[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61163169A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS61163169A
JPS61163169A JP60002593A JP259385A JPS61163169A JP S61163169 A JPS61163169 A JP S61163169A JP 60002593 A JP60002593 A JP 60002593A JP 259385 A JP259385 A JP 259385A JP S61163169 A JPS61163169 A JP S61163169A
Authority
JP
Japan
Prior art keywords
powder
organic
sintered body
silicon nitride
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60002593A
Other languages
Japanese (ja)
Inventor
幸久 竹内
山崎 康桜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60002593A priority Critical patent/JPS61163169A/en
Publication of JPS61163169A publication Critical patent/JPS61163169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒化珪素(SizN4)焼結体の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a sintered silicon nitride (SizN4) body.

(従来の技術) 従来のS=’sNa焼結体は焼結助剤としてAl20x
 、 Y20wl 、 MgO,Mg0−AI2z O
s ノスビネルを添加して焼結する方法が用いられてき
た。
(Prior art) The conventional S='sNa sintered body uses Al20x as a sintering aid.
, Y20wl, MgO,Mg0-AI2zO
A method of adding Nosvinel and sintering has been used.

(発明が解決しようとする問題点) しかし、高温強度(1000〜1300℃)を大きくし
ようとすると、Si、N、原料の粒径は出来るだけ細か
くする必要がある。
(Problems to be Solved by the Invention) However, in order to increase the high temperature strength (1000 to 1300°C), it is necessary to make the particle sizes of Si, N, and raw materials as fine as possible.

一方、原料粒径が0.1μ以下になると、焼結助剤であ
るAlt Ox 、Yz Ox 、MgO,MgO・A
lzO3のスピネルの粒径も0.1μ以下にする必要が
あるが、現在ではこれらの材料はない。また、これらの
材料が仮に作られたとしても、Si3N4原料と焼結助
剤とを均一に分散させることは極めて困難である問題点
があり、その結果高温強度が高(出来ない。
On the other hand, when the raw material particle size becomes 0.1 μ or less, sintering aids such as Alt Ox, Yz Ox, MgO, MgO・A
The grain size of lzO3 spinel must also be reduced to 0.1 μm or less, but these materials currently do not exist. Further, even if these materials were made, there is a problem in that it is extremely difficult to uniformly disperse the Si3N4 raw material and the sintering aid, and as a result, the high temperature strength is high (not possible).

(問題点を解決するための手段) 本発明は上記問題点を解消させるために、少なくともイ
ツトリウム、アルミニウムの各有機化合物をS i x
 N−に湿式混合し、これを酸化後焼結する方法を採る
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides at least each organic compound of yttrium and aluminum with Si x
A method is adopted in which N- is wet mixed, oxidized, and then sintered.

(作 用) 本発明の工程時にはSi、N、の表面に有機化合物が均
一に付着分散したものができる。これを酸化すると有機
化合物はそれぞれA l z 03 、YzOlの形に
なり、Si、N、原料の表面にそれら酸化物が均一に分
散したものができる。
(Function) During the process of the present invention, organic compounds are uniformly adhered and dispersed on the surfaces of Si and N. When this is oxidized, the organic compounds become A l z 03 and YzOl, respectively, and these oxides are uniformly dispersed on the surfaces of Si, N, and raw materials.

(発明の効果) 従って、本発明によれば、焼結助剤を均一にSi3N、
の表面に分散でき、しかも非常に細かいため、高温強度
が高く、また焼結助剤を低減できるという効果がある。
(Effect of the invention) Therefore, according to the present invention, the sintering aid is uniformly applied to Si3N,
Since it can be dispersed on the surface of the metal and is very fine, it has high strength at high temperatures and has the effect of reducing the amount of sintering aids.

(実施例) 本発明の製造方法を各工程毎に詳述する。(Example) The manufacturing method of the present invention will be explained in detail for each step.

