例に卦ける化合物半導体薄lll
1遺装電の優略図であって、102の反応炉中!には1
08ノ基板ホルダーhZ#ly、*Hホル/−上にけ1
09の基板が設置されている。反応炉102の外壁の一
部にけ光学窓103があり、この窓から105ノ光源か
らの光4t、 104のビームエキスパンダーで適当な
大きさに9換され、基板109の表面上に照射される。
Figure 1 shows a compound semiconductor thin film according to an embodiment of the present invention.
1 Schematic diagram of Isouden, inside 102 reactors! 1 for
08 board holder hZ#ly, *H hole/-upper cover 1
09 boards are installed. There is an optical window 103 on a part of the outer wall of the reactor 102, and from this window 4t of light from a light source 105 is converted to an appropriate size by a beam expander 104 and irradiated onto the surface of a substrate 109. .

、IIi板ホルl−の内部は中空構造になっており、内
部のバイブ111全通して、基板109の裏面に、10
7のガス系f通して不活性な冷却ガスを吹舞つけること
ができる。101は反応炉102に有機金属化合物を導
入するガス系を、110け他の原料ガス、キャリアガス
を導入するガス系を示す。106け1反応ガスを所宇の
圧力VC保つ排気系である。次に具体的に、ガリウムひ
素(GaAs)化合物半導体薄膜を製造する実施fII
を示す。基板ホルダーの上!/CGaA3単結晶基[1
−設置し、106で高真空状態に排気する。その後、1
10よりキャリアガスとして水素ガスを、1〜58LM
の流量流し。
, IIi board hole l- has a hollow structure, and the inside vibrator 111 is completely passed through, and the 10
Inert cooling gas can be blown through the gas system f of No. 7. Reference numeral 101 indicates a gas system for introducing an organometallic compound into the reactor 102, and numeral 110 indicates a gas system for introducing other raw material gases and carrier gases. This is an exhaust system that maintains the 106-scale reactant gas at the required pressure VC. Next, we will specifically discuss the implementation fII for manufacturing a gallium arsenide (GaAs) compound semiconductor thin film.
shows. On the board holder! /CGaA3 single crystal group [1
- set up and evacuate to high vacuum at 106; After that, 1
Hydrogen gas as a carrier gas from 10 to 58LM
flow rate sink.

アルシン(AJH8)ガスf 20〜508ccM流す
。この状岬で105の光源に用い次アルゴンイオンレー
ザのスイヴチをオンしてS*衣表面レーザー光(波長d
457.9〜514.5mのマルチライン)を照射して
GtLA8基板表面の極薄の酸什lKを除去し清浄表面
を露出する。レーザ光の出力け18W、基板表面ハ90
0〜1000℃に上昇する。次に、レーザ光を切り、1
01からトリメチルガリウム(TMGα)、トリエチル
ガリウム(TBGα)等の有機金属化合物を一定温度忙
保ちその蒸気を、水素ガスをバグリングガスとして反応
炉中に導入し、ガス圧力f1〜100TOff K−宇
に保つよう忙排気速度を調節する。ガス流量、ガス圧力
が安中になつ友ところで、105のアルゴンイオンレー
ザのスイヅチをオンする。
Flow arsine (AJH8) gas f 20 to 508 ccM. In this state, use the 105 light source as the light source, turn on the switch of the argon ion laser, and turn on the S* coating surface laser beam (wavelength d).
457.9 to 514.5 m multi-line) to remove the extremely thin acid oxide on the surface of the GtLA8 substrate and expose the clean surface. Laser light output: 18W, substrate surface: 90W
The temperature rises from 0 to 1000°C. Next, turn off the laser beam and
From 01, organometallic compounds such as trimethyl gallium (TMGα) and triethyl gallium (TBGα) were kept at a constant temperature and their vapor was introduced into the reactor using hydrogen gas as a bugling gas, and the gas pressure was set at f1 to 100Toff K-U. Adjust the pumping speed to keep the pump busy. Once the gas flow rate and gas pressure are adjusted to the desired level, the argon ion laser switch 105 is turned on.

