[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61169241A - Heat-insulating member - Google Patents

Heat-insulating member

Info

Publication number
JPS61169241A
JPS61169241A JP60009170A JP917085A JPS61169241A JP S61169241 A JPS61169241 A JP S61169241A JP 60009170 A JP60009170 A JP 60009170A JP 917085 A JP917085 A JP 917085A JP S61169241 A JPS61169241 A JP S61169241A
Authority
JP
Japan
Prior art keywords
layer
ceramic layer
porosity
ceramic
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60009170A
Other languages
Japanese (ja)
Inventor
隆司 友田
典孝 宮本
譲治 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60009170A priority Critical patent/JPS61169241A/en
Publication of JPS61169241A publication Critical patent/JPS61169241A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は断熱部材、特に、例えば、自動車のエンジン部
品等のように高温にさらされる部材の断熱性を高めるた
めに表面にセラミック溶射層を設けた断熱部材に関する
。エンジンの燃焼ガス温度は高温であるので、また燃焼
ガス温度が高いほど熱効率は良くなるので、エンジンお
下び関連部品の耐熱性を向上させるために、それらの部
品表面にセラミック層を形成したり、あるいはさらに部
品全部をセラミックで作成する研究が進められている。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a heat insulating member, in particular a ceramic sprayed layer provided on the surface of the member to improve the heat insulating properties of a member exposed to high temperatures such as engine parts of an automobile. It relates to a heat insulating member. Since the combustion gas temperature of an engine is high, and the higher the combustion gas temperature, the better the thermal efficiency, so in order to improve the heat resistance of the engine and related parts, a ceramic layer is formed on the surface of those parts. Research is underway to make all the parts out of ceramic.

従来の技術と発明が解決しようとする問題点従来、エン
ジン部品その他の部品の鉄あるいはアルミニウム等の母
材表面にジルコニア、アノ1ノミナ、クロミア等のセラ
ミックを溶射する場合、ニッケル系合金のアンダーコー
ト材を介してセラミック層を形成する方法が多用されて
きた。しかしながら、この方法で溶射した試験片を熱サ
イクル試験すると、セラミック層内またはセラミ・ツク
層とアンダーコート層の境界付近に亀裂が生じ、ひいて
は剥離にいたる。この亀裂は、母材とセラミック層の熱
膨張差あるいはエロージョン熱応力によって起こると考
えられる。
Conventional technology and problems to be solved by the invention Conventionally, when spraying ceramics such as zirconia, anomina, chromia, etc. on the surface of base materials such as iron or aluminum for engine parts and other parts, an undercoat of nickel-based alloy is used. A method of forming a ceramic layer through a material has been frequently used. However, when a test piece sprayed by this method is subjected to a thermal cycle test, cracks occur within the ceramic layer or near the boundary between the ceramic layer and the undercoat layer, which eventually leads to peeling. This crack is thought to be caused by the difference in thermal expansion between the base material and the ceramic layer or by the thermal stress of erosion.

また、これら亀裂に至るまでの耐久性を伸ばす為に、気
孔率を大きくすること等が従来行なわれている。(文献
: RANGASW計Y & Il、llEIIM八N
、TIへEIIM八1゜EXPへNSION  5Tt
lrlY  011  PLASMA−3Pl’lA’
/El′10XIDECOATINGS、Th1n 5
olid Film、73 (1980)43〜52等
)しかしながら、この場合、気孔の形状をコントロ−ル
していないので、亀裂が進行する方向tに平行に延びた
形状の気孔も多く存在し、そのためにセラミック層が容
易に切欠かれるよ・うな現象を呈し、耐久性が十分とは
言えない。
Furthermore, in order to extend the durability until cracking occurs, it has been conventionally done to increase the porosity. (Literature: RANGASW meter Y & Il, llEIIM8N
, TI to EIIM 81° EXP to NSION 5Tt
lrlY 011 PLASMA-3Pl'lA'
/El'10XIDECOATINGS, Th1n 5
(Olid Film, 73 (1980) 43-52, etc.) However, in this case, the shape of the pores is not controlled, so there are many pores that extend parallel to the direction t of crack propagation. The ceramic layer appears to be easily cut, and the durability is not sufficient.

以]二のような問題は、ピストンのような摺動部材では
熱的条件に加えて機械的条件においても厳しい条件にさ
らされるので、一段と深刻な問題である。
The second problem is even more serious because sliding members such as pistons are exposed to severe mechanical conditions in addition to thermal conditions.