+1) S i 3Na粉末の作成方法■金属Si粉末
0.8〜3μ(粒径)を1200−1400℃、 Nz
ガス気流中で窒化処理して作ったもの(α状St、N4
結晶体)を、粉砕して0.7〜0.8μの粉末にする。
+1) Method for making Si 3Na powder ■Metal Si powder 0.8-3μ (particle size) at 1200-1400℃, Nz
Made by nitriding in a gas stream (α-like St, N4
(crystal) is ground into a powder of 0.7 to 0.8μ.

これの代表的なものとして西独国スタルク製LC12、
日本電工型N−2がある。
A representative example of this is the LC12 manufactured by Starck in West Germany.
There is a Nippon Denko type N-2.

■S i C1aとNH,との反応にて作った5t(N
Hり4(シリコンイミド)を1200〜1400℃でN
2気流中にて処理して得られたα状5t3N、結晶体(
粒径0.2〜0.7μ)を作る。これの代表的なものと
して宇部興産型0.25〜0.4μ、東洋ソーダ社製0
.4〜0.7μのものがある。
■5t(N
Hri 4 (silicon imide) at 1200-1400℃
α-form 5t3N obtained by treatment in two air streams, crystalline (
The particle size is 0.2 to 0.7μ). Typical examples include Ube Industries type 0.25-0.4μ, Toyo Soda 0.
.. Some have a diameter of 4 to 0.7μ.

■SiHg(又は5iCj?<)とN2  (又はNH
a”)とをプラズマ気流中で反応させて、非晶状のSi
、N、の粒径0.1μ以下の超微粉末を1200〜14
00℃、N2ガス気流中で窒化処理して粒径0.1μ以
下の超微粉末とする。
■SiHg (or 5iCj?<) and N2 (or NH
a”) in a plasma stream to form amorphous Si.
, N, ultrafine powder with a particle size of 0.1 μ or less
Nitriding treatment is performed at 00°C in a N2 gas stream to obtain ultrafine powder with a particle size of 0.1 μm or less.

(2)有機イツトリウム、有機アルミニウム、有機マグ
ネシウムの各有機化合物の作成方法C,IH211,1
C00H化合物にイツトリウム。
(2) Method for creating organic compounds of organic ythtrium, organic aluminum, and organic magnesium C, IH211,1
Yttrium is a C00H compound.

アルミニウム、マグネシウムを反応させて例えばY (
Cs H7Of ) *−、A l (OCOCtHs
 )3 AI! (OCOCH* )33Mg (○C
OC2H5’)! 、またMgAl1.(i−○CxH
t)sを用いる。
By reacting aluminum and magnesium, for example, Y (
Cs H7Of ) *-, A l (OCOCtHs
)3 AI! (OCOCH*)33Mg (○C
OC2H5')! , and MgAl1. (i-○CxH
t) Use s.

(3)Si3N4と有機イツトリウム、アルミニウム、
マグネシウムとの混合 Si、N、製ボールミル中に、Si:+N:+粉末10
0重量部と、Yz O3,Affi20x 。
(3) Si3N4 and organic yttrium, aluminum,
Si:+N:+ powder 10 mixed with magnesium in a ball mill made of Si, N,
0 parts by weight and Yz O3, Affi20x.

MgOに換算して1〜5重量部の上記有機化合物とを添
加する。なお、次の■、■、■。
1 to 5 parts by weight of the above organic compound in terms of MgO is added. In addition, the following ■, ■, ■.

■、■の反応にてY2O3,A /l z 03 、 
Mg O,M g A j! z O4がそれぞれ作ら
れるので、出来たYz Ot 、 At1z Oar 
、 MgOが1〜5重量部に相当する有機化合物量を添
加する。
In the reaction of ■ and ■, Y2O3,A /l z 03,
Mg O, Mg A j! Since z O4 is created respectively, the resulting Yz Ot and At1z Oar
, an amount of organic compound corresponding to 1 to 5 parts by weight of MgO is added.

