[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61159545A - Aluminum alloy for precision working, and tubing and photo-conductive member by use of it - Google Patents

Aluminum alloy for precision working, and tubing and photo-conductive member by use of it

Info

Publication number
JPS61159545A
JPS61159545A JP27989384A JP27989384A JPS61159545A JP S61159545 A JPS61159545 A JP S61159545A JP 27989384 A JP27989384 A JP 27989384A JP 27989384 A JP27989384 A JP 27989384A JP S61159545 A JPS61159545 A JP S61159545A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
aluminum
photoconductive
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27989384A
Other languages
Japanese (ja)
Other versions
JPH0428773B2 (en
Inventor
Takahisa Kawamura
川村 高久
Atsushi Koike
淳 小池
Keiichi Murai
啓一 村井
Kyosuke Ogawa
小川 恭介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27989384A priority Critical patent/JPS61159545A/en
Publication of JPS61159545A publication Critical patent/JPS61159545A/en
Publication of JPH0428773B2 publication Critical patent/JPH0428773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/102Bases for charge-receiving or other layers consisting of or comprising metals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the alloy suitable for component members requiring precision working such as photo-conductive members, etc., by providing an aluminum alloy having aluminium as matrix and containing silicon by a specific quantity or less and by limiting the size of the inclusions in the alloy to the specific value or below. CONSTITUTION:The aluminum alloy for precision working has aluminium as matrix and contains silicon by <=0.5wt%, in which the size of the inclusions is limited to <=10mu; Iron (<=2,000ppm), 0.5-10wt% magnesium, or 0.5-10wt% copper may further be added. This aluminum alloy is subjected to drawing to produce, e.g., photo-conductive members.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光導電部材をはじめとする精密加工を要求され
る電気乃至電子デバイスなどの構成部材として好適なア
ルミニウム合金、このアルミニウム合金を用いた管材及
び光導電部材に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum alloy suitable as a component of electrical or electronic devices that require precision processing, including photoconductive members, and an aluminum alloy that uses this aluminum alloy. This invention relates to tubing and photoconductive members.

〔従来の技術〕[Conventional technology]

アルミニウム合金は建材、自動車部品等各種構造体に幅
広く利用されているが、とりわけ、光導電部材の支持体
等精密加工を要求される電気乃至電子デバイスの構成部
材として、その利用度が高まりつつある。
Aluminum alloys are widely used in various structures such as building materials and automobile parts, but their use is increasing in particular as components of electrical and electronic devices that require precision processing, such as supports for photoconductive members. .

しかしながら、例えば日本工業規格(J I S)によ
り規格化された展伸材、鋳物用、ダイガスト等の汎用の
アルミニウム合金には、Mg、Cu、Mn、Si、Zn
等の積極的に添加される成分をはじめとする各種組成成
分と共に各種不純物成分が含有されており、これらが介
在物として組織中に析出したりする。特にケイ素はアル
ミニウムと固溶しにくく、Si、5i02.Al−5i
化合物、Al−Fe−3i化合物、Al−51−Mg化
合物として、またA1はAl2O3としてアルミニウム
組織中に例えば島状等の形態で介在し、これらが仕、ヒ
加工時の表面近傍に析出物(ハードスポット)として作
用して、精密加工の際の加工性を損ない、延いてはアル
ミニウム合金を構成部材とする電子部品等の特性を劣化
させることになる。
However, general-purpose aluminum alloys standardized by Japan Industrial Standards (JIS), such as those for wrought materials, castings, and die-gas, contain Mg, Cu, Mn, Si, and Zn.
Various impurity components are contained together with various compositional components such as actively added components, and these may precipitate in the structure as inclusions. In particular, silicon is difficult to form a solid solution with aluminum, and Si, 5i02. Al-5i
Compounds, Al-Fe-3i compounds, Al-51-Mg compounds, and A1 as Al2O3 are present in the aluminum structure in the form of islands, etc., and these form precipitates near the surface during machining. These hard spots impair workability during precision machining, and eventually deteriorate the characteristics of electronic components made of aluminum alloy.

この様な事情を、光導電部材を1例として、更に詳しく
説明すると、例えば電子写真感光体は、通常、アルミニ
ウム合金から成る円筒状等の支持体表面上に光導電層を
設けて構成される。
To explain this situation in more detail using a photoconductive member as an example, for example, an electrophotographic photoreceptor is usually constructed by providing a photoconductive layer on the surface of a cylindrical support made of an aluminum alloy. .

光導電層の材料としては有機乃至無機の各種光導電物質
が用いられているが1例えば1価の元素でダングリング
ボンドが修飾されたアモルファスシリコン(以下、a−
3iという)は、その優れた光導仏性、耐振性、耐熱性
のために光導電層の材料としての応用が期待されている
。このa−5iを実用に供するためには、a−5iの光
導電層に加えて、支持体からの電荷の注入を阻止する電
荷注入阻止層、SiN  、SiC等の表面保x   
        x 護層等を用い、目的に応じた多層構成とする必要がある
。そしてこの際の光導電部材の均一性は極めて重要であ
り、光導電的特性の不均一やピンホール等の欠陥が存在
すると美麗な画像が提供できないば゛かりでなく、実用
に耐えないものとなる。
Various organic and inorganic photoconductive substances are used as materials for the photoconductive layer. For example, amorphous silicon whose dangling bonds are modified with a monovalent element (hereinafter referred to as a-
3i) is expected to be used as a material for photoconductive layers due to its excellent light guiding properties, vibration resistance, and heat resistance. In order to put this a-5i into practical use, in addition to the photoconductive layer of a-5i, a charge injection blocking layer for blocking charge injection from the support, a surface protective layer such as SiN or SiC, etc.
x It is necessary to use a protective layer and create a multi-layered structure depending on the purpose. In this case, the uniformity of the photoconductive member is extremely important, and if there are defects such as uneven photoconductive properties or pinholes, not only will it not be possible to provide a beautiful image, but it will also be impractical. Become.

特にa−3iは、膜の形態が支持体の表面形状に大きく
左右されることが知られている。とりわけ、殆どの部分
でほぼ均一の光導電特性が必要となる大面積の電子写真
感光体ドラムにおいては。
In particular, it is known that the morphology of the film of a-3i is largely influenced by the surface shape of the support. Particularly in large-area electrophotographic photoreceptor drums that require substantially uniform photoconductive properties over most parts.

支持体の表面状態は極めて重要であり、支持体表面に欠
陥が存在すると膜の均一性が悪くなり、柱状構造や球状
突起が形成されるため、光導電的不均一さの生じる原因
となる。
The surface condition of the support is extremely important; the presence of defects on the support surface impairs the uniformity of the film, resulting in the formation of columnar structures and spherical protrusions, resulting in photoconductive non-uniformity.

そこで、アルミニウム合金の管材等を支持体として使用
する場合、その表面に鏡面仕上げ、エンボス加工等精密
な各種切削乃至は研摩加工を施す過程において、前述し
た各種介在物により、例えばハードスポットと呼ばれる
固い部分が存在すると、例えば切削加工による鏡面化過
程において。
Therefore, when using an aluminum alloy tube material as a support, in the process of performing various precision cutting or polishing processes such as mirror finishing or embossing on the surface, the various inclusions mentioned above may occur, such as hard spots. If a part is present, for example in the process of mirror polishing by cutting.