問題を解決するための手段 本発明は、」二重の如き問題点を解決するために、断熱
部材の母料表面に形成するセラミック層の気孔形状を球
状化する。
Means for Solving the Problems In order to solve the problem of double porosity, the present invention makes the pores of the ceramic layer formed on the surface of the base material of the heat insulating member spherical.

気孔を球状化するごとによって亀裂の発生および進展が
、従来のように不規則な形状の場合と較べて、抑制され
る効果がある。
By making the pores spherical, the occurrence and propagation of cracks is suppressed compared to the conventional case where the pores are irregularly shaped.

セラミック層の気孔形状を球状化するためにば、ン容隼
1ガンのノスルと被?容η・I物との「1離(1以下、
ン容射距離という)、溶射中の電流値、溶射粉末の粒度
(以下、粉末粒度という)、溶射粉末の形状(以下、粉
末形状という)、粉末の供給量、等のン容射条件を適当
に選択すればよい。概して言えば、できるだ&J球状に
近い粒度のそろった粒子を部分的に溶融するような条件
でン容射することによって達成される。また、溶射後H
I P処理(Ilot l5o−static Pre
ssinB )を行なうことによっても粒子の部分的な
溶融が可能であり、同様に気孔形状を球状化することが
できる。
In order to make the pore shape of the ceramic layer into a spherical shape, it is necessary to coat it with a 1-gun nostle. "1 separation (1 or less,
The spray conditions such as the spraying distance (hereinafter referred to as the spraying distance), the current value during thermal spraying, the particle size of the spraying powder (hereinafter referred to as the powder particle size), the shape of the spraying powder (hereinafter referred to as the powder shape), and the amount of powder supplied are appropriately adjusted. You can select . Generally speaking, this is achieved by injecting nearly spherical particles of uniform size under conditions that cause them to partially melt. In addition, H after thermal spraying
IP processing (Ilot l5o-static Pre
Partial melting of the particles is also possible by performing ssinB), and the shape of the pores can also be made spherical.

本発明の好ましい態様では、第1図に示す如く、1N動
部品等の母材a上にアンダーコー1− bを溶射した後
、先ず気孔率の小さなセラミック層Cを設け、次いで気
孔形状が球状の気孔率が大きい−12ラミツク層dを設
iノ、そして最後に最外表面層として再び気孔率の小さ
なセラミック層eを設しJる。
In a preferred embodiment of the present invention, as shown in FIG. 1, after undercoat 1-b is thermally sprayed onto a base material a such as a 1N moving part, a ceramic layer C having a small porosity is first provided, and then a ceramic layer C having a spherical pore shape is provided. A -12 ceramic layer d with a high porosity is provided, and finally a ceramic layer e with a small porosity is provided as the outermost surface layer.

アンダーコート層直上の気孔率小のセラミック層Cはア
ンダーコー1− bとセラミック層の密着力を向−Iニ
させる作用をする。その上の気孔率大で球状化したセラ
ミック層dば、熱サイクル時の母材aセラミックの熱膨
張差による応力を緩和してセラミック層の亀裂及び剥離
を起しにくくする作用をするとともに、亀裂が発η−し
た際にも、球状の為、亀裂の伝播速度が遅く、剥離には
至りにくくする。また表面近くの気孔率小のセラミ、り
層eば、熱ザイクル等の際、外部からの腐食性ガスの溶
射層内への侵入、エロージョンを■l止する作用をする
。このように、気孔率が小さいセラミック層で気孔率が
大きいセラミック層を挟む3層構造については我々の先
願を参照されたい(特願昭5!IJ−53f171号)
The ceramic layer C having a low porosity immediately above the undercoat layer acts to improve the adhesion between the undercoat 1-b and the ceramic layer. The ceramic layer d, which is spherical and has a high porosity, acts to alleviate stress caused by the difference in thermal expansion of the base ceramic material during thermal cycling, making it difficult for the ceramic layer to crack or peel. Even when η- occurs, due to its spherical shape, the propagation speed of cracks is slow, making it difficult to cause peeling. It also acts to prevent corrosive gases from entering the sprayed layer from the outside and erosion when forming a ceramic layer with a low porosity near the surface, a thermal cycle, etc. Regarding the three-layer structure in which a ceramic layer with a high porosity is sandwiched between a ceramic layer with a low porosity, please refer to our earlier application (Japanese Patent Application No. IJ-53F171, 1973).
.

実施例 下記の実施例において、第1図に示すように母材a上に
アンダーコート層すを形成した後、溶射条件を標準条件
から変化させること等により、セラミック溶射層を、気
孔率小の層Cと、気孔形状を球状化し気孔率を大きくし
た層dと、気孔率小の層eからなる3層構造に形成する
Examples In the following examples, after forming an undercoat layer on the base material a as shown in Fig. 1, by changing the thermal spraying conditions from the standard conditions, etc., a ceramic thermal spraying layer with a low porosity was applied. A three-layer structure is formed consisting of a layer C, a layer d with spherical pores and a high porosity, and a layer e with a low porosity.