2Y (C5H? O□)3+330□→YtOs+3
0CO□ +21H20・・・・・・■2Al  (O
COCz Hs ):l  +210z →All  
03  ” 18 Cot  + 15 H20・・”
  0Mg  (OCOCz  Hs  )2  +’
yo□ →MgO+6COz  +5Ht  O・・・
・・・・・・・・・・・・■2Affi  (OCOC
z  Hs  )s  +Mg  (QCOCz  H
s  )t  + 280□ →MgA1z  03 
 ”24COz  + 20Hz  O・・・・・・・
・・・・・・・・0 Mg+2Affi  (i−QC,H,)、+’l  
iC3H70H→ MgAlz  (i   0C3H?  )s  +)
(。
2Y (C5H? O□)3+330□→YtOs+3
0CO□ +21H20・・・・・・■2Al (O
COCz Hs ):l +210z →All
03 ” 18 Cot + 15 H20...”
0Mg (OCOCz Hs )2 +'
yo□ →MgO+6COz +5Ht O...
・・・・・・・・・・・・■2Affi (OCOC
z Hs )s +Mg (QCOCz H
s)t + 280□ →MgA1z 03
"24COz + 20Hz O...
・・・・・・・・・0 Mg+2Affi (i-QC,H,),+'l
iC3H70H→ MgAlz (i 0C3H? )s +)
(.

(日本窯業協会誌92 (11)1984.P2O3)
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・■MgAl
z  (i −0C3H?  )s  +360□ −
Mg”2 0a  +24CO2+ 28Hz  O・
・・・・・・・・・・1・・・■ そして、エチルアルコールを上記のボールミル中に10
0〜500重量部添加し、3〜24時間攪拌混合する。
(Japan Ceramics Association Journal 92 (11) 1984.P2O3)
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・■MgAl
z (i −0C3H? )s +360□ −
Mg”2 0a +24CO2+ 28Hz O・
・・・・・・・・・・・・1...■ Then, add ethyl alcohol to the above ball mill for 10 minutes.
Add 0 to 500 parts by weight and stir and mix for 3 to 24 hours.

ここで、エチルアルコールと有機化合物とは均一に溶解
し合うため、均一に混合できる。
Here, since ethyl alcohol and the organic compound uniformly dissolve in each other, they can be mixed uniformly.

(4)混合した物を攪拌しつつ70〜80℃で1〜2時
間乾燥する。なお、攪拌しつつ1〜2時間真空脱気乾燥
しても良い。このようにすると3 i 3 Nm粉末の
表面にほぼ均一に有機イツトリウム、有機アルミニウム
、有機マグネシウムが付着する。このとき、攪拌を行な
わ−なくて乾燥するとS 1 z N4粉末の表面の局
所部に多量の有機化合物が堆積し、また他の部分は少量
の有機化合物が堆積する。即ちエチル”1ルコールは乾
燥時に気化飛散し、それが混合体の表面になるSi3N
4粉末よりしだいに気化飛散するので、徐々に表面のS
i3N4粒子上に有機化合物が堆積するので、混合体の
内部にあるSi3N、に比較し、表面のS j x N
4粉末上の有機化合物の濃度が高くなり、均一な付着状
態が得られない。
(4) Dry the mixture at 70 to 80°C for 1 to 2 hours while stirring. In addition, vacuum deaeration drying may be performed for 1 to 2 hours while stirring. In this way, organic yttrium, organic aluminum, and organic magnesium adhere almost uniformly to the surface of the 3 i 3 Nm powder. At this time, if the S 1 z N4 powder is dried without stirring, a large amount of organic compounds will be deposited on local parts of the surface of the S 1 z N4 powder, and a small amount of organic compounds will be deposited on other parts. In other words, ethyl ``1 alcohol vaporizes and scatters during drying, and it becomes the Si3N surface of the mixture.
4. Since the powder gradually evaporates and scatters, the S on the surface gradually disappears.
As organic compounds are deposited on the i3N4 particles, the S j x N on the surface compared to the Si3N inside the mixture
4 The concentration of organic compounds on the powder becomes high, making it impossible to obtain a uniform adhesion state.

(5)この乾燥物を600℃で2〜6時間大気雰囲中で
焼成する。
(5) The dried product is fired at 600° C. for 2 to 6 hours in the air.

