[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61155262A - Silicon nitride sintered body and manufacture - Google Patents

Silicon nitride sintered body and manufacture

Info

Publication number
JPS61155262A
JPS61155262A JP59274398A JP27439884A JPS61155262A JP S61155262 A JPS61155262 A JP S61155262A JP 59274398 A JP59274398 A JP 59274398A JP 27439884 A JP27439884 A JP 27439884A JP S61155262 A JPS61155262 A JP S61155262A
Authority
JP
Japan
Prior art keywords
tungsten
silicon nitride
sintered body
temperature
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59274398A
Other languages
Japanese (ja)
Other versions
JPH0627029B2 (en
Inventor
清 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP59274398A priority Critical patent/JPH0627029B2/en
Publication of JPS61155262A publication Critical patent/JPS61155262A/en
Publication of JPH0627029B2 publication Critical patent/JPH0627029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温での耐酸化性及び高温での磯(成約強度
が優れた窒化珪素質焼結体及びその製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon nitride sintered body having excellent oxidation resistance at high temperatures and excellent contract strength at high temperatures, and a method for producing the same.

(従来の技術) 従来、高温高強度の窒化珪素質材料として希土類元素の
酸化物を添加したものが常用されてり・るが、その理由
は、猫土類元素の酸化物と窒化珪素とが反応して窒化珪
素粒子間に爾融点の粒界組織を形成し、それ(こよって
焼結体が全体として高温においても強度が低下しないも
のとなるためである。
(Prior art) Conventionally, materials to which rare earth element oxides are added have been commonly used as high-temperature, high-strength silicon nitride materials.The reason for this is that the rare earth element oxides and silicon nitride This is because a grain boundary structure having a melting point is formed between the silicon nitride particles through the reaction, so that the strength of the sintered body as a whole does not decrease even at high temperatures.

しかしながら、そのような希土類元素添加の窒化珪素質
焼結体は、高温において酸化性雰囲気で長時間使用され
ると酸化されて、例えばl+e2si303N4→R’
e2Si207のような反応により希土類のシリケート
を生じ、該シリケートは融点が高いために粉末状となり
、焼結体の表面層を密閉する保護膜とはならない。
However, when such rare earth element-added silicon nitride sintered bodies are used in an oxidizing atmosphere at high temperatures for a long time, they become oxidized and, for example, l+e2si303N4→R'
A rare earth silicate is produced by a reaction such as e2Si207, and since the silicate has a high melting point, it becomes a powder and does not serve as a protective film to seal the surface layer of the sintered body.

それ故、焼結体の内部にまで酸化が進行し、そうした窒
化珪素質焼結体は高温での耐酸化性に劣るものとなるの
である。
Therefore, oxidation progresses to the inside of the sintered body, and such a silicon nitride sintered body becomes inferior in oxidation resistance at high temperatures.

これを解決するため、従来、希土類十アルミナ又は希土
類十シリカ糸などの添加が行なわれたがこの場合は、例
えば、1200°c、i、での耐酸化性の向」−は認め
られるものの、より高温域(14,00℃程度)では耐
酸化性において十分な効果が達成できなく、そして更に
、これらの添加物が窒化珪素粒子間に融点がさほとは高
くない粒界組織相を形成するため、焼結体の高温強度が
低下するなどの問題が生している。
In order to solve this problem, in the past, rare earth 10 alumina or rare earth 10 silica threads were added, but in this case, for example, although an improvement in oxidation resistance at 1200°C, i, was observed, At higher temperatures (approximately 14,00°C), a sufficient effect on oxidation resistance cannot be achieved, and furthermore, these additives form a grain boundary structure phase between silicon nitride particles whose melting point is not very high. As a result, problems such as a decrease in the high temperature strength of the sintered body arise.

(問題を解決するための手段) 以−にに鑑み、本発明者は鋭意研究の末、粒界AIL織
が結晶質及び一部ガラス貿のa Re20a ・b  
1’103(a。
(Means for Solving the Problem) In view of the above, the inventors of the present invention, after intensive research, have determined that the grain boundary AIL texture is crystalline and partially glassy.
1'103 (a.