切削バイトに対する切削抵抗となり、アルミニウムシリ
ンダー表面に欠陥部分を生ずる原因となり、アルミニウ
ム支持体表面上にl〜10gm程度のひび割れ、エグレ
状の傷、更には微細な凹凸、スジ状キズを発生させる要
因となっている。
It acts as cutting resistance against the cutting tool, causes defects on the surface of the aluminum cylinder, and causes cracks of about 1 to 10 gm, rough scratches, and even minute irregularities and streak scratches on the surface of the aluminum support. It has become.

そこで、本発明者らは、アルミニウム合金における介在
物成分に着目し、特に含有される合金成分1合金成分の
酸化物等による介在物の大きさを規制することにより、
前述した従来の問題点が解決されることを見出し1本発
明を完成するに至った。
Therefore, the present inventors focused on inclusion components in aluminum alloys, and in particular, by regulating the size of inclusions caused by oxides of alloy component 1 contained in the aluminum alloy,
The inventors have found that the above-mentioned conventional problems can be solved and have completed the present invention.

〔発明の目的及び概要〕[Purpose and outline of the invention]

本発明の第1の目的は、含有する介在物に起因する組織
異常が抑制され、精密加工に用いるのに適したアルミニ
ウム合金を提供することにある。
A first object of the present invention is to provide an aluminum alloy in which structural abnormalities caused by inclusions are suppressed and which is suitable for use in precision machining.

本発明の第2の目的は、精密加工後における表面欠陥が
抑制され、とりわけ精密加工による正確な表面形状が望
まれる光導電部材等電気乃至電子デバイスなどの構成部
材に用いるのに適した精密加工用アルミニウム合金を提
供することにある。
A second object of the present invention is to provide precision processing that suppresses surface defects after precision processing and is particularly suitable for use in structural members of electrical or electronic devices such as photoconductive members where an accurate surface shape due to precision processing is desired. Our objective is to provide aluminum alloys for

本発明の第3の目的は、介在物による組織異常が抑制さ
れると共に成形方法を最適化することにより、更に精密
加工への適応度が高められたアルミニウム合金管材を提
供することにある。
A third object of the present invention is to provide an aluminum alloy tube material in which tissue abnormalities due to inclusions are suppressed and the forming method is optimized, thereby making the tube material more adaptable to precision processing.

本発明の第4の目的は、とりわけ精密加工による正確な
表面形状並びに高い寸法精度が望まれる電子写真感光体
ドラムの支持体等電気乃至電子デバイスなどの管状構成
部材を精密加工するのに適したアルミニウム合金管材を
提供することにある。
A fourth object of the present invention is to provide a material suitable for precision machining of tubular structural members of electrical or electronic devices such as supports for electrophotographic photosensitive drums, which require an accurate surface shape and high dimensional accuracy through precision machining. Our objective is to provide aluminum alloy tubing.

本発明の第5の目的は、支持体の表面欠陥が抑制され、
電気的、光学的、光導電的特性の均一性に優れた光導電
部材を提供することにある。
A fifth object of the present invention is that surface defects of the support are suppressed,
The object of the present invention is to provide a photoconductive member with excellent uniformity of electrical, optical, and photoconductive properties.

本発明の第6の目的は、画像欠陥が少なく、高品質な画
像を得ることができる光導電部材を提供することにある
A sixth object of the present invention is to provide a photoconductive member that can produce high-quality images with fewer image defects.

上記第1乃至第2の目的は、アルミニウムを基質とし且
つケイ素含量が0.5重量%未満であるアルミニウム合
金であって、含有する介在物の大きさがlOBm以下で
あることを特徴とする本発明の精密加工用アルミニウム
合金(以下1本発明のアルミニウム合金という)によっ
て達成される。
The first and second objects of the present invention are to provide an aluminum alloy having aluminum as a substrate and having a silicon content of less than 0.5% by weight, wherein the size of inclusions is 1OBm or less. This is achieved by the aluminum alloy for precision machining of the invention (hereinafter referred to as the aluminum alloy of the invention).

上記第3乃至第4の目的は、アルミニウムを基質とし、
ケイ素含量が0.5重に%未満であり、且つ含有する介
在物の大きさがlOILm以下であるアルミニウム合金
を引抜加工により成形したことを特徴とする本発明のア
ルミニウム合金管材によって達成される。
The third and fourth purposes are to use aluminum as a substrate,
This is achieved by the aluminum alloy tube material of the present invention, which is formed by drawing an aluminum alloy having a silicon content of less than 0.5% by weight and a size of inclusions of 1OILm or less.

上記第5乃至第6の目的は、支持体上に光導電層を有す
る光導電部材において、前記支持体が。
The fifth and sixth objects are a photoconductive member having a photoconductive layer on a support, wherein the support is provided with a photoconductive layer.

アルミニウムを基質とし、ケイ素含量が0.5重量%未
満であり、且つ含有する介在物の大きさが110μm以
下であるアルミニウム合金から成ることを特徴とする本
発明の光導電部材によって達成される。
This is achieved by the photoconductive member of the present invention, which is made of an aluminum alloy that uses aluminum as a substrate, has a silicon content of less than 0.5% by weight, and contains inclusions with a size of 110 μm or less.

〔発明の詳細な説明及び実施例〕[Detailed description and examples of the invention]

汎用のアルミニウム合金には、一般に、必要に応じて積
極的に添加される合金成分や、精錬、官製等の過程で止
むを得ず混入する不純物などに起因する析出物、介在物
が存在し1粒界等において異常成長したり1合金組織内
にハードスポットと呼ばれる固い部分を生じ、精密加工
の際の加工性を損じたり、精密加工により得られる電子
部品等の特性を劣化させる原因となる。前述した様に、
例えばケイ素はアルミニウムと固溶しに<<、St、5
i02.Al−Si化合物、Al−Fe−Si化合物、
Al−51−Mg化合物として、またAtはAl2O3
としてアルミニウム組織中に例えば島状等の形態で介在
する。またFe、Ti等も酸化物等として堅い粒界析出
物やハードスポットとして現れる。特にSiは、板金0
.5重量%未満と低い濃度で含有されていても、Atと
固溶しにくく、硬い(特に5i02)ため、A1合金の
物理的な特性向上には大きく寄与するが、バイトによる
精密鏡面仕上等加工時に、ダイヤバイト等の切削工具に
よるひっかかりを生じ、表面欠陥を生じる。
General-purpose aluminum alloys generally contain precipitates and inclusions caused by alloying ingredients that are actively added as needed and impurities that are unavoidably mixed in during processes such as refining and government manufacturing. Abnormal growth occurs at grain boundaries, etc., and hard parts called hard spots occur within the alloy structure, impairing workability during precision machining, and causing deterioration of the characteristics of electronic components etc. obtained by precision machining. As mentioned above,
For example, silicon forms a solid solution with aluminum, <<, St, 5
i02. Al-Si compound, Al-Fe-Si compound,
As Al-51-Mg compound, At is also Al2O3
As such, they are present in the aluminum structure in the form of islands, for example. Further, Fe, Ti, etc. also appear as hard grain boundary precipitates or hard spots as oxides. In particular, Si is a sheet metal with 0
.. Even if it is contained at a low concentration of less than 5% by weight, it is difficult to form a solid solution with At and is hard (especially 5i02), so it greatly contributes to improving the physical properties of A1 alloy, but it is difficult to process it with a precision mirror finish using a cutting tool. Occasionally, it gets caught by cutting tools such as diamond bits, resulting in surface defects.