鋼材(、+15規格SO5304)で直径8II11、
長さ50鰭の円柱試験片aを作成した。この試験片にプ
ラズマ溶年1ガンを用いてNi−Cr−Al合金を厚さ
0.11になるように溶射してアンダーコート層すを形
成した。
Steel material (+15 standard SO5304) diameter 8II11,
A cylindrical test piece a having a length of 50 fins was prepared. An undercoat layer was formed on this test piece by thermally spraying a Ni-Cr-Al alloy to a thickness of 0.11 mm using a plasma melting gun.

次いで、5wt″lの酸化カルシウムで安定化したジル
コニアをン容射して、上記の3層構造を有するセラミッ
ク層を形成した、3層構造の各層を形成するに当っては
、下記の条件を採用した。
Next, zirconia stabilized with 5wt''l of calcium oxide was injected to form a ceramic layer having the above three-layer structure.In forming each layer of the three-layer structure, the following conditions were met. Adopted.

■ アンダーコート層す界面イ1近の気孔率小の層(第
1図のC層)は、プラズマ溶射ガンを用いて溶射距離9
0m++、電流値600A、粉末粒度−350メツシユ
の溶射条件で、厚さが0.1鶴になるように溶則し、気
孔率が3〜8%のセラミック層を形成した。
■ The layer with low porosity near the interface I1 of the undercoat layer (layer C in Figure 1) is sprayed at a spraying distance of 9 using a plasma spray gun.
Under thermal spraying conditions of 0 m++, current value of 600 A, and powder particle size of -350 mesh, the ceramic layer was melted to a thickness of 0.1 mm to form a ceramic layer with a porosity of 3 to 8%.

■ C層の−に部に形成する気孔率大でかつ球状の気孔
の層(第1図のd層)は、プラズマ溶射ガンを用いて溶
射距離140部、電流値350〜400A、わ)末粒度
350〜500メソシュの球状化された粉末を使用する
等の溶射条件で、厚さ0.21になるように溶射し、気
孔率φ10〜20μ印程度で気孔率が12〜20%のセ
ラミック層を形成した。気孔が球状化していることは顕
微鏡観察で確認した。
■ A layer with high porosity and spherical pores (layer d in Figure 1) formed in the negative part of the C layer is sprayed using a plasma spray gun at a spraying distance of 140 parts, a current value of 350 to 400 A, and a) end. The ceramic layer is thermally sprayed to a thickness of 0.21 mm using spheroidized powder with a particle size of 350 to 500 mesh, and has a porosity of 12 to 20% with a porosity of about φ10 to 20μ. was formed. It was confirmed by microscopic observation that the pores were spherical.

■ d層の上部に形成する気孔率小の層(第1図の0層
)の作成方法、層の厚さ、気孔率は0層と同しとした。
(2) A layer with low porosity (layer 0 in FIG. 1) formed on top of layer d was prepared using the same method, thickness, and porosity as the layer 0.

しかし、0層は0層と同しである必要心:1なく、使用
用途に合わせて0層の気孔率を決定するのが望ましい。
However, it is not necessary that the 0 layer is the same as the 0 layer; it is desirable to determine the porosity of the 0 layer according to the intended use.

1! l−の実施例では、上記溶射条件を用いたが気孔
率が所望のものになれば、他の?81を条件(たとえば
溶射角度、溶射面温度など)で溶射してセラミック層を
形成しても良く、また、多くの溶射条件を組め合わせて
溶射しても良いことは言うまでもない。また溶射方法に
ついては密着性から考えて、プラズマ溶射が最も良いと
考えられるが、他のガス溶射あるいはアーク式溶躬で行
っても良い。
1! In the example of 1-, the above thermal spraying conditions were used, but if the porosity becomes desired, other conditions may be used. It goes without saying that the ceramic layer may be formed by thermal spraying 81 under certain conditions (for example, the spraying angle, the temperature of the sprayed surface, etc.), or it may be thermally sprayed by combining many thermal spraying conditions. Regarding the thermal spraying method, plasma spraying is considered to be the best method in terms of adhesion, but other gas spraying or arc type spraying may also be used.

また、気孔の球状化の方法としては前述のようにT(I
 P処理等も挙げられる。
In addition, as a method for spheroidizing the pores, T(I
P treatment etc. can also be mentioned.