1コー1−3)とXR回折によるβ−3!J+(210
)ピークに対するRe2Si303N4(211)ピー
クのピーク比が約10%未満であるR e 2 S i
 303N < (メリライト化合物)とβ−3i、N
、残部とを主体とするものである、窒化珪素質焼結体は
高温強度を劣化させることなしに、高温耐酸化性が飛躍
的に向上した窒化珪素質焼結体となることを知見し、本
発明を為すに至った。
1co1-3) and β-3 by XR diffraction! J+(210
) where the peak ratio of the Re2Si303N4(211) peak to the Re2Si303N4(211) peak is less than about 10%.
303N < (melilite compound) and β-3i, N
, and the remainder, the silicon nitride sintered body has dramatically improved high-temperature oxidation resistance without deteriorating its high-temperature strength, The present invention has been accomplished.

すなわち、本発明の焼結体は、窒化珪素に、周期率表I
II a族元素中の少なくとも1種の元素の酸化物とタ
ングステン又は炭化タングステン以外のタングステン化
合物とを添加混合し、焼成して得られる窒化珪素質焼結
体であって、該焼結体組織は、結晶質及び一部ガラス貿
のa Re2O3・b WO,、(a+b= 1〜3)
とX線回折によるβ−3i3N4(210)ピークに対
するfle2si303N、(2]1)ピークのピーク
比が10%未満であるRe2S!zOJ+(メリライト
化合物)とβ−9i3N4とを主体とする粒界組織と1
、残部がβ−3iaN<粒子とからなり、高温耐酸化性
が1300℃,100時間において0.03〜1.0τ
n H/ m m 2、理論密度の相対比重が90%以
上であることを特徴とする高温耐酸化性の優れた窒化珪
素質焼結体、である。
That is, the sintered body of the present invention has silicon nitride in periodic table I
II A silicon nitride sintered body obtained by adding and mixing an oxide of at least one element among group a elements and tungsten or a tungsten compound other than tungsten carbide and firing the mixture, the sintered body structure being , crystalline and some glass trade a Re2O3・b WO,, (a+b= 1~3)
and fle2si303N to β-3i3N4 (210) peak by X-ray diffraction, Re2S whose peak ratio of (2]1) peak is less than 10%! Grain boundary structure mainly composed of zOJ+ (melilite compound) and β-9i3N4 and 1
, the remainder consists of β-3iaN<particles, and the high temperature oxidation resistance is 0.03 to 1.0τ at 1300°C for 100 hours.
The present invention is a silicon nitride sintered body with excellent high-temperature oxidation resistance, characterized by a relative specific gravity of n H/mm 2 and theoretical density of 90% or more.

そこで次に本発明に係る基本的技術事項を説明すると、
それ゛は以下の点にある。
Next, the basic technical matters related to the present invention will be explained.
It lies in the following points.

(1)周期率表11a族元素酸化物と共にタングステン
又はタングステン化合物(但し、炭化物を除く)を一定
組成範囲で添加すると、焼成工程においてまず周期率表
IIIa族元素シリケートとタングステンの低融点組成
物を生成するために緻密化が容易に進む。(2)さらに
高温化することによりタングステン化合物が高融点組成
化合物、例えばa Re2O3・l) WO3(a、b
= 1−3 )のごとき化合物へと移行していく。(3
)そしてこのため、焼結体となっても高温強度が劣化す
ることがない。
(1) When tungsten or tungsten compounds (excluding carbides) are added in a certain composition range together with oxides of elements of group IIIa of the periodic table, a low melting point composition of silicate of group IIIa of the periodic table of elements and tungsten is first added in the firing process. Densification progresses easily for generation. (2) By further increasing the temperature, the tungsten compound becomes a high melting point composition compound, such as a Re2O3・l) WO3 (a, b
= 1-3). (3
) Therefore, even if it becomes a sintered body, the high temperature strength will not deteriorate.

すなわち、この焼結体は酸化雰囲気下に曝されると1l
la族元素シリケーYを生□′じるが、例えば1200
℃までの温度域ではタングステンの酸化物とシリケート
により緻密な保護膜を生じるために耐酸化性が向上する
。次いで高温域(1400℃程度)においての酸化に対
しては該シリケート保護膜中からl1103が押散し、
残った該シリケート保RIMの酸素イオン拡散抵抗が増
大されるために、高温においても前述従来技術のAl2
Q、及びSiQ□のように焼結体の耐酸化性を劣化させ
ることはない、ということである。
That is, when this sintered body is exposed to an oxidizing atmosphere, 1 l
For example, 1200
In the temperature range up to °C, tungsten oxide and silicate form a dense protective film, improving oxidation resistance. Next, in response to oxidation in a high temperature range (approximately 1400°C), l1103 is dispersed from the silicate protective film,
Since the oxygen ion diffusion resistance of the remaining silicate-retaining RIM is increased, even at high temperatures, the Al2
This means that it does not deteriorate the oxidation resistance of the sintered body unlike Q and SiQ□.