本発明においては、特にケイ素含量が0.5重量%未満
のアルミニウム合金において、前述した各種介在物の大
きさく介在物粒子の最大長さで代表される粒径)を10
gm以下とした場合、精密加工の際の加工性や精密加工
により得られる電子部品等の特性が予期せぬ程に向上す
ることを見い出し、本発明を完成するに至った。介在物
の更に好ましい大きさは、5gm以下である。アルミニ
ウム合金中の介在物の大きさを本発明に規定している範
囲に抑制する具体的な方法としては、例えば、アルミニ
ウム合金溶解時に使用するセラミ−/クツイルターの開
孔径の小さいものを用いるとともに、十分な管理のもと
にフィルターの効果を十分に活かす方法をとり、具体的
にはフィルターがある程度目詰まりを生じた時点でのロ
フトを使用する。更には□、溶解炉材の混入防止対策、
スラグの面削厚みの増加などの方法が挙げられる。
In the present invention, especially in aluminum alloys having a silicon content of less than 0.5% by weight, the size of the various inclusions described above (the particle diameter represented by the maximum length of the inclusion particles) is 10%.
gm or less, the workability during precision machining and the properties of electronic components obtained by precision machining are unexpectedly improved, and the present invention has been completed. A more preferable size of the inclusions is 5 gm or less. A specific method for suppressing the size of inclusions in an aluminum alloy within the range specified in the present invention includes, for example, using a ceramic/cutter with a small opening diameter to be used when melting the aluminum alloy, and A method is used to make full use of the effect of the filter under sufficient control, and specifically, the loft used is used at the point when the filter is clogged to some extent. Furthermore, □, measures to prevent mixing of melting furnace materials,
Methods include increasing the thickness of the slag surface.

この様に、水引においてはアルミニウム合金中に含有さ
れる介在物の大きさを規定したが、基質アルミニウムを
はじめとするその他の合金成分については、特に制限は
なく、成分の種類、組成等については任意に選択するこ
とができる。従って1本発明のアルミニウム合金には1
日木工業規格(JIS)、AA規格、BS規格、DIN
規格、国際合金登録等に展伸材、鋳物用、ダイカスト等
として規格化あるいは登録されている、純アルミニウム
系、At−Cu系、A l −M n系、Al−3t系
、Al−Mg系、AI −Mg−3i系、Al−Zn−
Mg系等の組成の合金、Al−Cu −M g系(ジュ
ラルミン、超ジュラルミン等) 、 A 1−Cu−3
i系(ラウタル等)、Al−Cu−Ni−Mg系(Y合
金、RR金合金)、アルミニウム粉末焼結体(S A 
P)等が包含される。
In this way, Mizuhiki stipulates the size of inclusions contained in aluminum alloys, but there are no particular restrictions on other alloy components, including the substrate aluminum, and the types and composition of the components are not limited. Can be selected arbitrarily. Therefore, the aluminum alloy of the present invention has 1
Japanese Industrial Standards (JIS), AA Standards, BS Standards, DIN
Pure aluminum type, At-Cu type, Al-Mn type, Al-3t type, Al-Mg type, which are standardized or registered as wrought material, casting material, die casting, etc. in standards, international alloy registration, etc. , AI-Mg-3i system, Al-Zn-
Alloys with compositions such as Mg-based, Al-Cu-Mg-based (duralumin, super duralumin, etc.), A1-Cu-3
i-based (Rautal, etc.), Al-Cu-Ni-Mg-based (Y alloy, RR gold alloy), aluminum powder sintered body (SA
P) etc. are included.

本発明においてアルミニウム合金の組成を選択するには
、使用目的に応じた特性として、例えば機械的強度、耐
食性、加工性、耐熱性、寸法精度等を考慮して適宜に選
択すれば良いが、例えば精密加工に際して、鏡面化切削
加工等を伴う場合には、アルミニウム合金中にマグネシ
ウム及び銅を共存させることによって、アルミニウム合
金の快削性が向上する。マグネシウムあるいは銅の含量
は、それぞれ0.5〜10重量%の範囲が好ましく、特
に1〜7重量%の範囲が望ましい、−/グネシウム含量
が余りにも高過ぎると結晶粒界部分に粒界腐食が生じ易
くなるため、10重量%を超えて添加することは望まし
くない。
In order to select the composition of the aluminum alloy in the present invention, the composition may be appropriately selected by considering the properties depending on the purpose of use, such as mechanical strength, corrosion resistance, workability, heat resistance, dimensional accuracy, etc. When precision machining involves mirror cutting, etc., the free machinability of the aluminum alloy is improved by coexisting magnesium and copper in the aluminum alloy. The content of magnesium or copper is preferably in the range of 0.5 to 10% by weight, particularly preferably in the range of 1 to 7% by weight. -/If the content of magnesium or copper is too high, intergranular corrosion may occur at grain boundaries. It is undesirable to add more than 10% by weight since this tends to occur.

また、アルミニウム合金中に含有される鉄は。Also, iron contained in aluminum alloys.

共存するアルミニウムやケイ素とFe−Al系やFe−
Al−5i系の金属間化合物を形成し、アルミニウムマ
トリックス中にハードスポットとして現れる。特にこの
ハードスポットは鉄含量2000ppmを境にして鉄が
増加すると急激に増加し、例えば鏡面切削加工等の際に
悪影響を及ぼす、従って、本発明のアルミニウム合金に
おける好ましい鉄含量は、2000ppm以下、更には
11000pp以下である。
Aluminum and silicon coexist with Fe-Al system and Fe-
An Al-5i-based intermetallic compound is formed and appears as a hard spot in the aluminum matrix. In particular, these hard spots rapidly increase when the iron content increases beyond 2000 ppm, and have a negative effect on mirror cutting, for example. Therefore, the preferred iron content in the aluminum alloy of the present invention is 2000 ppm or less, and even more. is 11,000 pp or less.

更に、アルミニウム合金中に含有される水素は、空孔(
B 1 i s t e r)等の組織異常を生起させ
、精密加工の際の加工性を損じたり、精密加工により得
られる電子部品等の特性を劣化させる原因となる。この
様な不都合は、特にアルミニウム合金中の水素量をアル
ミニウム100グラムに対して1.Occ以下、より好
ましくは0.7CC以下と抑制することにより解消する
ことができる。
Furthermore, the hydrogen contained in the aluminum alloy causes vacancies (
This causes tissue abnormalities such as B 1 ist er), impairs workability during precision machining, and causes deterioration of the characteristics of electronic components etc. obtained by precision machining. Such inconveniences are especially caused by the hydrogen content in the aluminum alloy being 1.0% per 100 grams of aluminum. This can be solved by suppressing it to less than Occ, more preferably less than 0.7CC.

アルミニウム合金中に含有される鉄の含量を2000p
pm以下に抑える具体的な方法としては、W料としての
At地金の純度の高いもの、例えば、電解精錬を繰返し
行なったものを使用する。また、溶解、鋳込の各工程で
十分管理を行なうなどの方法が挙げられる。
The iron content contained in the aluminum alloy is 2000p.
As a specific method for suppressing the amount to pm or less, a highly pure At base metal as the W material, for example, one that has been repeatedly electrolytically refined, is used. Another method is to thoroughly control each process of melting and casting.

アルミニウム合金中に含有される水素量を、アルミニウ
ム100グラムに対して1.0cc以下に抑える具体的
な方法としては、A1合金溶解時に脱ガス工程として塩
素ガスを溶湯中に吹き込み合金組織中に存在するH2ガ
スをHCIとして除去する方法、あるいは溶解したA1
合金を真空炉中に一定時間保持し1合金組織中に存在す
るH2ガスを真空中へ拡散除去する方法などが挙げられ
る。
A specific method of suppressing the amount of hydrogen contained in the aluminum alloy to 1.0 cc or less per 100 grams of aluminum is to blow chlorine gas into the molten metal as a degassing step when melting the A1 alloy, which is present in the alloy structure. A method for removing H2 gas as HCI or dissolved A1
Examples include a method in which the alloy is held in a vacuum furnace for a certain period of time and H2 gas present in the alloy structure is diffused and removed into the vacuum.