以上の実施例で作成したセラミック溶1]=j試験片を
用いて、900℃の高温と室温の間を繰り返す冷熱サイ
クル試験を行なった。その結果、セラミック溶射層に某
1用11が見られるまでに700回の冷熱サイクルを要
した。
Using the ceramic melt 1]=j test piece prepared in the above example, a cooling/heating cycle test was conducted in which cycles were repeated between a high temperature of 900° C. and room temperature. As a result, it took 700 heating and cooling cycles before a certain type 11 was observed on the ceramic sprayed layer.

比較のために、実施例と同し母料上に標準条件(溶射距
離100鰭、電流値500A、粉末粒度−350メソシ
ュのジルコニア粒子)で厚す0 、5mmのセラミック
層を形成した試験片(比較例A)についても同し冷熱サ
イクル試験を行なった。また、実施例と他は同しである
が、中間セラミック層dの気孔形状が球状でないもの(
比較例B)についても同じ冷熱試験を行った。(層dは
溶射距離128酊、電流値420A、粉末粒度350〜
500メソシユのジルコニア粒子の溶射条件で作成し、
顕微鏡観察によると気孔形状は均一でなく、角ばった偏
平状にものが多く見られた。)これらの結果を第2図に
まとめて示す。第2図から、本発明の実施例をなすもの
、すなわち、気孔形状が球状のものは、他の条件は同し
であるが気孔形状が球状でないもの(比較例B)と較べ
て冷熱サイクルに対する耐久性が1.5倍に伸びており
、特に、気孔形状が球状でなくかつ3層構造を有ししな
い従来のもの(比較例A)と較べると耐久性か23倍に
伸びていることが示される。
For comparison, a test piece ( Comparative Example A) was also subjected to the same thermal cycle test. In addition, although the rest is the same as the example, the pore shape of the intermediate ceramic layer d is not spherical (
The same thermal test was also conducted for Comparative Example B). (Layer d has a spraying distance of 128mm, a current value of 420A, and a powder particle size of 350~
Created under thermal spraying conditions of zirconia particles of 500 mesos.
Microscopic observation revealed that the pores were not uniform in shape and were often angular and flat. ) These results are summarized in Figure 2. From FIG. 2, it can be seen that the example of the present invention, that is, the one with a spherical pore shape, has a higher resistance to cooling and heating cycles than the one with a non-spherical pore shape (Comparative Example B) under the same conditions. The durability has increased by 1.5 times, and especially compared to the conventional product (Comparative Example A) where the pore shape is not spherical and does not have a three-layer structure, the durability has increased by 23 times. shown.

発明の効果 本発明により、断熱用表面セラミックコート層の気孔形
状を球状化することによって、特にそれを気孔率のコン
トロールと絹合せることによって、面]熱特性および耐
久性ともに優れた断熱部材が提供され、摺動部材その他
の断熱性機械部品として使用可能である。
Effects of the Invention The present invention provides a heat insulating member with excellent thermal properties and durability by making the pores of the heat insulating surface ceramic coat layer spherical, and by combining this with porosity control. It can be used as sliding members and other heat-insulating mechanical parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によりセラミック溶射層を有する断熱部
Hの模式断面図、第2図は冷熱サイクル試験の結果を表
わすグラフ図である。 a・・・母材、b・・・アンダーコート層、C・・・気
孔率小のセラミック層、d・・・気孔率大、球状気孔の
セラミック層、e・・・気孔率大のセラミック層。 謡 1 図 2−ミ  2  后]〕 比較例A  比較例B   実施例 手 続 補 正 書(方式) 昭和60年5月2 口
FIG. 1 is a schematic sectional view of a heat insulating section H having a ceramic sprayed layer according to the present invention, and FIG. 2 is a graph showing the results of a thermal cycle test. a...Base material, b...Undercoat layer, C...Ceramic layer with low porosity, d...Ceramic layer with high porosity and spherical pores, e...Ceramic layer with high porosity . Song 1 Figure 2 - Mi 2] Comparative Example A Comparative Example B Example Procedures Amendment (Method) May 2, 1985

Claims (1)

【特許請求の範囲】[Claims] 1、断熱部材の母材上にアンダーコートを施した後、内
方から順に気孔率小のセラミック層、気孔率大のセラミ
ック層、及び気孔率小のセラミック層を形成する断熱部
材において、少なくとも気孔率大のセラミック層の気孔
形状が球状を成していることを特徴とする断熱部材。
1. After applying an undercoat on the base material of the heat insulating member, a ceramic layer with a low porosity, a ceramic layer with a high porosity, and a ceramic layer with a low porosity are formed in order from the inside. A heat insulating member characterized by a ceramic layer having a spherical pore shape.
JP60009170A 1985-01-23 1985-01-23 Heat-insulating member Pending JPS61169241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60009170A JPS61169241A (en) 1985-01-23 1985-01-23 Heat-insulating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60009170A JPS61169241A (en) 1985-01-23 1985-01-23 Heat-insulating member