ところで、窒化珪素の添加剤として、タングステン又は
タングステン化合物を加えることによる焼結体の酸化抵
抗増大の機構の解明は完了していないが、その機構は、
(ア)窒化珪素が酸化して生じる酸化珪素と添加されて
いる希土類酸化物が反応して均質なガラス状被膜の生成
を容易にすることと、(イ)次いで該SiO□−Re2
0.系ガラスの生成及びaS化を助長した一〇、(タン
グステン又はタングステン化合物が酸化されて生じる)
は融点、沸点が比較的低いために商況処理により、その
ガラス質被膜から漸次揮、散して行外、(つ)そして窒
化珪素質焼結体の表面に残存した被膜は高融点の希土類
ガラスとなり表面を密閉し、内部への酸素侵入を抑制す
る効果を発揮することにあると考えられる。
By the way, the mechanism by which the oxidation resistance of the sintered body is increased by adding tungsten or a tungsten compound as an additive to silicon nitride has not been completely elucidated, but the mechanism is as follows.
(a) The silicon oxide produced by the oxidation of silicon nitride reacts with the added rare earth oxide to facilitate the formation of a homogeneous glassy film, and (b) then the SiO□-Re2
0. 10. (Produced when tungsten or tungsten compounds are oxidized)
Because it has a relatively low melting point and boiling point, it gradually volatilizes and disperses from its glassy coating due to commercial processing, and the coating that remains on the surface of the silicon nitride sintered body is a rare earth glass with a high melting point. This is thought to be due to the effect of sealing the surface and suppressing oxygen intrusion into the interior.

そして前記残存した高融点の希土類ガラスは酸素拡散係
数が小さいものであるため、一旦被膜を生じるとその後
の酸素との反応に対しては強い保v1膜として働ト、焼
結体の耐酸化性を向上させることになるものと考えられ
る。
Since the remaining high-melting-point rare earth glass has a small oxygen diffusion coefficient, once a film is formed, it acts as a strong barrier film against subsequent reactions with oxygen, thereby improving the oxidation resistance of the sintered body. It is thought that this will improve the

また、本発明ではタングステン化合物のうち、炭化タン
グステンは除外しているが、それは炭化タングステンの
添加は焼結性を悪化させまた、焼結体の耐酸化性、熱衝
撃性を劣化させる問題が生じるからである。すなわち、
WC+Si3N、+Re2O3の圧粉体を焼結すると、
Si、N4とRe20.の反応を促進し前記した高融点
組成化合物(a Re2O3・b WO,)よりもRe
2Si、0−N−(メリライト化合物)が主に生成され
(焼結体中のβ−5i3N、(210)ピークに対する
Re5i=0、N、(211)のピーク比が10%を超
える)、前述したようにRe2Si、OJ4→Re2S
i20□のような反応により希土類のシリケートを生じ
、該シリケートは融点が高いために粉末状となり、焼結
体の表面層を密閉する保il!膜とならない。そのため
に耐酸化性及び高温強度が着しく劣ることとなるものと
考えられる。
Furthermore, in the present invention, tungsten carbide is excluded from among the tungsten compounds; however, the addition of tungsten carbide deteriorates the sinterability, and also causes the problem of deteriorating the oxidation resistance and thermal shock resistance of the sintered body. It is from. That is,
When the green compact of WC+Si3N and +Re2O3 is sintered,
Si, N4 and Re20. It promotes the reaction of
2Si, 0-N- (melilite compound) is mainly produced (the peak ratio of Re5i = 0, N, (211) to the β-5i3N, (210) peak in the sintered body exceeds 10%), and as described above. As shown, Re2Si, OJ4→Re2S
A reaction like i20□ produces a rare earth silicate, which has a high melting point and becomes a powder, which seals the surface layer of the sintered body. Does not form a film. It is thought that this results in a rather poor oxidation resistance and high-temperature strength.

なお、本発明の焼結体−二おける粒界組織の量は約5〜
15体積%であり、窒化珪素粒子径は1〜20μ鴎程度
の範囲内にある。
Note that the amount of grain boundary structure in the sintered body of the present invention is about 5 to 2.
15% by volume, and the silicon nitride particle diameter is within the range of about 1 to 20 μm.