因みに、本発明のアルミニウム合金の具体的組成を以下
に例示する。
Incidentally, the specific composition of the aluminum alloy of the present invention is illustrated below.

(A I −Mg系) Mg   0.5〜lO重篭% Si   O,5重量%以下 Fe   2000ppm以下 Cu   O,04〜0.2重量% M n   0 、01〜1 、0重量%Cr   O
,05〜0.5重量% Zn   0.03〜0.25重量% Ti   Tr又は0.05〜0.20tIL景%H2
A1100グラムに対して 1.0cc以下 AI   実質的に残部 (AI −Mn系〕 M n   0 、3〜1 、5重量%Si   O,
5重量%以下 Fe   2000ppm以下 Cu   O,05〜0.3重量% Mg   0.2〜1.3重量% Cr   O又は0.1〜0.2重量%Zn   O,
1〜0.4重量% Ti   Tr又は0.1重量%程度 H2Al100グラムに対して 1.0cc以下 AI   実質的に残部 [Al−Cu系] Cu   1.5〜6.0重量% Si   O,5重量%以下 Fe   2000ppm以下 Mn   O又は0.2〜1.2重量%Mg   O又
は0.2〜i、a重量%Cr   O又は0.1重量%
程度 Zn0.2〜0.3重量% Ti   Tr又は0.15〜0.2重量%H2Al1
00グラムに対して 1.0cc以下 AI   実質的に残部 〔純アルミニウム系〕 Mg   0.02〜0.5重量% Si   O,3重量%以下 Fe   2000ppm以下 Cu   O,03〜0.1重量% Mn   0.02〜0.05fii%Cr   Tr Zn   O,03〜0.1重量% Ti   Tr又は0.03〜0.1重量%H2Al1
00グラムに対して 1.0cc以下 AI   実質的に残部 (但し、前記Trとは積極的に添加しない場合の痕跡量
を意味する。) 本発明のアルミニウム合金は、圧延、押出等の塑性加工
を経た後、切削乃至は研摩等の機械的方法、乃至は化学
エツチング等化学的乃至物理的方法を伴なう精密加工を
施し、必要に応じて熱処理、調質等を随時組合せて、使
用目的に応じた適宜の形状に賦形される0例えば電子写
真感光体ドラム等の厳格な寸法精度を要求される管状の
構成部材に賦形する場合は1通常の押出加工により得ら
れるボートホール押出管あるいはマンドレル押出管を、
更に冷間引抜加工して得られる引抜管を使用するのが好
ましく、この様な管を用い1例えば管表面に鏡面仕上げ
、エンポシング等のための切削乃至は研摩等の機械的方
法、乃至は化学エツチング等化学的乃至物理的方法を伴
なう精密加工を施した場合に、本発明のアルミニウム合
金の特長が特に顕著に現われる。
(AI-Mg system) Mg 0.5-1O heavy basket% Si O, 5% by weight or less Fe 2000ppm or less Cu O, 04-0.2% by weight M n 0 , 01-1, 0% by weight Cr O
, 05-0.5 wt% Zn 0.03-0.25 wt% Ti Tr or 0.05-0.20tIL view%H2
1.0 cc or less AI per 1100 grams of A1 Substantially the balance (AI-Mn system) M n 0 , 3 to 1, 5% by weight SiO,
5% by weight or less Fe 2000ppm or less Cu O, 05-0.3% by weight Mg 0.2-1.3% by weight Cr O or 0.1-0.2% by weight Zn O,
1 to 0.4 wt% Ti Tr or about 0.1 wt% 1.0 cc or less AI per 100 grams of H2Al Substantially the remainder [Al-Cu system] Cu 1.5 to 6.0 wt% Si O,5 wt% or less Fe 2000 ppm or less Mn O or 0.2-1.2 wt% Mg O or 0.2-i, a wt% Cr O or 0.1 wt%
Degree Zn 0.2-0.3 wt% Ti Tr or 0.15-0.2 wt% H2Al1
1.0cc or less per 00g AI Substantially the balance [pure aluminum type] Mg 0.02-0.5% by weight Si O, 3% by weight or less Fe 2000ppm or less Cu O, 03-0.1% by weight Mn 0.02-0.05fii% Cr Tr Zn O, 03-0.1 wt% Ti Tr or 0.03-0.1 wt% H2Al1
1.0 cc or less of AI per 00 grams (However, the above Tr means a trace amount when not actively added.) The aluminum alloy of the present invention is suitable for plastic working such as rolling and extrusion. After that, precision processing is performed using mechanical methods such as cutting or polishing, or chemical or physical methods such as chemical etching, and heat treatment, heat refining, etc. are combined as necessary to meet the intended use. 0 For example, when shaping a tubular component that requires strict dimensional accuracy such as an electrophotographic photoreceptor drum, 1 A boathole extruded tube obtained by ordinary extrusion processing or mandrel extrusion tube,
Furthermore, it is preferable to use a drawn tube obtained by cold drawing. The features of the aluminum alloy of the present invention are particularly apparent when precision processing involving chemical or physical methods such as etching is performed.

本発明のアルミニウム合金は、電子写真感光体等の光導
電部材の支持体、コンピューターメモリー用磁気ディス
ク基板、レーザースキャン用のポリゴンミラー基体に最
適であり、またダイヤバイトによる鏡面仕上げ、円筒研
削仕上げ、ラフピン下の表面粗さ、好ましくはR,、,
8=0.05ILm以下の平面度に仕上げられる各種電
気乃至は電子デバイスの構成部材として有用である。
The aluminum alloy of the present invention is ideal for supports for photoconductive members such as electrophotographic photoreceptors, magnetic disk substrates for computer memories, and polygon mirror substrates for laser scanning. Surface roughness under the rough pin, preferably R,...
It is useful as a constituent member of various electrical or electronic devices that can be finished with a flatness of 8=0.05 ILm or less.

以下、本発明のアルミニウム合金を支持体として用い、
光導電物質としてa−3iを用いた電子写真用の光導電
部材について1本発明の光導電部材の構成例を説明する
Hereinafter, using the aluminum alloy of the present invention as a support,
Regarding a photoconductive member for electrophotography using a-3i as a photoconductive material, an example of the structure of the photoconductive member of the present invention will be described.

この様な光導電部材は1例えば支持体上に電荷注入阻止
層、光導電層(感光層)及び表面保護層を順次積層した
構成を有している。
Such a photoconductive member has a structure in which, for example, a charge injection blocking layer, a photoconductive layer (photosensitive layer), and a surface protection layer are sequentially laminated on a support.

支持体の形状は、所望によって決定されるが、   ゛
例えば電子写真用として使用するのであれば、連続高速
複写の場合には、無端ベルト状又は円筒状とするのが望
ましい、支持体の厚みは、所望通りの光導電部材が形成
される様に適宜決定されるが、光導電部材として可撓性
が要求される場合には、支持体としての機能が十分発揮
される範囲内であれば可能な限り薄くされる。しかしな
がら、この様な場合にも、支持体の製造上及び取扱い上
、更には機械的強度等の点から、通常は、10uLm以
上とされる。
The shape of the support is determined depending on the requirements, but for example, if it is used for electrophotography, it is preferable to use an endless belt or a cylindrical shape for continuous high-speed copying.The thickness of the support is is determined as appropriate so that the desired photoconductive member is formed, but if flexibility is required as a photoconductive member, it is possible as long as the function as a support is fully exhibited. It is made as thin as possible. However, even in such a case, from the viewpoint of manufacturing and handling of the support, as well as mechanical strength, etc., the amount is usually set to 10 uLm or more.

