[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61154172A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS61154172A
JPS61154172A JP59278224A JP27822484A JPS61154172A JP S61154172 A JPS61154172 A JP S61154172A JP 59278224 A JP59278224 A JP 59278224A JP 27822484 A JP27822484 A JP 27822484A JP S61154172 A JPS61154172 A JP S61154172A
Authority
JP
Japan
Prior art keywords
gate electrode
oxide film
film
type diffusion
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59278224A
Other languages
Japanese (ja)
Inventor
Masaya Ishida
昌也 石田
Kazuo Sato
和雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59278224A priority Critical patent/JPS61154172A/en
Publication of JPS61154172A publication Critical patent/JPS61154172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に関し、特にMO8型
半導体装置の製造方法の改良に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to an improvement in a method for manufacturing an MO8 type semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

MO8型半導体装置において、高耐圧化、微細化に伴い
、ドレイン領域端部での電界集中を回避するために、ゲ
ート領域端部のチャンネル領域に該ドレイン領域よりも
低濃度の領域を設けるLDD (L i!1lht  
D 0Ded  D rain)構造が開発サレテいる
。こうしたLDD構造を有するMO8半導体装置、例え
ばnチャンネルMOSトランシタは、従来より以下に説
明する第2図(a)〜(e)に示す方法によって製造さ
れている。
In MO8 type semiconductor devices, in order to avoid electric field concentration at the end of the drain region due to higher breakdown voltage and miniaturization, LDD (LDD) provides a channel region at the end of the gate region with a lower concentration than the drain region. L i!1lht
D0DedDrain) structure is under development. MO8 semiconductor devices having such an LDD structure, such as n-channel MOS transistors, have conventionally been manufactured by the method shown in FIGS. 2(a) to 2(e) described below.

まず、p型シリコン基板1表面に選択酸化法により厚さ
約1μmのフィールド酸化膜2を形成した後、熱酸化処
理を施してフィールド酸化膜2で分離された島状の基板
1領域表面に厚さ500人の酸化膜3を形成する。つづ
いて、酸化膜3を通して閾値制御のためのチャンネルイ
ンプラを行なう。ひきつづき、全面にゲート電極材料膜
、例えば多結晶シリコン膜を堆積し、POCffiの雰
囲気中でリン拡散を行なって多結晶シリコン膜中にリン
をドープして低抵抗化させた後、該多結晶シリコン膜を
フォトエツチング技術によりパターニングしてゲート電
極4を形成する(第2図(a)図示)。
First, a field oxide film 2 with a thickness of approximately 1 μm is formed on the surface of a p-type silicon substrate 1 by selective oxidation, and then thermal oxidation treatment is performed to form a thick film on the surface of island-shaped substrate 1 regions separated by field oxide film 2. An oxide film 3 of 500 layers is formed. Subsequently, channel implantation for threshold control is performed through the oxide film 3. Subsequently, a gate electrode material film, such as a polycrystalline silicon film, is deposited on the entire surface, and phosphorus is diffused in the POCffi atmosphere to dope phosphorus into the polycrystalline silicon film to lower its resistance. The gate electrode 4 is formed by patterning the film using a photoetching technique (as shown in FIG. 2(a)).

次いで、ゲート電極4及びフィールド酸化膜2をマスク
として酸化1113を選択的にエツチング除去してゲー
ト酸化[15を形成した後、同ゲート電極4及びフィー
ルド酸化12をマスクとしてリンをイオン注入してリン
イオン注入層61.62を形成する(同図(b)図示)
Next, using the gate electrode 4 and the field oxide film 2 as a mask, the oxide 1113 is selectively etched away to form a gate oxide [15], and then phosphorus is ion-implanted using the gate electrode 4 and the field oxide film 2 as a mask to form phosphorus ions. Form injection layers 61 and 62 (as shown in the same figure (b))
.