次に、本発明は上記窒化珪素質焼結体を得るための製造
法を提供する。
Next, the present invention provides a manufacturing method for obtaining the silicon nitride sintered body.

すなわち、周期率表IIIa族元素の中の少なくとも1
種の元素の酸化物とタングステン又は炭化タングステン
以外のタングステン化合物との合量20重量%以下(た
だし、周期率表11a族元素中の少なくとも1種の元素
の酸化物の量は18重量%以下とする)と残部が窒化珪
素とからなる混合物の圧粉体を窒素雰囲気中において1
500〜2300℃で焼成することを特徴とする高温耐
酸化性の優れた窒化珪素質焼結体の製造法、が提供され
る。
That is, at least one of the Group IIIa elements of the periodic table.
The total amount of oxides of certain elements and tungsten compounds other than tungsten or tungsten carbide is not more than 20% by weight (however, the amount of oxides of at least one element in Group 11a of the Periodic Table of Elements is not more than 18% by weight) ) and the remainder is silicon nitride in a nitrogen atmosphere.
Provided is a method for producing a silicon nitride sintered body having excellent high-temperature oxidation resistance, which is characterized by firing at 500 to 2300°C.

ここで、周期率表IIIa族元素の酸化物が18重量%
を越えた場合には、周期率表11ja族元素のシリケー
トの生成が増大し焼結体の表面が粉末状になり耐酸化性
の保護膜が生成し難くなるので、焼結体の高温耐酸化性
が極端に劣化することとなる。
Here, the oxide of group IIIa element of the periodic table is 18% by weight.
If the temperature exceeds 100%, the formation of silicates of elements in group 11ja of the periodic table increases, and the surface of the sintered body becomes powdery, making it difficult to form an oxidation-resistant protective film. This will result in an extreme deterioration of sexuality.

また、タングステンの添加量が、20重量%を越えると
、耐酸化性の緻密なシリケート膜の中のWの酸化物が多
く固溶して低融点化し発泡などの悪い影響を及ぼし耐酸
化性及び機械的強度が劣化する。また、焼成温度が15
00 ℃未満では焼結体の緻密化が不充分であり、23
(10℃を超えるとβ−Si、N。
Furthermore, if the amount of tungsten added exceeds 20% by weight, a large amount of W oxide in the dense oxidation-resistant silicate film dissolves into solid solution, lowering the melting point and causing negative effects such as foaming, which may affect the oxidation resistance and Mechanical strength deteriorates. Also, the firing temperature is 15
Below 00°C, the densification of the sintered body is insufficient, and 23
(If the temperature exceeds 10°C, β-Si, N.

の異常粒成長が生じ、高温強度は着しく劣化する。Abnormal grain growth occurs, and high-temperature strength deteriorates severely.

よって、数値限定は前記のようになされるのである。Therefore, numerical limitations are made as described above.

次に本発明の実施例と比較例をまとめたものを[−試験
例]として、説明する。
Next, a summary of Examples and Comparative Examples of the present invention will be described as [-Test Example].

(試験例1) 窒化珪素に各種希土類元素酸化物とタングステン又はタ
ングステン化合物を種々の割合で配合して得られた焼結
体についてのデータを表に示す。
(Test Example 1) The table shows data on sintered bodies obtained by blending silicon nitride with various rare earth element oxides and tungsten or tungsten compounds in various proportions.

該試験例においては、窒化珪素は平均粒径()、6μm
1のaS i 3N *を用い、各配合成分を第1表の
八に示す割合に配合し、エタノール媒体を用いウレタン
ボールを入れて24時間分散混合したのち、得られた混
合粉体にバインダーとしてパラフィンワックスを添加し
て造粒し、それを成形圧It/era2で金型成形を行
った。 得られた成形体を第1表のBに示す焼成条件に
おいて焼成した。
In this test example, silicon nitride had an average particle size () of 6 μm.
Using aS i 3N * of No. 1, each compounded component was blended in the ratio shown in Table 1, urethane balls were added using an ethanol medium, and after dispersion mixing for 24 hours, the resulting mixed powder was mixed as a binder. Paraffin wax was added and granulated, and molded with a molding pressure It/era 2. The obtained molded body was fired under the firing conditions shown in B in Table 1.