支持体表面は、光導電部材の均一性を保つために例えば
鏡面化切削加工等により鏡面仕上げが施され、また、感
光体を光源としてレーザー光等の可干渉性単色光を使用
するデジタル画像情報記録に使用する場合に、干渉縞模
様を防止するためなどに1例えば旋盤、フライス盤等を
用いたダイヤモンド切削等機械的精密加工あるいは化学
エツチング等地の精密加工により規則的乃至は不規則の
例えば螺旋状の微細な凹凸が付される。
The surface of the support is mirror-finished by, for example, mirror cutting to maintain the uniformity of the photoconductive member, and digital image information using coherent monochromatic light such as a laser beam with the photoreceptor as a light source is applied to the surface of the support. When used for recording, in order to prevent interference fringes, for example, regular or irregular patterns such as a spiral pattern can be formed by mechanical precision processing such as diamond cutting using a lathe or milling machine, or precision processing such as chemical etching. Fine irregularities of the shape are added.

電荷注入阻止層は1例えば水素原子及び/又はハロゲン
原子を含有するa−3tで構成されると共に、伝導性を
支配する物質として、通常半導体の不純物として用いら
れる周期律表第1II族乃至は第V族に属する元素の原
子が含有される。電荷注入阻止層の層厚は、好ましくは
0.01〜1OJL m 、より好適には0.05〜8
ILm、最適には0.07〜5ILmとされるのが望ま
しい。
The charge injection blocking layer is composed of a-3T containing, for example, hydrogen atoms and/or halogen atoms, and as a substance governing conductivity, it is composed of a substance from Group 1II of the periodic table or Group 1II of the periodic table, which is usually used as an impurity in semiconductors. Contains atoms of elements belonging to group V. The thickness of the charge injection blocking layer is preferably 0.01 to 1 OJL m, more preferably 0.05 to 8
It is desirable that ILm is optimally set to 0.07 to 5 ILm.

電荷注入阻止層の代りに1例えばAl2O,。1, e.g. Al2O, instead of the charge injection blocking layer.

S i02 、 S i3 Nm 、ポリカーボネート
等の電気絶縁材料から成る障壁層を設けてもよいし、あ
るいは電荷注入阻止層と障壁層とを併用することもでき
る。
A barrier layer made of an electrically insulating material such as S i02 , S i3 Nm or polycarbonate may be provided, or a charge injection blocking layer and a barrier layer may be used together.

光導電層は1例えば水素原子とハロゲン原子を含有する
a−3Lで構成され、所望により電荷注入阻止層に用い
るのとは別種の伝導性を支配する質が含有される。光導
電層の層厚は、好ましくは1〜100路m、より好適に
は1〜80終m、最適には2〜50#Lmとされるのが
望ましい。
The photoconductive layer is composed of a-3L containing, for example, hydrogen atoms and halogen atoms, and optionally contains a substance governing conductivity different from that used in the charge injection blocking layer. The thickness of the photoconductive layer is preferably 1 to 100 m, more preferably 1 to 80 m, most preferably 2 to 50 m.

等で構成され、層厚は、好ましくは0.O1〜10#L
m、より好適には0.02〜5ILm、最適には0.0
4〜5μmとされるのが望ましい。
etc., and the layer thickness is preferably 0. O1~10#L
m, more preferably 0.02-5ILm, optimally 0.0
It is desirable that the thickness be 4 to 5 μm.

本発明において、a−3iで構成される光導電層等を形
成するには、例えばグロー放電法、スパッタリング法、
あるいはイオンブレーティング法等の従来公知の種々の
放電現象を利用する真空堆積法が適用される。
In the present invention, in order to form a photoconductive layer etc. composed of a-3i, for example, a glow discharge method, a sputtering method,
Alternatively, a vacuum deposition method utilizing various conventionally known discharge phenomena such as an ion blating method may be applied.

次にグロー放電分解法による光導電部材の製造法の1例
について説明する。
Next, an example of a method for manufacturing a photoconductive member using a glow discharge decomposition method will be described.

第1図にグロー放電分解法による光導電部材の製造装置
を示す、堆積槽lは、ベースプレート2と槽壁3とトッ
ププレート4とから構成され、この塩11m1内には、
カソード電極5が設けられており、a−5i堆積膜が形
成される特定の組成を有するアルミニウム合金製のドラ
ム状支持体6はカソード電極5の中央部に設置され、7
ノード電極としての役割も兼ねている。
FIG. 1 shows an apparatus for manufacturing photoconductive members using the glow discharge decomposition method. A deposition tank 1 is composed of a base plate 2, a tank wall 3, and a top plate 4, and the salt 11 ml contains:
A drum-shaped support 6 made of an aluminum alloy having a specific composition on which an a-5i deposited film is formed is installed in the center of the cathode electrode 5, and a drum-shaped support 6 is provided with a cathode electrode 5.
It also serves as a node electrode.

この製造装置を使用してa−5i堆積膜をドラム状支持
体上に形成するには、まず、原料ガス流入バルブ7及び
リークバルブ8を閉じ、排気バルブ9を開け、堆積槽l
内を排気する。真空計10の読みが約5 X I O−
@t o r rになった時点で原料ガス流入バルブ7
を開いて、マスフローコントローラーti内で所定の混
合比に調整された、例えばSiH*ガス、Si2H6ガ
ス、S i F4ガス等の原料混合ガスを堆積槽l内に
流入させる。
To form an a-5i deposited film on a drum-shaped support using this manufacturing apparatus, first, close the raw material gas inflow valve 7 and leak valve 8, open the exhaust valve 9, and open the deposition tank 1.
Exhaust the inside. Vacuum gauge 10 reads approximately 5 X I O-
When the temperature reaches @t o r r, the raw material gas inflow valve 7
The opening is opened, and a raw material mixed gas such as SiH* gas, Si2H6 gas, SiF4 gas, etc., which has been adjusted to a predetermined mixing ratio in the mass flow controller ti, flows into the deposition tank l.

このとき、堆積槽l内の圧力が所望の値になる様に真空
計lOの読みを見ながら、排気バルブ9の藷口度を調整
する。そしてドラム状支持体6の表面温度が加熱ヒータ
ー12により所定の温度に設定されていることを確認し
た後、高周波電源13を所望の電力に設定して堆積槽l
内にグロー放電を生起させる。
At this time, the pressure of the exhaust valve 9 is adjusted while checking the reading of the vacuum gauge 10 so that the pressure in the deposition tank 1 reaches a desired value. After confirming that the surface temperature of the drum-shaped support 6 is set to a predetermined temperature by the heating heater 12, the high frequency power source 13 is set to the desired power and the deposition tank is turned on.
It causes a glow discharge inside.

また1層形成を行なっている間は、層形成の均一化を図
るためにドラム状支持体6をモータ14により一定速度
で回転させる。このようにしてドラム状支持体6上に、
a−5i堆積膜を形成することができる。
Further, while one layer is being formed, the drum-shaped support 6 is rotated at a constant speed by the motor 14 in order to ensure uniform layer formation. In this way, on the drum-shaped support 6,
An a-5i deposited film can be formed.