この様にすると、Si3N、表面に付着した有機化合物
は前掲0.0.0.0式に基づく反応に酸化し、超微粒
子(粒径0.1μ以下の超微粒子)状となり、その分布
は均一なものとなる。
In this way, the organic compounds attached to the surface of Si3N are oxidized by the reaction based on the above-mentioned formula 0.0.0.0, forming ultrafine particles (ultrafine particles with a particle size of 0.1μ or less), and their distribution is uniform. Become something.

(6)これを所望する形状の型の中に充填し、100〜
4000 kg/cm”の圧力でプL/スする。このプ
レスは金型プレス、ラバープレス等を用いることができ
る。また金型プレスとラバープレスとの兼用を行なうこ
ともできる金型プレスの場合は100〜800 k g
 / cmt%ラバーブレスのときは600〜4000
kg/cm”を用いる。
(6) Fill this into a mold of the desired shape, and
Press at a pressure of 4000 kg/cm. This press can be a mold press, a rubber press, etc. In the case of a mold press, which can also be used as a mold press and a rubber press. is 100-800 kg
/ cmt% 600-4000 for rubber bracelet
kg/cm" is used.

(7)これをN2゜、アルゴン気流中で1650〜18
00℃で1〜4時間焼成する。例えば市販品スタルタL
C−12の粒径0.5〜0.7μ、α化度90%以上の
St、N、粉末重量fa y zOy 、A Ilz 
0+とじて3重量部のものの密度は1650℃、4時間
で3.16g/cc−1700℃、2時間で3.20,
1750℃、1〜2時間で3.20g/cc、1800
℃、1時間で3.19g/ccのものが得られる。
(7) This was heated to 1650-18 in N2° and argon stream.
Bake at 00°C for 1 to 4 hours. For example, commercial product Starta L
C-12 particle size 0.5 to 0.7 μ, St with a degree of gelatinization of 90% or more, N, powder weight fa y zOy, A Ilz
The density of 3 parts by weight including 0+ is 3.16 g/cc at 1650°C, 4 hours - 3.20 at 1700°C, 2 hours,
1750℃, 3.20g/cc for 1 to 2 hours, 1800
3.19 g/cc can be obtained in 1 hour at ℃.

以上の工程で作成した5izN4焼結体を3点曲げ試験
を行なうと、室温で85〜100kg/mm”、120
0℃で45〜55kg/mm”のものが得られた。
When a 3-point bending test was performed on the 5izN4 sintered body created through the above process, it was found that the weight was 85 to 100 kg/mm" at room temperature, and 120
45-55 kg/mm" was obtained at 0°C.

(従来法と本発明法との比較) 従来の助剤添加法、即ちYZ 03 、 A 1 t 
03 。
(Comparison between the conventional method and the method of the present invention) Conventional auxiliary addition method, namely YZ 03 , A 1 t
03.

M g O,M g O・A Ilz O:Iを単にS
i3N4粉末に混合する方法に比較して本発明はSi:
+Na粉末とこれらの助剤との分散が著しく良く、その
結果Y20:+ 、Al1z Oz 、MgO,MgO
’ Alzoxとしての量が少量ですむ。例えば、従来
法では助剤量が合計で10重量部必要であったものが合
計で1〜6重量部で済む。しかも高温での曲げ強度の向
上が著しい。これを第1図に示す。
M g O, M g O・A Ilz O:I simply S
Compared to the method of mixing with i3N4 powder, the present invention provides Si:
The dispersion of +Na powder and these auxiliary agents is extremely good, and as a result, Y20:+, Al1zOz, MgO, MgO
' Only a small amount of Alzox is required. For example, in the conventional method, a total of 10 parts by weight of auxiliary agents is required, but only 1 to 6 parts by weight can be used. Furthermore, the bending strength at high temperatures is significantly improved. This is shown in FIG.

第1図に示した従来・本発明の仕様について説明する。The specifications of the conventional and present invention shown in FIG. 1 will be explained.

(従来) SilN4粉末の粒径が0.5〜0.7μのスタルク製
LC−12用い、それぞれ粒径が0.2〜0.3μのY
2O,及びAlto、を1:1の比率で混合し、上記5
isN4粉末に添加量を変化させて常法により4X3X
50の寸法に焼成させた。JIsに基づいた3点曲げ強
度を測定した。
(Conventional) Using LC-12 manufactured by Starck with a SilN4 powder particle size of 0.5 to 0.7μ, and Y with a particle size of 0.2 to 0.3μ, respectively.
2O, and Alto at a ratio of 1:1, and the above 5
4X3X by changing the amount added to isN4 powder by the usual method
It was fired to a size of 50. Three-point bending strength was measured based on JIs.

(本発明:1) 前述の方法で作ったもので、助剤はY、03及びAl□
0.の組合せとした。このY2O3。
(Invention: 1) Made by the above method, the auxiliary agents are Y, 03 and Al□
0. A combination of This Y2O3.

Al1zozの比率は重量比で1:1である。焼結体は
4X3X50  (1)の寸法を有し、これをJISに
基づいて3点曲げ強度を測定した。
The ratio of Al1zoz is 1:1 by weight. The sintered body had dimensions of 4×3×50 (1), and its three-point bending strength was measured based on JIS.

(本発明:2) 有機イットリウムと有機アルミニウムと有機マグネシウ
ムとをYz Ox 、 M g A l z 04に換
算して1:1 (重量%)になる様に、有機イツトリウ
ムと有機アルミニウムと有機マグネシウムとを所定の比
率で混合した溶層を作る。この溶液中に5 i 3 N
a粉末をスタルク製LC−12を添加し、ボールミルで
6〜12時間混合する。これを乾燥した後、800〜1
000℃で1〜2時間焼成する。この工程によって有機
イツトリウムはYzOx、有機アルミニウムと有機マグ
ネシウムMg0−AJ z 01  (M g A 1
2 z O4)のスピネルになり、Si、+N、粉末の
表面に超微粉末の形で付着する。
(Present invention: 2) Organic yttrium, organic aluminum, and organic magnesium are mixed so that the ratio of organic yttrium, organic aluminum, and organic magnesium is 1:1 (wt%) in terms of Yz Ox, M g A l z 04. A solution layer is created by mixing the following in a predetermined ratio. In this solution 5 i 3 N
LC-12 manufactured by Starck was added to the powder a, and mixed in a ball mill for 6 to 12 hours. After drying this, 800-1
Bake at 000°C for 1 to 2 hours. Through this process, organic yttrium is converted into YzOx, organic aluminum and organic magnesium Mg0-AJ z 01 (M g A 1
2 z O4) spinel and adheres to the surface of Si, +N, and powder in the form of ultrafine powder.

これを焼結させて4X3X50  (j2)の焼結体を
得た。これをJTSに基づいて3点曲げ強度を測定した
This was sintered to obtain a 4X3X50 (j2) sintered body. The three-point bending strength of this was measured based on JTS.

(他の実施例) 超微粉末α化度90%以上、純度99%以上(0,03
〜0.09μ)のSi3N、微粉末0.2〜0.3μα
化度99%UP(宇部興産製造)の5t3N4を用いた
ときの結果を第2図に示す。超微粉末を用いると、より
添加量が少なくても良い結果が得られる。これは超微粉
末の方が高い強度が得られるのは、焼結時の密度向上に
よる効果があるからである。例えば超微粉末の密度は3
.2g/cc、微粉末の密度は3.19 g / c 
cであった。
(Other Examples) Ultrafine powder α degree of gelatinization is 90% or more, purity is 99% or more (0.03
~0.09μ) Si3N, fine powder 0.2-0.3μα
FIG. 2 shows the results when using 5t3N4 with a chemical degree of 99% UP (manufactured by Ube Industries). When ultrafine powder is used, good results can be obtained even with a smaller amount added. This is because ultrafine powder provides higher strength because it has the effect of increasing density during sintering. For example, the density of ultrafine powder is 3
.. 2g/cc, the density of fine powder is 3.19g/c
It was c.

なお、第2図において、助剤はyz o3. Az。In addition, in FIG. 2, the auxiliary agent is yz o3. Az.

0、(出発材料は有機化合物の形態)であり、その混合
比率は酸化物形態でl:1(重量比)である。
0, (the starting material is in the form of an organic compound), and the mixing ratio is l:1 (weight ratio) in the form of an oxide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明に供する特性図
である。
FIGS. 1 and 2 are characteristic diagrams for explaining the present invention in detail.

Claims (1)

【特許請求の範囲】[Claims] 少なくともイットリウムおよびアルミニウムの各有機化
合物を窒化珪素粉末に湿式混合させ、該混合物を上記各
有機化合物がイットリア、アルミナに酸化する温度で処
理し、その後焼結することを特徴とする窒化珪素焼結体
の製造方法。
A silicon nitride sintered body characterized by wet-mixing at least organic compounds of yttrium and aluminum with silicon nitride powder, treating the mixture at a temperature at which each of the organic compounds oxidizes to yttria and alumina, and then sintering. manufacturing method.
JP60002593A 1985-01-09 1985-01-09 Manufacture of silicon nitride sintered body Pending JPS61163169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002593A JPS61163169A (en) 1985-01-09 1985-01-09 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002593A JPS61163169A (en) 1985-01-09 1985-01-09 Manufacture of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPS61163169A true JPS61163169A (en) 1986-07-23

Family

ID=11533676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002593A Pending JPS61163169A (en) 1985-01-09 1985-01-09 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61163169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156070A (en) * 1986-12-17 1988-06-29 京セラ株式会社 Silicon nitride base sintered body and manufacture
EP0378414A2 (en) * 1989-01-12 1990-07-18 Alcan International Limited Process for coating particles with metal compounds
US5017530A (en) * 1987-01-28 1991-05-21 Tosoh Corporation Silicon nitride sintered body and process for preparation thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156070A (en) * 1986-12-17 1988-06-29 京セラ株式会社 Silicon nitride base sintered body and manufacture
JP2518630B2 (en) * 1986-12-17 1996-07-24 京セラ株式会社 Silicon nitride sintered body and method for producing the same
US5017530A (en) * 1987-01-28 1991-05-21 Tosoh Corporation Silicon nitride sintered body and process for preparation thereof
EP0378414A2 (en) * 1989-01-12 1990-07-18 Alcan International Limited Process for coating particles with metal compounds
EP0378414A3 (en) * 1989-01-12 1990-12-12 Alcan International Limited Process for coating particles with metal compounds

Similar Documents

Publication Publication Date Title
US4578363A (en) Silicon carbide refractories having modified silicon nitride bond
JPH07277814A (en) Alumina-based ceramic sintered compact
JP4312293B2 (en) Silicon carbide ceramic composite material and manufacturing method thereof
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JP3290686B2 (en) Method for producing aluminum nitride powder
CN112939608B (en) White aluminum nitride ceramic and hot-pressing sintering method and application thereof
JPS61163169A (en) Manufacture of silicon nitride sintered body
JPS59107976A (en) Manufacture of readily sinterable silicon nitride powder
JPH0952704A (en) Aluminum nitride granule and its production
WO2021141328A1 (en) Method for preparing silicon nitride sintered body, and silicon nitride sintered body prepared thereby
JP5090025B2 (en) Composite powder and composite material and method for producing the same,
JP2002053376A (en) Method for sintering silicon nitride ceramics
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JPH01126276A (en) Production of ceramic sintered body
JPS63210002A (en) Production of aluminum nitride powder
CN108395257A (en) A kind of nitride silicon based composite material and preparation method thereof
JPS60210571A (en) Silicon carbide-containing alumina sintered body and manufacture
JPS63151682A (en) Silicon nitride sintered body and manufacture
JP2661743B2 (en) Method for producing silicon nitride ingot and silicon nitride powder
JPS63236765A (en) Aluminum nitride sintered body
JPH10231174A (en) Composite ceramic including dispersed solid lubricant and its production
JPH05117030A (en) Complex ceramic and its production
JP2567041B2 (en) Method for producing ultrafine aluminum nitride particles
JPS62241876A (en) Silicon nitride sintered body and manufacture