なお、第1表のへ中の試料番号(4)、(9)、(10
c)、(12)及び(14)については、各試料の圧粉
体を1気圧の窒素雰囲気中1000〜1600℃未満で
周期率表nla族元素の酸化物と−又は−化合物(11
ICを除く)との反応を充分に行うように一旦焼成処理
したものを更に第1表のBに示す焼成方法によって焼成
したものである。
In addition, sample numbers (4), (9), (10) in Table 1
Regarding c), (12) and (14), the green compact of each sample was treated with an oxide of an NLA group element of the periodic table and a compound (11
After being fired to ensure a sufficient reaction with other components (excluding IC), they were further fired by the firing method shown in Table B of Table 1.

高温強度の測定は、3 X 4 X 40 ramの寸
法に研削された名試験片に0.3+n+nのC面処理を
行い、J I S R−1601に規定される4点曲げ
法によって実施した。
The high-temperature strength was measured using a 0.3+n+n C surface treatment on a test piece ground to a size of 3 x 4 x 40 ram, and using a four-point bending method specified in JIS R-1601.

酸化重量増については、前記JIS抗折試験片を大気中
1300℃1100時間保持の結果の増量を試験片表面
積で割った値で表した。なお、表中、G 11Sはガス
圧焼結法、Pl、は常圧焼結法、11Pはホットプレス
焼結法、II I P 1.を静水圧ホットプレス焼結
法を意味する。
The weight gain due to oxidation was expressed as the weight gain obtained by holding the JIS bending test piece in the atmosphere at 1300° C. for 1100 hours divided by the surface area of the test piece. In addition, in the table, G 11S is gas pressure sintering method, Pl is normal pressure sintering method, 11P is hot press sintering method, II I P 1. means the hydrostatic hot press sintering method.

得られた成形体の第1表中、試料番号3〜16.18及
び19のものは本発明の組成範囲のものであり、酸化重
量増(130(1℃,100hrs)は0゜05〜1 
、 (l mB/cm2の値であって耐酸化性が非常に
良く、高温強度も1300℃で80 Kg/+n+n2
以上、1400℃で60Kg八◎1へ2以」−であって
良好である。
In Table 1 of the obtained molded bodies, sample numbers 3 to 16.18 and 19 are in the composition range of the present invention, and the oxidation weight gain (130 (1°C, 100 hrs) is 0°05 to 1
, (l mB/cm2 value, very good oxidation resistance, and high temperature strength of 80 Kg/+n+n2 at 1300℃
Above, at 1400°C, the weight was 60 kg, 8◎1 to 2 or more, which is good.

試料番号1と2のものは、Si3N、が80重量%より
少なく、周期率表ila族元素酸化物とW又はW化合物
との合量が20重量%を越えており、酸化重量増は2 
、5 m(3/c1o2以上、高温強度も35 K[?
/+nm2程度に低下している。
In sample numbers 1 and 2, Si3N is less than 80% by weight, the total amount of oxides of elements of group IA in the periodic table and W or W compounds exceeds 20% by weight, and the oxidation weight increase is 2.
, 5 m (more than 3/c1o2, high temperature strength is also 35 K[?
/+nm2.

試料番号17のものは、Si3N、が80重量%以上、
周期率表II a族元素酸化物と−化合物の合量は20
重量%以下であるけれども、−化合物が炭化物であり、
そのため酸化重量増は2 、50 +++g/cm2(
1,30〇℃、1001+rs)で非常に高く、高温強
度も130()℃で565/aun2であって極端に低
下している。
For sample number 17, Si3N is 80% by weight or more,
Periodic Table II The total amount of group a element oxides and - compounds is 20
% by weight or less, - the compound is a carbide,
Therefore, the oxidation weight increase is 2,50 +++g/cm2 (
The high temperature strength was 565/aun2 at 130()°C, which was extremely low.

更に、第1表のBに示すごとく試料番号10a及び]O
fは同様の組成範囲において焼成温度が本発明の範囲外
のものであり、焼成温度が1500 ℃未満の1450
℃である試料番号10aのものでは第1表の八1こ示す
ごとく理論密度の相対比重が75%と低く、焼結不足で
ある(そのため、酸化増量及び高温強度は測定していな
い)。
Furthermore, as shown in B of Table 1, sample number 10a and ]O
f has a similar composition range but a firing temperature outside the range of the present invention, and the firing temperature is 1450 °C below 1500 °C.
As shown in Table 1, sample number 10a has a low relative specific gravity of 75% of the theoretical density, indicating insufficient sintering (therefore, oxidation weight gain and high temperature strength were not measured).