以下、本発明を実施例に基きより詳細に説明する。Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1〜3、比較例1.2 精密切削用のエアーダンパー付旋盤 (PNEUMOPRECISION  INC。Examples 1-3, Comparative Example 1.2 Lathe with air damper for precision cutting (PNEUMOPRECISION INC.

製)に、先端部曲率0.01(sll−1)のダイヤモ
ンドバイトを、シリンダー中心角に対して5°の負のす
くい角を得る様にセットした0次にこの旋盤の回転軸フ
ランジに、第1表に示した介在物の大きさの異なる5種
のA l−Mg系アルミニウム合金製シリンダー(Si
含量は何れも0.5fi1%未満、Mg含量は何れも4
重量%、Fe含量は何れもlo00ppm以下)を真空
チャックし、付設したノズルからの白燈油噴霧、同じく
付設した真空ノズルからの切り粉の吸引を併用しつつ、
周速1000 (m/m1n)、送り速度0.01(m
 m / R)の条件で、外径が80mmΦとなる様鏡
面切削を施した。このようにして鏡面加工したシリンダ
ーにつき、鏡面加工後に生じている表面欠陥(エグレ状
の傷、ひび割れ、スジ状キズ)を目視及び金属!I微鏡
により検査し、その数を調べた。なお、シリンダイーに
含有される水素の量は作製したシリンダーの一部を切り
とり、これをサンプルとし、ラボラトリ−・イクイップ
メンツ・コーポレーション製RH−IE型を用い、その
仕様書に従って測定した。
A diamond cutting tool with a tip curvature of 0.01 (sll-1) was set on the rotating shaft flange of this lathe with a diamond cutting tool set to obtain a negative rake angle of 5° with respect to the cylinder center angle. Five types of Al-Mg-based aluminum alloy cylinders (Si
The content is less than 0.5fi1% in all cases, and the Mg content is 4 in all cases.
(weight% and Fe content are both lo00 ppm or less), while using a combination of white kerosene spray from an attached nozzle and suction of cuttings from the same attached vacuum nozzle,
Circumferential speed 1000 (m/m1n), feed speed 0.01 (m
Mirror cutting was performed under the conditions of (m/R) so that the outer diameter was 80 mmΦ. For cylinders that have been mirror-finished in this way, visually check the surface defects (egre-like scratches, cracks, and streak-like scratches) that occur after mirror-finishing. The specimens were examined using an I-microscope and their numbers were determined. The amount of hydrogen contained in Cylinder E was measured by cutting out a part of the produced cylinder, using this as a sample, and using Model RH-IE manufactured by Laboratory Equipment Corporation in accordance with its specifications.

次に、これらの鏡面加工したアルミニウム合金製シリン
ダーのそれぞれの上に、第1図に示した光導電部材の製
造装置を用い、先に詳述したグロー放電分解法に従い、
下記の条件により光導電部材を作製した。
Next, on each of these mirror-finished aluminum alloy cylinders, using the photoconductive member manufacturing apparatus shown in FIG. 1, according to the glow discharge decomposition method detailed above,
A photoconductive member was produced under the following conditions.

堆!* Illの積層順序 使用原料ガス 膜厚(pm
>■電荷注入阻止層 S i Ha /    0 、
6BzHら ■光導電層    S i H420 ■表面保護層   5iHa/    0.I2H4 アルミニウムシリンダ一温度: 250℃堆M膜形成時
の堆積室内内圧:  0.3Torr放電周波数:  
13.56MHz 堆積膜形成速度:  20A/sec 放電電カニ  0.18W/Cm2 こうして得られた各電子写真感光体ドラムを、キャノン
(株)製400RE複写装置に設置して画出しを行ない
、白点状の画像欠陥(0,3mmΦ以上)の評価を実施
した。これらの評価結果を第1表に示した。
Compilation! * Ill stacking order Raw material gas used Film thickness (pm
>■Charge injection blocking layer S i Ha / 0,
6BzH et al ■Photoconductive layer S i H420 ■Surface protective layer 5iHa/0. I2H4 Aluminum cylinder temperature: 250°C Deposition chamber internal pressure during M film formation: 0.3 Torr Discharge frequency:
13.56 MHz Deposited film formation rate: 20 A/sec Discharge electric crab 0.18 W/Cm2 Each of the electrophotographic photosensitive drums thus obtained was installed in a Canon Co., Ltd. 400RE copying machine to perform image printing. Evaluation of point-like image defects (0.3 mmΦ or more) was performed. These evaluation results are shown in Table 1.

なお、実施例1〜3の各電子写真感光体ドラムについて
は、更に100万枚の耐久試験を、23℃/相対湿度5
0%、30℃/相対湿度90%、5℃/相対湿度20%
の各環境下で実施したが、画像欠陥、特に白抜は等の欠
陥の増加もなく、良好な耐久性を有していることが確認
された。
The electrophotographic photoreceptor drums of Examples 1 to 3 were further subjected to a durability test of 1 million sheets at 23°C/relative humidity 5.
0%, 30℃/90% relative humidity, 5℃/20% relative humidity
It was confirmed that there was no increase in image defects, especially defects such as white spots, and that the image had good durability.

実施例4〜6.比較例3〜5 A 1−Mg系アルミニウム合金の代りに、AI−M 
n系、Al−Cu系、及び、純アルミニウム系のアルミ
ニウム合金(Fe含量は何れもl100Opp以下)を
用いた以外は、実施例1と同一のアルミニウム合金製シ
リンダー並びに光導電部材を作製した。
Examples 4-6. Comparative Examples 3 to 5 AI-M instead of A 1-Mg-based aluminum alloy
The same aluminum alloy cylinder and photoconductive member as in Example 1 were produced, except that n-based, Al-Cu-based, and pure aluminum-based aluminum alloys (all Fe contents were 1100 Opp or less) were used.

かくして得られたシリンダーのハードスポット数、鏡面
化過程で発生した欠陥数並びに画出しを行なった際の画
像欠陥を実施例1と同様に評価し、結果を第2表に示し
た。
The thus obtained cylinder was evaluated for the number of hard spots, the number of defects generated during the mirror-finishing process, and image defects when imaged in the same manner as in Example 1, and the results are shown in Table 2.

実施例7〜IQ Fe含量を第3表に示した値とした以外は、実施例1と
同一のA l−Mg系アルミニウム合金製シリンダー並
びに光導電部材を作製した。
Example 7 - IQ The same Al-Mg-based aluminum alloy cylinder and photoconductive member as in Example 1 were produced except that the Fe content was set to the value shown in Table 3.

かくして得られたシリンダーのハードスポット数、鏡面
化過程で発生した欠陥数並びに画出しを行なった際の画
像欠陥を実施例1と同様に評価し、結果を第3表に示し
た。
The thus obtained cylinder was evaluated for the number of hard spots, the number of defects generated during the mirror-finishing process, and image defects when imaged in the same manner as in Example 1, and the results are shown in Table 3.

〔発明の効果〕〔Effect of the invention〕

本発明のアルミニウム合金によれば、含有する介在物に
よるハードスポット等の組織異常が抑制され、乃至は全
くなくなり、精密加工による加工性の低下や加工製品の
所望される特性の劣化が抑えられるため、精密加工が必
要とされる電気乃至は電子デバイスの構成部材、とりわ
け精密加工による正確な表面形状が望まれる光導電部材
、コンピューターメモリー用磁気ディスク基板、レーザ
ースキャン用のポリゴンミラー基体等の電気乃至は電子
デバイスの構成部材として好適である。
According to the aluminum alloy of the present invention, structural abnormalities such as hard spots caused by inclusions are suppressed or completely eliminated, and a decrease in workability due to precision processing and deterioration of desired properties of processed products are suppressed. , component parts of electrical or electronic devices that require precision processing, especially photoconductive members that require accurate surface shapes through precision processing, magnetic disk substrates for computer memory, polygon mirror substrates for laser scanning, etc. is suitable as a component of an electronic device.

また、このアルミニウム合金を引抜加工して得られる管
材は、正確な表面形状並びに高い寸法精度が得られるた
め、とりわけ電子写真感光体ドラムの支持体等精密な管
状構成部材等を構成するのに好適である。
In addition, the tubular material obtained by drawing this aluminum alloy has a precise surface shape and high dimensional accuracy, so it is especially suitable for constructing precise tubular components such as supports for electrophotographic photosensitive drums. It is.

更に、本発明のアルミニウム合金を支持体として用いた
光導電部材は、電気的、光学的乃至は光導電的特性の均
一性に優れ、就中、電子写真用として用いた場合、画像
欠陥が少なく、高品質な画像を得ることができる。
Furthermore, the photoconductive member using the aluminum alloy of the present invention as a support has excellent uniformity of electrical, optical, and photoconductive properties, and particularly, when used for electrophotography, has few image defects. , high quality images can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、グロー放電解法による光導電部材の製造装置
を示した図である。 1・+1−堆積槽、 21・ベースプレート、 3・・・槽壁、 4・・・トッププレート、 5・・・、カソード電極、 6・・・ドラム状支持体、 7・・・原料ガス流入バルブ、 8拳・拳リークバルブ。 9・・・排気バルブ。 10・争・真空計、 11−−・マスフローコントローラ。 12・O・加熱ヒーター、 13・・・高周波電源、 14日・モータ。
FIG. 1 is a diagram showing an apparatus for manufacturing a photoconductive member using a glow discharge method. 1.+1-Deposition tank, 21. Base plate, 3. Tank wall, 4. Top plate, 5.. Cathode electrode, 6. Drum-shaped support, 7. Raw material gas inflow valve. , 8 fist/fist leak valve. 9...Exhaust valve. 10. Vacuum gauge, 11-- Mass flow controller. 12・O・Heating heater, 13...High frequency power supply, 14th・Motor.

Claims (1)

【特許請求の範囲】 (1)アルミニウムを基質とし且つケイ素含量が0.5
重量%未満であるアルミニウム合 金であって、含有する介在物の大きさが 10μm以下であることを特徴とする精密 加工用アルミニウム合金。 (2)鉄含量が2000ppm以下である特許請求の範
囲第(1)項記載の精密加工用ア ルミニウム合金。 (3)マグネシウム含量が0.5〜10重量%である特
許請求の範囲第(1)項又は第 (2)項記載の精密加工用アルミニウム合 金。 (4)銅含量が0.5〜10重量%である特許請求の範
囲第(1)項乃至第(3)項のう ちの1に記載の精密加工用アルミニウム合 金。 (5)含有する水素の量がアルミニウム100グラムに
対して1.0cc以下である特許 請求の範囲第(1)項乃至第(4)項のう ちの1に記載の精密加工用アルミニウム合 金。 (6)アルミニウムを基質とし、ケイ素含量が0.5重
量%未満であり且つ含有する介 在物の大きさが10μm以下であるアルミ ニウム合金を引抜加工により成形したこと を特徴とするアルミニウム合金管材。 (7)管表面に切削乃至は研摩加工を施している特許請
求の範囲第(6)項記載のアルミ ニウム合金管材。 (8)支持体上に光導電層を有する光導電部材において
、前記支持体が、アルミニウムを 基質とし、ケイ素含量が0.5重量%未満 であり且つ含有する介在物の大きさが10 μm以下であるアルミニウム合金から成る ことを特徴とする光導電部材。 (9)光導電層が、ケイ素原子を含む非晶質材料から成
る層を含むものである特許請求の 範囲第(8)項記載の光導電部材。
[Claims] (1) Aluminum is used as a substrate and silicon content is 0.5
An aluminum alloy for precision machining, characterized in that the size of inclusions is less than 10 μm by weight. (2) The aluminum alloy for precision machining according to claim (1), which has an iron content of 2000 ppm or less. (3) The aluminum alloy for precision machining according to claim (1) or (2), wherein the magnesium content is 0.5 to 10% by weight. (4) The aluminum alloy for precision machining according to any one of claims (1) to (3), wherein the copper content is 0.5 to 10% by weight. (5) The aluminum alloy for precision machining according to any one of claims (1) to (4), wherein the amount of hydrogen contained is 1.0 cc or less per 100 grams of aluminum. (6) An aluminum alloy tube material, characterized in that it is formed by drawing an aluminum alloy that uses aluminum as a substrate, has a silicon content of less than 0.5% by weight, and contains inclusions with a size of 10 μm or less. (7) The aluminum alloy tube material according to claim (6), wherein the tube surface is subjected to cutting or polishing. (8) In a photoconductive member having a photoconductive layer on a support, the support has aluminum as a substrate, has a silicon content of less than 0.5% by weight, and contains inclusions of 10 μm or less in size. A photoconductive member characterized by being made of an aluminum alloy. (9) The photoconductive member according to claim (8), wherein the photoconductive layer includes a layer made of an amorphous material containing silicon atoms.
JP27989384A 1984-12-29 1984-12-29 Aluminum alloy for precision working, and tubing and photo-conductive member by use of it Granted JPS61159545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27989384A JPS61159545A (en) 1984-12-29 1984-12-29 Aluminum alloy for precision working, and tubing and photo-conductive member by use of it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27989384A JPS61159545A (en) 1984-12-29 1984-12-29 Aluminum alloy for precision working, and tubing and photo-conductive member by use of it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1839890A Division JPH02306251A (en) 1990-01-29 1990-01-29 Photoconducting member

Publications (2)

Publication Number Publication Date
JPS61159545A true JPS61159545A (en) 1986-07-19
JPH0428773B2 JPH0428773B2 (en) 1992-05-15

Family

ID=17617391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27989384A Granted JPS61159545A (en) 1984-12-29 1984-12-29 Aluminum alloy for precision working, and tubing and photo-conductive member by use of it

Country Status (1)

Country Link
JP (1) JPS61159545A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370259A (en) * 1986-09-11 1988-03-30 Kobe Steel Ltd Stock for photosensitive drum made of aluminum alloy having high precision machinability and its production
JPS63116164A (en) * 1986-11-04 1988-05-20 Minolta Camera Co Ltd Laminated photosensitive body
JPH01285953A (en) * 1988-05-13 1989-11-16 Nippon Light Metal Co Ltd Aluminum base body for organic photosensitive body
JPH02306251A (en) * 1990-01-29 1990-12-19 Canon Inc Photoconducting member
US5028494A (en) * 1988-07-15 1991-07-02 Railway Technical Research Institute Brake disk material for railroad vehicle
US5980657A (en) * 1998-03-10 1999-11-09 Micron Technology, Inc. Alloy for enhanced filling of high aspect ratio dual damascene structures
US6316356B1 (en) 1998-03-10 2001-11-13 Micron Technology, Inc. Thermal processing of metal alloys for an improved CMP process in integrated circuit fabrication
JP2017111409A (en) * 2015-12-18 2017-06-22 富士ゼロックス株式会社 Conductive substrate, electrophotographic photoreceptor, process cartridge, image forming apparatus, and manufacturing method of conductive substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025482A (en) 2011-07-19 2013-02-04 Glory Ltd Fare adjustment system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495912A (en) * 1978-01-13 1979-07-28 Nippon Telegr & Teleph Corp <Ntt> Aluminum substrate for magnetic disc and manufacture thereof
JPS56105846A (en) * 1980-01-28 1981-08-22 Kobe Steel Ltd Production of al base alloy plate for magnetic disc
JPS58173750A (en) * 1982-04-05 1983-10-12 Hitachi Ltd Electrophotographic receptor and its manufacture
JPS59157255A (en) * 1983-02-25 1984-09-06 Nippon Light Metal Co Ltd Aluminum alloy material for superprecision working to form specular surface
JPS59157235A (en) * 1983-02-26 1984-09-06 Nippon Light Metal Co Ltd Production of aluminum alloy blank material for laser reflection mirror
JPS59193463A (en) * 1983-04-18 1984-11-02 Canon Inc Photoconductive member
JPS59212845A (en) * 1983-05-18 1984-12-01 Kyocera Corp Electrophotographic sensitive body
JPS59228255A (en) * 1983-06-09 1984-12-21 Canon Inc Drum for supporting image bearing member
JPS6089541A (en) * 1983-10-21 1985-05-20 Showa Alum Corp Aluminum alloy material for reflection mirror and its manufacture
JPS60262936A (en) * 1984-06-11 1985-12-26 Kobe Steel Ltd Extrusion aluminum alloy superior in vapor deposition characteristic of amorphous silicon
JPS6141743A (en) * 1984-07-31 1986-02-28 Showa Alum Corp Aluminum alloy superior in mirror surface cutting property
JPS6161170A (en) * 1984-09-01 1986-03-28 Kobe Steel Ltd Al alloy base material for electrophotographic photosensitive body, and its manufacture

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495912A (en) * 1978-01-13 1979-07-28 Nippon Telegr & Teleph Corp <Ntt> Aluminum substrate for magnetic disc and manufacture thereof
JPS56105846A (en) * 1980-01-28 1981-08-22 Kobe Steel Ltd Production of al base alloy plate for magnetic disc
JPS58173750A (en) * 1982-04-05 1983-10-12 Hitachi Ltd Electrophotographic receptor and its manufacture
JPS59157255A (en) * 1983-02-25 1984-09-06 Nippon Light Metal Co Ltd Aluminum alloy material for superprecision working to form specular surface
JPS59157235A (en) * 1983-02-26 1984-09-06 Nippon Light Metal Co Ltd Production of aluminum alloy blank material for laser reflection mirror
JPS59193463A (en) * 1983-04-18 1984-11-02 Canon Inc Photoconductive member
JPS59212845A (en) * 1983-05-18 1984-12-01 Kyocera Corp Electrophotographic sensitive body
JPS59228255A (en) * 1983-06-09 1984-12-21 Canon Inc Drum for supporting image bearing member
JPS6089541A (en) * 1983-10-21 1985-05-20 Showa Alum Corp Aluminum alloy material for reflection mirror and its manufacture
JPS60262936A (en) * 1984-06-11 1985-12-26 Kobe Steel Ltd Extrusion aluminum alloy superior in vapor deposition characteristic of amorphous silicon
JPS6141743A (en) * 1984-07-31 1986-02-28 Showa Alum Corp Aluminum alloy superior in mirror surface cutting property
JPS6161170A (en) * 1984-09-01 1986-03-28 Kobe Steel Ltd Al alloy base material for electrophotographic photosensitive body, and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370259A (en) * 1986-09-11 1988-03-30 Kobe Steel Ltd Stock for photosensitive drum made of aluminum alloy having high precision machinability and its production
JPS63116164A (en) * 1986-11-04 1988-05-20 Minolta Camera Co Ltd Laminated photosensitive body
JPH0574062B2 (en) * 1988-05-13 1993-10-15 Nippon Light Metal Co
JPH01285953A (en) * 1988-05-13 1989-11-16 Nippon Light Metal Co Ltd Aluminum base body for organic photosensitive body
US5028494A (en) * 1988-07-15 1991-07-02 Railway Technical Research Institute Brake disk material for railroad vehicle
JPH0585899B2 (en) * 1990-01-29 1993-12-09 Canon Kk
JPH02306251A (en) * 1990-01-29 1990-12-19 Canon Inc Photoconducting member
US5980657A (en) * 1998-03-10 1999-11-09 Micron Technology, Inc. Alloy for enhanced filling of high aspect ratio dual damascene structures
US6297156B1 (en) 1998-03-10 2001-10-02 Micron Technology, Inc. Method for enhanced filling of high aspect ratio dual damascene structures
US6316356B1 (en) 1998-03-10 2001-11-13 Micron Technology, Inc. Thermal processing of metal alloys for an improved CMP process in integrated circuit fabrication
US6774035B2 (en) 1998-03-10 2004-08-10 Micron Technology, Inc. Thermal processing of metal alloys for an improved CMP process in integrated circuit fabrication
US6784550B2 (en) 1998-03-10 2004-08-31 Micron Technology, Inc. Thermal processing of metal alloys for an improved CMP process in integrated circuit fabrication
JP2017111409A (en) * 2015-12-18 2017-06-22 富士ゼロックス株式会社 Conductive substrate, electrophotographic photoreceptor, process cartridge, image forming apparatus, and manufacturing method of conductive substrate

Also Published As

Publication number Publication date
JPH0428773B2 (en) 1992-05-15

Similar Documents

Publication Publication Date Title
AU599907B2 (en) Surface treated metal member, preparation method thereof and photoconductive member by use thereof
JPS61159545A (en) Aluminum alloy for precision working, and tubing and photo-conductive member by use of it
JPS60262936A (en) Extrusion aluminum alloy superior in vapor deposition characteristic of amorphous silicon
JPS61159544A (en) Aluminum alloy for precision working, and tubing and photo-conductive members by use of it
JPH0615699B2 (en) Photoconductive member for electrophotography
JP2830933B2 (en) Method for producing photoconductive member for electrophotography
JPH02306251A (en) Photoconducting member
JPS61159546A (en) Aluminum alloy for precision working, and tubing and photo-conductive member by use of it
JPS61255350A (en) Surface treated metallic body for photoconductive member and photoconductive member having said metallic body
JPH02222964A (en) Photoconductive member
JPH01285953A (en) Aluminum base body for organic photosensitive body
JPH0376745B2 (en)
JP3876499B2 (en) Aluminum alloy photoconductor substrate tube
JPH02131247A (en) Surface treated metallic body for photoconductive member and photoconductive member having this metallic body
JPS61255351A (en) Surface treated metallic body for photoconductive member and photoconductive member using said metallic body
US4689284A (en) Electrophotographic sensitive member
JPS63202757A (en) Substrate for photoconductive member having laminated structure
JPH0670270B2 (en) Method for manufacturing aluminum alloy substrate for amorphous silicon photoreceptor
US5104615A (en) Precision machinable aluminum material
JPS6331536B2 (en)
JPH10212542A (en) Aluminum alloy for photosensitive substrate
JPH05331583A (en) Aluminum alloy tube for base material for photosensitive body for copying machine
JPS619547A (en) Aluminum alloy for electrophotographic sensitive body having superior suitability to vapor deposition of amorphous silicon thereon
JPH02131248A (en) Surface treated metallic body for photoconductive member and photoconductive member having this metallic body
JPH10212543A (en) Aluminum alloy for photosensitive substrate