レーザ光の波長d457.9〜514.5mのマルチラ
インで、可視光領域である之め、ガス分子虻よる吸収は
中っ念くなく、出力のほとんどけ109のGaks基板
の表面に吸収され、基板表面の温度を900〜1000
”GK上昇させる。その温度はアルゴンレーザの出力を
調節すれば、一定に保たれる。ま念、レーザ光照射と同
時に107より窒素ガスを111のパイプf通して基板
裏面に吹真つけ、熱伝導により基板ホルダーの温度hz
上昇することを防ぐ。この方法により、基板表面のλh
t高温状態となり、AsH3ガス卦よびT M (ka
などの有機金属は基1N表面に到達するまで分解、化学
反応をまつt<かこさず、基板表面−ヒで次の反応忙よ
りGCL 1g単結晶が成長していく。
Since the laser beam has a multi-line wavelength of 457.9 to 514.5 m and is in the visible light range, absorption by gas molecules is not at all possible, and most of the output is absorbed by the surface of the Gaks substrate 109. The temperature of the substrate surface is 900-1000
"GK is raised. The temperature can be kept constant by adjusting the output of the argon laser. To be sure, at the same time as the laser beam irradiation, nitrogen gas from 107 is blown onto the back side of the substrate through pipe f of 111, and the temperature is The temperature of the substrate holder hz due to conduction
prevent it from rising. By this method, λh on the substrate surface
t becomes a high temperature state, AsH3 gas hexagram and T M (ka
Organic metals such as 1N continue to decompose and undergo chemical reactions until they reach the surface of the base 1N, and a GCL 1g single crystal grows from the next reaction process on the substrate surface.

侃((lW3 )3 + ks H3−一→杷AJ+3
CH,↑OH,b=吸着係数が小さいので、はとんどガ
スとなって飛んでいく。従って、従来の高周波加熱や抵
抗加熱で行なっ九場合の、基板周囲のガス温度がある範
囲にわたって、500〜600℃穆度となり。
侃((lW3)3+ks H3-1→杷AJ+3
CH, ↑OH, b = adsorption coefficient is small, so most of it becomes gas and flies away. Therefore, when conventional high-frequency heating or resistance heating is used, the gas temperature around the substrate becomes 500 to 600 degrees centigrade over a certain range.

ガス中でA8H,とTMGαが気相反応fbこし、更に
楠板表面上で化学反応を起こして単結晶成長していく条
件と比べて、膜質の再現性が数倍良くなるのである。更
に他の冒族元素を含む有機金属化合物、あるいけ仲のV
族元素を含む原料ガスを適当量混合すればktL3a 
AJ 、工5(kl Aa 、■n Chz AJ P
などの混晶系を製造できる。
The reproducibility of the film quality is several times better than under the condition where A8H and TMGα undergo a gas phase reaction fb in a gas, and then undergo a chemical reaction on the camphor board surface to grow a single crystal. In addition, organometallic compounds containing other elements of the progenitor group, V
If an appropriate amount of raw material gas containing group elements is mixed, ktL3a can be obtained.
AJ, Eng 5 (kl Aa, ■n Chz AJ P
It is possible to produce mixed crystal systems such as

次ニ、aa A8/At G(L AJ のへテロ接合
を製造する場合を述べる。GrL kg薄−を前述の方
法で製造した後、レーザ光105を遮断する。その時点
より某謬裏面からの冷却により、基#F表面温度は直ち
に低下し、薄膜の成長は止まる。そのあと、トリメチル
アルミニウム(TMAt)等の有機金属化合物を導入し
、ktσI薄膜を製造するガス流量条件に調節をする。
Next, we will discuss the case of manufacturing a heterojunction of aa A8/At G (LAJ). After manufacturing a GrL kg thin layer by the method described above, the laser beam 105 is blocked. From that point on, a certain Upon cooling, the surface temperature of the #F group immediately decreases, and the growth of the thin film stops.After that, an organometallic compound such as trimethylaluminum (TMAt) is introduced, and the gas flow conditions are adjusted to produce a ktσI thin film.

ガス流量、ガス圧力が安定した後、kl Chz A8
薄膜成長条件の基板温度となるように出力調整したレー
ザ光の照射を行なう。その結果(klZAJ/Aj(k
zυの界面け、完全に制御されたヘテロ接合が形成され
る。
After the gas flow rate and gas pressure are stabilized, kl Chz A8
Irradiation is performed with laser light whose output is adjusted so that the substrate temperature corresponds to the thin film growth conditions. The result (klZAJ/Aj(k
A perfectly controlled heterojunction is formed at the zυ interface.

不純物をドーピングして多層嗅を形成する場合にも、全
く同一の手順により、良好なP−N接合を得ることも可
能である。
Even when doping impurities to form a multilayer structure, it is possible to obtain a good P-N junction using exactly the same procedure.

〔発明の効果〕〔Effect of the invention〕

以上述べ次ように本発明によhば、XE板表面の入が加
熱され、基板表面上の分解、結晶化反応を制御すればよ
く、従来のMO−CVD法に比較して嘆賞の再現性が飛
躍的に向上するという効果を有する。
As described above, according to the present invention, the surface of the XE plate is heated to control the decomposition and crystallization reactions on the substrate surface, and the reproducibility is excellent compared to the conventional MO-CVD method. This has the effect of dramatically improving performance.

更に、ヘテロ接合界面の形成には、積層膜の製作を個々
に制御で愈、余分な膜がで愈ないので、組成変化の急峻
なヘテロ接合を製造できる。
Furthermore, since the formation of the heterojunction interface requires individual control of the production of the laminated films and no excess film is produced, a heterojunction with a steep compositional change can be produced.

このような効果により本発明の化合物半導体薄膜の製造
方法は、半導体レーザ、受光素子あるいけ、超格子構造
を利用し几低閾値レーザ、短波長レーザ等の光学素子の
製造、及び高速FFXTなどの電気素子の製造に有用で
ある。
Due to these effects, the compound semiconductor thin film manufacturing method of the present invention utilizes a semiconductor laser, a light receiving element, and a superlattice structure, and is useful for manufacturing optical elements such as low threshold lasers and short wavelength lasers, and for high-speed FFXT. Useful for manufacturing electrical devices.

【図面の簡単な説明】[Brief explanation of the drawing]

f41図は、木発明忙基づく化合物半導体薄ll!製造
装置の概略図を示す。 101・・・・・・有機金属化合物導入ガス系102・
・・・・・反応炉断面図 103・・・・・・光学窓断面図 104・・・・・・ビーム径調節光学系105・・・・
・・可視光光源 106・・・・・・ガス排気系 107・・・・・・冷却ガス導入系 108・・・・・・基瓶ホルダー断面図109 ・・・
・・・基板 110・・・・・・原料ガス導入系 111・・・・・・冷却ガス導入パイプ以  上 出原人 株式会社 諏訪精工舎
The f41 diagram is a compound semiconductor thin film based on wood invention! A schematic diagram of the manufacturing device is shown. 101... Organometallic compound introduction gas system 102.
... Reactor sectional view 103 ... Optical window sectional view 104 ... Beam diameter adjustment optical system 105 ...
... Visible light source 106 ... Gas exhaust system 107 ... Cooling gas introduction system 108 ... Base bottle holder sectional view 109 ...
...Substrate 110...Material gas introduction system 111...Cooling gas introduction pipe and above Izuhara Suwa Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  化合物半導体薄膜を形成するための化学気相成長法に
於いて、可視域の波長範囲を有する光源装置により、反
応炉中の原料ガス雰囲気中に置かれた基板の表面上に光
照射を行ない、同時に前記基板裏面上に冷却ガスを吹き
つけ基板表面上に薄膜形成することを特徴とする化合物
半導体薄膜の製造方法。
In the chemical vapor deposition method for forming a compound semiconductor thin film, a light source device having a visible wavelength range irradiates light onto the surface of a substrate placed in a raw material gas atmosphere in a reactor. A method for manufacturing a compound semiconductor thin film, comprising simultaneously blowing a cooling gas onto the back surface of the substrate to form a thin film on the surface of the substrate.
JP60016744A 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film Expired - Lifetime JP2549835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016744A JP2549835B2 (en) 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016744A JP2549835B2 (en) 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS61176111A true JPS61176111A (en) 1986-08-07
JP2549835B2 JP2549835B2 (en) 1996-10-30

Family

ID=11924774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016744A Expired - Lifetime JP2549835B2 (en) 1985-01-31 1985-01-31 Method for manufacturing compound semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2549835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201482A (en) * 1987-10-01 1989-08-14 Nippon Aneruba Kk Vacuum vapor growth device
JPH10259481A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of amorphous carbon coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637633A (en) * 1979-09-03 1981-04-11 Mitsubishi Electric Corp Formation of oxide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637633A (en) * 1979-09-03 1981-04-11 Mitsubishi Electric Corp Formation of oxide film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201482A (en) * 1987-10-01 1989-08-14 Nippon Aneruba Kk Vacuum vapor growth device
JPH10259481A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of amorphous carbon coating

Also Published As

Publication number Publication date
JP2549835B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPS61176111A (en) Manufacture of compound semiconductor thin film
JPH06224127A (en) Method and device for growth of silicon film
JP2528912B2 (en) Semiconductor growth equipment
JPS59164697A (en) Vapor growth method
JP2687371B2 (en) Vapor growth of compound semiconductors
JPH0337186A (en) Method for forming compound semiconductor thin film
JPS61260622A (en) Growth for gaas single crystal thin film
JP3101753B2 (en) Vapor growth method
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPH04338636A (en) Semiconductor vapor growth device
JPS63227007A (en) Vapor growth method
JPH04187597A (en) Production of thin film of gallium nitride
JPS5826655B2 (en) The best way to do it
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JP2952831B2 (en) Method for manufacturing semiconductor device
JPH03119721A (en) Crystal growth
JPH0572742B2 (en)
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPH01290222A (en) Semiconductor vapor growth method
JPS6373617A (en) Method for vapor growth of compound semiconductor
JPS5895696A (en) Vapor-phase growing method with controlled vapor pressure
JPH01230495A (en) Method for growing semiconductor crystal
JPS62182195A (en) Method for growing iii-v compound semiconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term