また、焼成温度が2300℃を超えた2350℃である
試料番号10fのものでは異常粒成長が生じるために、
1300℃及び1400 ℃の高温強度は63 K B
 / +n to 2及び58KFi/III Ill
 2と劣っていることが理解される。
In addition, abnormal grain growth occurs in sample number 10f, where the firing temperature is 2350°C, which exceeds 2300°C.
High temperature strength at 1300℃ and 1400℃ is 63K B
/ +n to 2 and 58KFi/III Ill
It is understood that it is inferior to 2.

また、試料番号(4)、(9)、(10c)、(12)
及び(14)については第1番目の焼成で、周期率表I
IIa族元素の酸化物と−又は−化合物との反応を充分
に行っているので若干耐酸化性及び高温強度が向」二し
ているものと思われる。なお、」二記試験例において、
焼成方法がにIIsである試料番号8〜11の焼結体の
窒化珪素粒子径は5〜10μInであり、試料番号1.
2.16.17及び18のものは5〜20μmであった
。また、門、法による粒子径は:(−15、II P 
、 II I P法では1−10.IJ+nである。
Also, sample numbers (4), (9), (10c), (12)
and (14) in the first firing, periodic table I
It is thought that the oxidation resistance and high temperature strength are slightly improved because the reaction between the oxide of the IIa group element and the - or - compound is carried out sufficiently. In addition, in test example 2,
The silicon nitride particle diameters of the sintered bodies of sample numbers 8 to 11, in which the firing method was IIs, were 5 to 10 μIn;
2.16. Those of 17 and 18 were 5 to 20 μm. In addition, the particle size according to the method is: (-15, II P
, II I P method 1-10. IJ+n.

(試験例2) 前記試験例1の試料番号3〜10.10b−]Oe、1
1〜17.18及び19についてX線回折を行い、焼結
体中のβ−3i、N、(210)ピークとRe2Si3
03N、(211)(メリライト化合物)ピークとのピ
ーク比を比較した結果を第2表に示す。 第2表から理
解されるように同様の組成に対し圓Cを添加した試料番
号17のものはβ−3i3N、に対するRe2Si 3
0.N、のピーク比が10%と高<、WC以外の阿化合
物又は−を添加したピーク比10%未満のものと比較す
ると耐酸化性及び歯温強度が着しく劣っている。
(Test Example 2) Sample numbers 3 to 10.10b-]Oe, 1 of Test Example 1
X-ray diffraction was performed on 1-17.18 and 19, and β-3i, N, (210) peaks and Re2Si3 in the sintered body were
Table 2 shows the results of comparing the peak ratios with the 03N and (211) (melilite compound) peaks. As can be seen from Table 2, sample number 17, which had the same composition but added EnC, was β-3i3N, Re2Si3
0. The peak ratio of N is as high as 10%, and the oxidation resistance and tooth temperature strength are significantly inferior when compared with those with a peak ratio of less than 10% in which a compound other than WC or - is added.

17一 (発明の効果) 以上本発明によれば、高温耐酸化性の点は酸化重量増(
1300℃,100時間)が0.05−1.O+oB/
cm2、高温強度の点も1300 ℃で80 KB/+
n+o2と優良であり、高温での強度の低下がなく、高
温耐酸化性の非常に優れた窒化珪素質焼結体が提供され
るのである。
171 (Effects of the Invention) According to the present invention, the high temperature oxidation resistance is improved by increasing the oxidation weight (
1300℃, 100 hours) is 0.05-1. O+oB/
cm2, high temperature strength is 80 KB/+ at 1300℃
This provides a silicon nitride sintered body with excellent n+o2, no decrease in strength at high temperatures, and excellent high-temperature oxidation resistance.

従って得られた焼結体は、例えばガスタービン、エンジ
ン部品用などに使用するのに好適なものであり、窒化珪
素質焼結体の使用可能範囲を相当に拡大できるのであっ
て、従来にない優れたものである。
Therefore, the obtained sintered body is suitable for use in gas turbines, engine parts, etc., and the usable range of silicon nitride sintered bodies can be considerably expanded, which is unprecedented. It is excellent.