次いで、N2雰囲気中でアニーリングを行なってリンを
活性化し、低濃度のn−型拡散領域71.72を形成す
る。ひきづづき、後酸化処理を施してゲート電極4及び
露出した基板1表面に薄い後酸化膜8を形成した後、全
面にCVD−8i02膜9を堆積する(同図(C)図示
)。ひきつづき、反応性イオンエツチング(RIE)に
より全面エツチングしてゲート電極4側面の後酸化膜8
にSiO2からなる壁体10を形成した後、フィールド
酸化膜2、ゲート電極4及び壁体10をマスクとして砒
素を基板1にイオン注入して砒素イオン注入層111.
112を形成する(同図(d)図示)。
Next, annealing is performed in an N2 atmosphere to activate phosphorus and form low concentration n-type diffusion regions 71 and 72. Subsequently, a post-oxidation treatment is performed to form a thin post-oxidation film 8 on the gate electrode 4 and the exposed surface of the substrate 1, and then a CVD-8i02 film 9 is deposited on the entire surface (as shown in FIG. 4C). Subsequently, the entire surface is etched by reactive ion etching (RIE) to form a post-oxide film 8 on the side surface of the gate electrode 4.
After forming a wall 10 made of SiO2, arsenic is ion-implanted into the substrate 1 using the field oxide film 2, gate electrode 4, and wall 10 as a mask to form an arsenic ion-implanted layer 111.
112 (as shown in FIG. 11(d)).

次いで、N2雰囲気中でアニーリングを行なって砒素を
活性化して高濃度のn+型拡散領域121.122を形
成する。これにより、基板1表面にn−型拡散領域71
とn+型拡散領域121からなるソース領域13とn−
型拡散領[72とn“型拡散領域122からなるドレイ
ン領域14が形成される。つづいて、全面に層間絶縁膜
としてのCVD−8i02膜15を堆積し、フォトエツ
チング技術によりコンタクトホール16を開孔した後、
A2膜の蒸着、パターニングにより前記コンタクトホー
ル16を通してソース、ドレイン領域13.14と接続
するAj2配線17.18は夫々形成してnチャンネル
MOSトランジスタを製造する(同図(e)図示)。
Next, annealing is performed in an N2 atmosphere to activate arsenic and form highly concentrated n+ type diffusion regions 121 and 122. As a result, an n-type diffusion region 71 is formed on the surface of the substrate 1.
and a source region 13 consisting of an n+ type diffusion region 121 and an n-
A drain region 14 consisting of a type diffusion region [72] and an n" type diffusion region 122 is formed. Subsequently, a CVD-8i02 film 15 as an interlayer insulating film is deposited on the entire surface, and a contact hole 16 is opened by photoetching. After making a hole,
By vapor deposition and patterning of the A2 film, Aj2 wirings 17 and 18 which are connected to the source and drain regions 13 and 14 through the contact hole 16 are formed, respectively, to manufacture an n-channel MOS transistor (as shown in FIG. 12(e)).

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上述した従来方法にあっては、n−型拡
散領域71.72を形成するためのリンのイオン注入工
程、CVD−8i02膜9の堆積工程、壁体10の形成
工程、n+型拡散領域121.122を形成するための
砒素のイオン注入工程等、複雑な工程を経て製造される
ために、生産性の点で問題となる。また、n−型拡散領
域7工、72上部のゲート酸化膜5の膜中に正の可動イ
オン(例えばNa”、K”)が含まれると、表面が蓄積
状態となり、n+領域化してLDD構造の役目を果たさ
なくなり、耐圧劣化を招く。一方、nチャンネルMOS
トランジスタのLDD構造の場合には、p−型領域上部
のゲート酸化膜中に正の可動イオンが含まれると、表面
が空乏層状態となり、p−型領域上部に空乏層が形成さ
れ、p−型領域の実効的な厚さを減少させて抵抗を増大
させ、トランジスタの駆動力を低下させたり、ジュール
熱発生により破壊に至る等の信頼性の上で問題が生じる
However, in the conventional method described above, there is a phosphorus ion implantation step for forming the n-type diffusion regions 71, 72, a deposition step of the CVD-8i02 film 9, a step of forming the wall body 10, and a step of forming the n+-type diffusion region. Since it is manufactured through complicated processes such as an arsenic ion implantation process to form 121 and 122, it poses a problem in terms of productivity. Furthermore, if positive mobile ions (e.g., Na'', K'') are contained in the gate oxide film 5 above the n- type diffusion regions 7 and 72, the surface becomes accumulated and becomes an n+ region, forming an LDD structure. It no longer fulfills its role, leading to deterioration in pressure resistance. On the other hand, n-channel MOS
In the case of an LDD structure of a transistor, when positive mobile ions are included in the gate oxide film above the p-type region, the surface enters a depletion layer state, a depletion layer is formed above the p-type region, and the p- This reduces the effective thickness of the mold region and increases the resistance, resulting in reliability problems such as a reduction in the driving force of the transistor and destruction due to Joule heat generation.

(発明の目的) 本発明は、簡単な工程で信頼性の高いLDD構造を有す
るMOSトランジスタ等の半導体装置を製造し得る方法
を提供しようとするものである。
(Objective of the Invention) The present invention provides a method for manufacturing a semiconductor device such as a MOS transistor having a highly reliable LDD structure through simple steps.

〔発明の概要〕[Summary of the invention]

本発明は、第1導電型の半導体基板の表面に酸化膜を介
してゲート電極材料膜を形成する工程と、この材料膜を
パターニングしてゲート電極を形成した後、該ゲート電
極をマスクとして前記酸化膜を選択的にエツチングして
ゲート酸化膜を形成する工程と、熱酸化処理を施して露
出した基板表面に薄い酸化膜を形成する工程と、全面に
第2導電型不純物がドープされたガラス膜を堆積した後
、エツチングを行なって前記ゲート電極の側面に前記ガ
ラスからなる壁体を形成する工程と、前記ゲート電極及
び壁体をマスクとして露出した基板表面に高濃度の第2
導電型拡散領域を形成すると共に、前記壁体から第2導
電型の不純物を基板に拡散して低濃度の第2導電型拡散
領域を形成する工程とを具備したことを特徴とするもの
である。かかる本発明によれば既述の如く簡単な工程で
信頼性の高いLDD構造を有するMOSトランジスタ等
の半導体装置を得ることができる。
The present invention includes a step of forming a gate electrode material film on the surface of a first conductivity type semiconductor substrate via an oxide film, and after patterning this material film to form a gate electrode, using the gate electrode as a mask, A process of selectively etching the oxide film to form a gate oxide film, a process of performing thermal oxidation treatment to form a thin oxide film on the exposed substrate surface, and a process of forming a glass doped with second conductivity type impurities on the entire surface. After depositing the film, etching is performed to form walls made of the glass on the side surfaces of the gate electrode, and etching is performed on the exposed substrate surface using the gate electrode and walls as masks.
The method is characterized by comprising a step of forming a conductivity type diffusion region and diffusing a second conductivity type impurity from the wall into the substrate to form a low concentration second conductivity type diffusion region. . According to the present invention, a semiconductor device such as a MOS transistor having a highly reliable LDD structure can be obtained through a simple process as described above.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をLDD構造を有するnチャンネルMOS
トランジスタの製造に適用した例について第1図(a)
〜(d)を参照して説明する。
Hereinafter, the present invention will be described as an n-channel MOS having an LDD structure.
Figure 1(a) shows an example of application to transistor manufacturing.
This will be explained with reference to (d).