Publications (1)

Publication Number Publication Date
JPS61169241A true JPS61169241A (en) 1986-07-30

Family

ID=11713113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60009170A Pending JPS61169241A (en) 1985-01-23 1985-01-23 Heat-insulating member

Country Status (1)

Country Link
JP (1) JPS61169241A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166030U (en) * 1987-04-20 1988-10-28
JPS63268963A (en) * 1987-04-27 1988-11-07 Ngk Insulators Ltd Ceramic port liner
JPH01124056U (en) * 1988-02-15 1989-08-23
JP2010159768A (en) * 2010-03-30 2010-07-22 Toyota Motor Corp Method for manufacturing cylinder liner
US8308431B2 (en) 2006-09-29 2012-11-13 Jtekt Corporation Turbocharger
WO2013081150A1 (en) * 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure, and inner wall structure of flow path
WO2013125704A1 (en) * 2012-02-22 2013-08-29 日本碍子株式会社 Engine combustion chamber structure and inner wall structure of flow path

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166030U (en) * 1987-04-20 1988-10-28
JPS63268963A (en) * 1987-04-27 1988-11-07 Ngk Insulators Ltd Ceramic port liner
JPH0319384B2 (en) * 1987-04-27 1991-03-14 Ngk Insulators Ltd
JPH01124056U (en) * 1988-02-15 1989-08-23
US8308431B2 (en) 2006-09-29 2012-11-13 Jtekt Corporation Turbocharger
JP2010159768A (en) * 2010-03-30 2010-07-22 Toyota Motor Corp Method for manufacturing cylinder liner
WO2013081150A1 (en) * 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure, and inner wall structure of flow path
WO2013080389A1 (en) * 2011-12-02 2013-06-06 日本碍子株式会社 Engine combustion chamber structure
JPWO2013081150A1 (en) * 2011-12-02 2015-04-27 日本碍子株式会社 Engine combustion chamber structure and flow path inner wall structure
EP2787207A4 (en) * 2011-12-02 2015-09-30 Ngk Insulators Ltd Engine combustion chamber structure, and inner wall structure of flow path
US9284911B2 (en) 2011-12-02 2016-03-15 Ngk Insulators, Ltd. Engine combustion chamber structure, and inner wall structure of through channel
WO2013125704A1 (en) * 2012-02-22 2013-08-29 日本碍子株式会社 Engine combustion chamber structure and inner wall structure of flow path
JPWO2013125704A1 (en) * 2012-02-22 2015-07-30 日本碍子株式会社 Engine combustion chamber structure and flow path inner wall structure
EP2818677A4 (en) * 2012-02-22 2015-11-25 Ngk Insulators Ltd Engine combustion chamber structure and inner wall structureof flow path

Similar Documents

Publication Publication Date Title
US6180184B1 (en) Thermal barrier coatings having an improved columnar microstructure
US5305726A (en) Ceramic composite coating material
KR840001683B1 (en) Columnar grain ceramic themal barrier coatings
RU2209256C2 (en) Method of application of metal adhesive layer (variants) and metal adhesive layer for realization of this method (variants)
JP2004137602A (en) Method for applying coating on base material
JPH0343339B2 (en)
US6306517B1 (en) Thermal barrier coatings having an improved columnar microstructure
KR101249951B1 (en) Method for coating in process equipments and coating structure using the same
JPH0251978B2 (en)
CN109930102B (en) Novel thermal barrier coating preparation process
CN108251832B (en) Method of depositing one or more layers of microspheres to form a thermal barrier coating
CN106011721B (en) A method of laminated coating is prepared using hot spray process
JPS61169241A (en) Heat-insulating member
JPH0515781B2 (en)
CN108220865A (en) The thermal spray deposition of hollow microsphere
US7144602B2 (en) Process for obtaining a flexible/adaptive thermal barrier
JPH1161438A (en) Heat shielding coating member and its production
JPH0465143B2 (en)
JPS63161150A (en) Formation of heat insulating thermally sprayed layer
JPH0480984B2 (en)
JPS61207567A (en) Formation of thermally sprayed ceramic film
JPH05263212A (en) Heat-resistant coating
JP2819268B2 (en) Porous sprayed coating and method for forming the same
JPS61288060A (en) Plasma arc thermal spraying method under reduced pressure
JPH01172554A (en) Flame spraying material