Claims (5)

【特許請求の範囲】[Claims] (1)窒化珪素に、周期率表IIIa族元素中の少なくと
も1種の元素の酸化物とタングステン又は炭化タングス
テン以外のタングステン化合物とを添加混合し、焼成し
て得られる窒化珪素質焼結体であって、該焼結体組織は
、結晶質及び一部ガラス質のaRe_2O_3・bWO
_3(a、b=1〜3)とX線回折によるβ−Si_3
N_4(210)ピークに対するRe_2Si_3O_
3N_4(211)ピークのピーク比が10%未満であ
るRe_2Si_3O_3N_4(メリライト化合物)
とβ−Si_3N_4とを主体とする粒界組織と、残部
がβ−Si_3N_4粒子とからなり、高温耐酸化性が
1300℃、100時間において0.03〜1.0mg
/mm^2、理論密度の相対比重が90%以上であるこ
とを特徴とする高温耐酸化性の優れた窒化珪素質焼結体
(1) A silicon nitride sintered body obtained by adding and mixing an oxide of at least one element in Group IIIa of the periodic table and tungsten or a tungsten compound other than tungsten carbide to silicon nitride and firing the mixture. The structure of the sintered body is crystalline and partially glassy aRe_2O_3・bWO.
_3 (a, b = 1 to 3) and β-Si_3 by X-ray diffraction
Re_2Si_3O_ for N_4(210) peak
Re_2Si_3O_3N_4 (melilite compound) with a peak ratio of 3N_4(211) peak of less than 10%
The grain boundary structure consists mainly of and β-Si_3N_4 and the balance is β-Si_3N_4 particles, and the high temperature oxidation resistance is 0.03 to 1.0 mg at 1300°C for 100 hours.
/mm^2, a silicon nitride sintered body with excellent high-temperature oxidation resistance, characterized in that the relative specific gravity of the theoretical density is 90% or more.
(2)周期率表IIIa族元素の中の少なくとも1種の元
素の酸化物とタングステン又は炭化タングステン以外の
タングステン化合物との合量20重量%以下(ただし、
周期率表IIIa族元素中の少なくとも1種の元素の酸化
物の量は18重量%以下とする)と残部が窒化珪素とか
らなる混合物の圧粉体を窒素雰囲気中において1500
〜2300℃で焼成することを特徴とする高温1酸化性
の優れた窒化珪素質焼結体の製造法。
(2) The total amount of the oxide of at least one element in Group IIIa of the periodic table and tungsten or a tungsten compound other than tungsten carbide is 20% by weight or less (however,
The amount of oxide of at least one element in Group IIIa of the periodic table is 18% by weight or less) and the balance is silicon nitride.
A method for producing a silicon nitride sintered body with excellent high-temperature monooxidation properties, characterized by firing at a temperature of ~2300°C.
(3)圧粉体を1気圧の窒素雰囲気中において1000
〜1500℃で周期率表IIIa族元素の酸化物とタング
ステン又は炭化タングステン以外のタングステン化合物
との反応が充分に行なわれるまで焼成した後、1500
〜1800℃まで昇温して常圧焼成する特許請求の範囲
第2項記載の窒化珪素質焼結体の製造法。
(3) Place the green compact in a nitrogen atmosphere of 1 atm.
After firing at ~1500°C until the reaction between the oxide of the Group IIIa element in the periodic table and tungsten or a tungsten compound other than tungsten carbide is sufficiently performed,
The method for producing a silicon nitride sintered body according to claim 2, wherein the temperature is raised to 1800° C. and fired under normal pressure.
(4)圧粉体を1気圧の窒素雰囲気中において1000
〜1500℃で周期率表IIIa族元素の酸化物とタング
ステン又は炭化タングステン以外のタングステン化合物
との反応が充分に行なわれるまで焼成した後、加圧しな
がら1500〜1800℃まで昇温してホットプレスす
る特許請求の範囲第2項記載の窒化珪素質焼結体の製造
法。
(4) Place the green compact in a nitrogen atmosphere of 1 atm.
After firing at ~1500°C until the reaction between the oxide of the Group IIIa element in the periodic table and tungsten or a tungsten compound other than tungsten carbide is sufficient, the temperature is raised to 1500~1800°C under pressure and hot-pressed. A method for producing a silicon nitride sintered body according to claim 2.
(5)圧粉体を1気圧の窒素雰囲気中において1000
〜1500℃で周期率表IIIa族元素の酸化物とタング
ステン又は炭化タングステン以外のタングステン化合物
との反応が充分に行なわれるまで焼成した後、窒素ガス
圧力を大気圧以上に設定し、1500〜2300℃の温
度まで昇温してガス圧焼成する特許請求の範囲第2項記
載の窒化珪素質焼結体の製造法。
(5) Place the green compact in a nitrogen atmosphere of 1 atm.
After firing at ~1500°C until the reaction between the oxide of the Group IIIa element in the periodic table and tungsten or a tungsten compound other than tungsten carbide is sufficiently performed, the nitrogen gas pressure is set to above atmospheric pressure and the temperature is 1500~2300°C. 3. The method for producing a silicon nitride sintered body according to claim 2, wherein the temperature is raised to a temperature of 100 mL and fired under gas pressure.
JP59274398A 1984-12-28 1984-12-28 Silicon nitride sintered body and method for producing the same Expired - Fee Related JPH0627029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59274398A JPH0627029B2 (en) 1984-12-28 1984-12-28 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274398A JPH0627029B2 (en) 1984-12-28 1984-12-28 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61155262A true JPS61155262A (en) 1986-07-14
JPH0627029B2 JPH0627029B2 (en) 1994-04-13