まず、p型シリコン基板21表面に選択酸化法により厚
さ約1μmのフィールド酸化膜22を形成した後、熱酸
化処理を施してフィールド酸化膜22で分離された島状
の基板21領域表面に厚さ500人の酸化膜23を形成
する。つづいて、酸化膜23を通して閾値制御のための
チャンネルインプラを行なった。ひきつづき、全面に厚
さ4000人のゲート電極材料膜、例えば多結晶シリコ
ン膜を堆積し、POCl2の雰囲気中でリン拡散を行な
って多結晶シリコン膜中にリンをドープして低抵抗化さ
せた後、該多結晶シリコン膜をフォトエツチング技術に
よりパターニングしてゲート電極24を形成した(第2
図(a)図示)。
First, a field oxide film 22 with a thickness of about 1 μm is formed on the surface of a p-type silicon substrate 21 by selective oxidation, and then a thermal oxidation process is performed to form a thick film on the surface of the island-shaped substrate 21 separated by the field oxide film 22. An oxide film 23 of 500 layers is formed. Subsequently, channel implantation for threshold control was performed through the oxide film 23. Subsequently, a gate electrode material film, for example, a polycrystalline silicon film, is deposited to a thickness of 4000 μm over the entire surface, and phosphorus is diffused in an atmosphere of POCl2 to dope phosphorus into the polycrystalline silicon film to lower its resistance. Then, the polycrystalline silicon film was patterned using photoetching technology to form a gate electrode 24 (second
Figure (a) shown).

次いで、ゲート電極24をマスクとして酸化膜23を選
択的ににエツチング除去してゲート酸化膜25を形成し
た。つづいて、後酸化処理を施してゲート電極24及び
露出した基板21表面に薄い後酸化膜26を形成した後
、ゲート電極24を含む全面にリン添加ガラス膜(PS
G膜)27を堆積した(同図(b)図示)。
Next, using the gate electrode 24 as a mask, the oxide film 23 was selectively etched away to form a gate oxide film 25. Subsequently, after performing post-oxidation treatment to form a thin post-oxidation film 26 on the gate electrode 24 and the exposed surface of the substrate 21, a phosphorus-doped glass film (PS) is formed on the entire surface including the gate electrode 24.
G film) 27 was deposited (as shown in FIG. 3(b)).

次いで、反応性イオンエツチング(RIE)により全面
エツチングしてゲート電極24側面の後酸化膜26にP
SGからなる壁体28を形成した後、フィールド酸化[
122、ゲート電極24及び壁体28をマスクとして砒
素を基板21にイオン注入して砒素イオン注入層29t
 、292を形成した(同図(C)図示)。
Next, the entire surface is etched by reactive ion etching (RIE) to deposit P on the post-oxide film 26 on the side surface of the gate electrode 24.
After forming the wall 28 made of SG, field oxidation [
122, arsenic is ion-implanted into the substrate 21 using the gate electrode 24 and the wall 28 as a mask to form an arsenic ion-implanted layer 29t.
, 292 (as shown in FIG. 2C).

次いで、N2雰囲気中でアニーリングを行なった。この
時、砒素イオン注入層29!、292が活性化されて^
濃度のn+型拡散領域301.302が形成されると共
に、PSGからなる壁体28からリンが基板21に拡散
されてn−型拡散領域311.312が形成された。こ
れにより、基板21表面にn−型拡散領域311とn+
型拡散領域301からなるソース領域32とn−型拡散
領域312とn+型拡散領域302からなるドレイン領
域33が形成された。つづいて、全面に層間絶縁膜とし
てのCVD−8i02膜34を堆積し、フォトエツチン
グ技術によりコンタクトホール35を開孔した後、An
膜の蒸着、パターニングにより前記コンタクトホール3
5を通してソース、ドレイン領域32.33と接続する
°A2配線36.37は夫々形成してnチャンネルMO
Sトランジスタを製造した(同図(d)図示)。
Next, annealing was performed in an N2 atmosphere. At this time, the arsenic ion implantation layer 29! , 292 is activated ^
At the same time, n+ type diffusion regions 301 and 302 with a high concentration were formed, and phosphorus was diffused into the substrate 21 from the wall body 28 made of PSG to form n− type diffusion regions 311 and 312. As a result, the n- type diffusion region 311 and the n+
A source region 32 consisting of a type diffusion region 301, a drain region 33 consisting of an n- type diffusion region 312, and an n+ type diffusion region 302 were formed. Subsequently, a CVD-8i02 film 34 as an interlayer insulating film is deposited on the entire surface, and a contact hole 35 is opened using photoetching technology.
The contact hole 3 is formed by film deposition and patterning.
A2 wirings 36 and 37 connected to the source and drain regions 32 and 33 through 5 are formed respectively to form n-channel MO
An S transistor was manufactured (as shown in the same figure (d)).

しかして、本発明によればPSGからなる壁体28をn
−型拡散領域311.312の形成のための拡散源とし
ても利用することによって、n−型拡散領域を形成する
ためのリンのイオン注入工程及びアニーリング工程を省
略できるので、簡単な工程によりLDD構造を有するn
チャンネルMOSトランジスタを得ることができる。ま
た、PSGからなる壁体28をゲート酸化膜25近傍に
形成することによって、該PSGのパッシベーション効
果により正の可動イオンがゲート酸化膜25の膜中に蓄
積するのを回避できる。その結果、ゲート酸化[125
の耐圧を向上でき、高信頼性のMOSトランジスタを得
ることができる。
According to the present invention, the wall body 28 made of PSG is
By also using it as a diffusion source for forming the - type diffusion regions 311 and 312, the phosphorus ion implantation process and annealing process for forming the n - type diffusion region can be omitted. n with
A channel MOS transistor can be obtained. Further, by forming the wall body 28 made of PSG near the gate oxide film 25, it is possible to prevent positive mobile ions from accumulating in the gate oxide film 25 due to the passivation effect of the PSG. As a result, gate oxidation [125
The withstand voltage can be improved, and a highly reliable MOS transistor can be obtained.

なお、本発明は上記実施例に説明したようなnチャンネ
ルMOSトランジスタの製造のみに限定されず、LDD
構造を有するnチャンネルMOSトランジスタ、同構造
を有する0MO8等にも同様に適用できる。
Note that the present invention is not limited to the manufacture of n-channel MOS transistors as explained in the above embodiments, but is also applicable to LDDs.
The present invention can be similarly applied to an n-channel MOS transistor having the same structure, 0MO8, etc. having the same structure.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば簡単な工程で信頼性
の高いLDD構造を有するMOSトランジスタ等の半導
体装置を製造し得る方法を提供できる。
As described in detail above, according to the present invention, it is possible to provide a method for manufacturing a semiconductor device such as a MOS transistor having a highly reliable LDD structure through simple steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の実施例におけるLDD
構造を有するnチャンネルMOSトランジスタの製造工
程を示す断面図、第2図(a)〜(e)は従来のLDD
構造を有するnチャンネルMOSトランジスタの製造工
程を示す断面図である。 21・・・p型シリコン基板、22・・・フィールド酸
化膜、24・・・ゲート電極、25・・・ゲート酸化膜
、28 ・P S Gからなる壁体、30t 、302
−n1型拡散領域、311.312・・・n−型拡散領
域、32・・・ソース領域、33・・・ドレイン領域、
36.37・・・A2配線。
FIGS. 1(a) to 1(d) show LDDs in embodiments of the present invention.
2(a) to 2(e) are cross-sectional views showing the manufacturing process of an n-channel MOS transistor having the structure of a conventional LDD.
FIG. 3 is a cross-sectional view showing the manufacturing process of an n-channel MOS transistor having the structure. DESCRIPTION OF SYMBOLS 21... P-type silicon substrate, 22... Field oxide film, 24... Gate electrode, 25... Gate oxide film, 28 ・Wall body made of PSG, 30t, 302
- n1 type diffusion region, 311.312... n- type diffusion region, 32... source region, 33... drain region,
36.37...A2 wiring.

Claims (1)

【特許請求の範囲】[Claims]  第1導電型の半導体基板の表面に酸化膜を介してゲー
ト電極材料膜を形成する工程と、この材料膜をパターニ
ングしてゲート電極を形成した後、該ゲート電極をマス
クとして前記酸化膜を選択的にエッチングしてゲート酸
化膜を形成する工程と、熱酸化処理を施して露出した基
板表面に薄い酸化膜を形成する工程と、全面に第2導電
型不純物がドープされたガラス膜を堆積した後、エッチ
ングを行なって前記ゲート電極の側面に前記ガラスから
なる壁体を形成する工程と、前記ゲート電極及び壁体を
マスクとして露出した基板表面に高濃度の第2導電型拡
散領域を形成すると共に、前記壁体から第2導電型の不
純物を基板に拡散して低濃度の第2導電型拡散領域を形
成する工程とを具備したことを特徴とする半導体装置の
製造方法。
A step of forming a gate electrode material film on the surface of a first conductivity type semiconductor substrate via an oxide film, and after patterning this material film to form a gate electrode, selecting the oxide film using the gate electrode as a mask. The first step was to perform thermal oxidation treatment to form a gate oxide film, the second step was to perform thermal oxidation treatment to form a thin oxide film on the exposed substrate surface, and the second step was to deposit a glass film doped with second conductivity type impurities over the entire surface. After that, etching is performed to form a wall made of the glass on the side surface of the gate electrode, and a highly concentrated second conductivity type diffusion region is formed on the exposed substrate surface using the gate electrode and the wall as a mask. A method of manufacturing a semiconductor device, further comprising the step of diffusing second conductivity type impurities from the wall into the substrate to form a low concentration second conductivity type diffusion region.
JP59278224A 1984-12-27 1984-12-27 Manufacturing method of semiconductor device Pending JPS61154172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278224A JPS61154172A (en) 1984-12-27 1984-12-27 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278224A JPS61154172A (en) 1984-12-27 1984-12-27 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61154172A true JPS61154172A (en) 1986-07-12

Family

ID=17594342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278224A Pending JPS61154172A (en) 1984-12-27 1984-12-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61154172A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164465A (en) * 1986-12-26 1988-07-07 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS6432676A (en) * 1987-07-29 1989-02-02 Nec Corp Manufacture of insulated-gate field-effect transistor
JPH01119070A (en) * 1987-10-31 1989-05-11 Toshiba Corp Semiconductor device and manufacture thereof
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898203A (en) * 1909-12-11 1999-04-27 Kabushiki Kaisha Toshiba Semiconductor device having solid phase diffusion sources
JPS63164465A (en) * 1986-12-26 1988-07-07 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS6432676A (en) * 1987-07-29 1989-02-02 Nec Corp Manufacture of insulated-gate field-effect transistor
JPH01119070A (en) * 1987-10-31 1989-05-11 Toshiba Corp Semiconductor device and manufacture thereof
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source
US5766965A (en) * 1992-05-29 1998-06-16 Yoshitomi; Takashi Semiconductor device and method of manufacturing the same
US5903027A (en) * 1992-05-29 1999-05-11 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source

Similar Documents

Publication Publication Date Title
US5911105A (en) Flash memory manufacturing method
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
US5238857A (en) Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
US5493139A (en) Electrically erasable PROM (E2 PROM) with thin film peripheral transistor
JPS61154172A (en) Manufacturing method of semiconductor device
US5521416A (en) Semiconductor device having gate electrode and impurity diffusion layer different in conductivity type and method of manufacturing the same
US5985712A (en) Method of fabricating field effect transistor with an LDD structure
JP2002170890A (en) Semiconductor device
JP3088556B2 (en) Semiconductor device manufacturing method
JPS63241965A (en) Insulated gate field effect transistor and its manufacturing method
JPS6156448A (en) Method for manufacturing complementary semiconductor device
JPS6043863A (en) semiconductor equipment
JPS61134073A (en) Manufacturing method of semiconductor device
JPS6016469A (en) Manufacturing method of MIS semiconductor device
JPH0778979A (en) Method for manufacturing semiconductor device
JP3259439B2 (en) Method for manufacturing semiconductor device
JPS6276562A (en) Semiconductor device and manufacture thereof
JPH04127538A (en) Semiconductor device and manufacture thereof
JPS63144575A (en) Manufacturing method of semiconductor device
JPS60128656A (en) Semiconductor device
JPS60133755A (en) Manufacturing method of semiconductor device
JPS6129176A (en) Manufacture of semiconductor device
JPS5843574A (en) Field effect transistor
JPH02174236A (en) Manufacture of semiconductor device
JPS61144877A (en) Manufacturing method of semiconductor device