Family

ID=17541108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274398A Expired - Fee Related JPH0627029B2 (en) 1984-12-28 1984-12-28 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0627029B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248773A (en) * 1987-04-02 1988-10-17 京セラ株式会社 Black silicon nitride base sintered body
US5114888A (en) * 1989-11-21 1992-05-19 Ngk Spark Plug Co., Ltd. Silicon nitride sintered body and method for producing same
JP2010150123A (en) * 2008-11-21 2010-07-08 Ngk Spark Plug Co Ltd Silicon nitride-melilite composite sintered body and device utilizing the same
EP2386532A3 (en) * 2010-05-14 2012-10-03 NGK Spark Plug Co., Ltd. Silicon nitride-melilite composite sintered body and substrate, member, device, and probe card utilizing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248773A (en) * 1987-04-02 1988-10-17 京セラ株式会社 Black silicon nitride base sintered body
US5114888A (en) * 1989-11-21 1992-05-19 Ngk Spark Plug Co., Ltd. Silicon nitride sintered body and method for producing same
JP2010150123A (en) * 2008-11-21 2010-07-08 Ngk Spark Plug Co Ltd Silicon nitride-melilite composite sintered body and device utilizing the same
US8071496B2 (en) * 2008-11-21 2011-12-06 Ngk Spark Plug Co., Ltd. Silicon nitride-melilite composite sintered body and device utilizing the same
EP2386532A3 (en) * 2010-05-14 2012-10-03 NGK Spark Plug Co., Ltd. Silicon nitride-melilite composite sintered body and substrate, member, device, and probe card utilizing the same

Also Published As

Publication number Publication date
JPH0627029B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US4102698A (en) Silicon nitride compositions in the Si3 N4 -Y2 O3 -SiO2 system
JPH0699191B2 (en) Method for manufacturing silicon nitride sintered body
JPS6152108B2 (en)
JPS61155262A (en) Silicon nitride sintered body and manufacture
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JP2977070B2 (en) Aluminum nitride body and method of forming the same
US5445776A (en) Method for producing high density sintered silicon nitride (Si3 N.sub.4
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2772580B2 (en) Method for producing aluminum nitride sintered body
JP2691295B2 (en) Silicon nitride sintered body
JPS62105957A (en) Silicon nitride base sintered body and manufacture
JPS60191063A (en) Silicon nitride sintered body
JP3419980B2 (en) Silicon nitride sintered body, method for producing the same, and heat engine component
JPS598670A (en) High tenacity silicon nitride base sintered body
JPS61201665A (en) Silicon nitride base sintered body and manufacture
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JPS5895660A (en) Silicon nitride sintered body and manufacture
JP2916934B2 (en) Method for producing sialon-based sintered body
KR960006249B1 (en) Process for producing an aluminium sintered product
JP3049941B2 (en) Manufacturing method of aluminum nitride sintered body
JP2883074B1 (en) Manufacturing method of silicon carbide ceramic powder and ceramic sintered body
JP2772581B2 (en) Black aluminum nitride sintered body
JPH0532348B2 (en)
JPS605077A (en) Manufacture of silicon nitride sintered body
JPH0674175B2 (en) Silicon nitride sintered body and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees