[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61132729A - Gas turbine combustion control equipment - Google Patents

Gas turbine combustion control equipment

Info

Publication number
JPS61132729A
JPS61132729A JP25325584A JP25325584A JPS61132729A JP S61132729 A JPS61132729 A JP S61132729A JP 25325584 A JP25325584 A JP 25325584A JP 25325584 A JP25325584 A JP 25325584A JP S61132729 A JPS61132729 A JP S61132729A
Authority
JP
Japan
Prior art keywords
fuel
combustor
combustion
air
air ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25325584A
Other languages
Japanese (ja)
Inventor
Yasuo Okamoto
岡本 安夫
Tatsuo Araki
荒木 達雄
Fumio Otomo
文雄 大友
Takeshi Watanabe
渡辺 嶽司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25325584A priority Critical patent/JPS61132729A/en
Publication of JPS61132729A publication Critical patent/JPS61132729A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To avoid abnormal vibration of a gas turbine due to combustion vibration by dividing fuel nozzles into plural groups and fixing fuel quantity adjustment valves and fuel volume detectors to fuel pipes of respective groups. CONSTITUTION:Of fuel nozzles 13 of a combustion chamber 10, fuel nozzles adjoining alternately 13a, c, e, g are connected with a fuel pipe 30, and the remaining fuel nozzles 13b, d, f, h are connected with a fuel pipe 40. To the fuel pipes 30, 40, fuel quantity adjustment valves 31, 41 and fuel volume detectors 32, 42 are fixed. The fuel quantity adjustment valves 31, 41 are adjusted on the basis of output from a fuel-air ratio discriminator 65. As this makes it possible to adjust the fuel flow volume of respective groups separately, abnormal vibration die to combustion vibration can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃焼振動現象の発生を予防したガスタービン燃
焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine combustion control device that prevents the occurrence of combustion oscillation phenomena.

〔発明の技術的背景〕[Technical background of the invention]

ガスタービンは、タービン部と、これに高温の燃焼ガス
を送り込む燃焼器と、この燃焼器に圧縮空気を送り込む
圧縮機と、起動用原動磯等がら構成されている。
A gas turbine includes a turbine section, a combustor that sends high-temperature combustion gas to the turbine section, a compressor that sends compressed air to the combustor, a motive rock for starting, and the like.

第2図は8個の燃焼器を備えた定置式ガスタービンの一
例を示すもので、タービン部1の回転軸2には圧縮機3
の回転軸4が直結されており、タービンが回転すると、
回転軸4の外周に植設された多段の羽根5によって空気
が吸入部6からケーシング7内に吸入される。吸入され
た空気は各段落の羽根4を通過する際に次第に圧縮され
、高圧の圧縮空気8として燃焼器108〜10h内に送
り込まれる。
FIG. 2 shows an example of a stationary gas turbine equipped with eight combustors.
The rotating shaft 4 of the turbine is directly connected, and when the turbine rotates,
Air is sucked into the casing 7 from the suction section 6 by multistage vanes 5 installed on the outer periphery of the rotating shaft 4 . The sucked air is gradually compressed as it passes through the blades 4 of each stage, and is sent into the combustors 108 to 10h as high-pressure compressed air 8.

各燃焼器は外筒11と、これに内蔵した内筒12と、そ
の先端に設けた燃料ノズル13とから構成されており、
内筒12の後端側はトランジションピース14を2介し
てタービン部1の第1段ノズル20に接続されている。
Each combustor is composed of an outer cylinder 11, an inner cylinder 12 built into the outer cylinder 11, and a fuel nozzle 13 provided at the tip of the inner cylinder 12.
The rear end side of the inner cylinder 12 is connected to the first stage nozzle 20 of the turbine section 1 via the transition piece 14 .

なお、第2図中には1個の燃焼器10aのみを縦断面で
示したが、他の燃焼器10b〜10hの構成も同一であ
る。
Although only one combustor 10a is shown in longitudinal section in FIG. 2, the configurations of the other combustors 10b to 10h are also the same.

燃焼2S10aの外筒11内に送入された圧縮空気は内
筒12の先端近傍の側壁に設けた透孔を通しC内筒12
内に流入し、燃料ノズル13から送り込まれる燃料と混
合され、これを燃焼させる。
The compressed air sent into the outer cylinder 11 of the combustion 2S10a passes through the through hole provided in the side wall near the tip of the inner cylinder 12 and flows into the C inner cylinder 12.
The fuel flows into the fuel tank, mixes with the fuel sent from the fuel nozzle 13, and burns it.

この燃焼によって発生した高温高圧の燃焼ガスはトラン
ジションピース14および第1段ノズル20を経て、タ
ービン回転軸2に固着された第1段動翼21に吹き付け
られ、以下、第2段以降のノズルおよび動翼を順次流下
し、熱エネルギーを回転エネルギーに変換さI、各段落
動翼に回転力を与えながら次第に冷却され、500℃〜
600℃程度の排ガスとなって排出される。
The high-temperature, high-pressure combustion gas generated by this combustion passes through the transition piece 14 and the first-stage nozzle 20, and is blown onto the first-stage rotor blade 21 fixed to the turbine rotating shaft 2. The flow flows down the rotor blades in sequence, converting thermal energy into rotational energy, and gradually cooling the rotor blades to 500℃ while giving rotational force to each stage rotor blade.
It is discharged as exhaust gas at about 600°C.

このように、ガスタービンは比較的小容量の燃焼器で高
温・高圧の燃焼反応を効率よく行なうことができるとこ
ろから、種々の用途に利用されているが低公害の燃焼器
を製作するには非常に高度の技術が必要とされる。
As described above, gas turbines are used for a variety of purposes because they can efficiently perform high-temperature, high-pressure combustion reactions in a relatively small-capacity combustor, but it is difficult to create a low-pollution combustor. Very advanced technology is required.

しかも燃焼器の設計・製作を完璧に行なったどしても、
燃焼器には、タービンの高負荷運転時等に、燃焼反応に
起因する振動が発生することがある。
Moreover, even if the combustor is designed and manufactured perfectly,
Vibrations caused by combustion reactions may occur in the combustor, such as during high-load operation of the turbine.

〔背景技術の問題点〕[Problems with background technology]

上述の燃焼反応に基因する振動は燃焼振動と呼ばれ、そ
の存在は古くから認識されていたが、従来のガスタービ
ンにおいては、適切な対応策はaiItじられていなか
った。
The vibrations caused by the combustion reaction described above are called combustion vibrations, and although their existence has been recognized for a long time, no appropriate countermeasures have been taken in conventional gas turbines.

このため、ガスタービン燃焼器内において燃焼振動現象
が発生すると、燃焼器内のトランジションピースや第1
段静翼等、最も高温にざらされて設計裕度の低い部分に
設計値以上の繰返し荷重が作用し、比較的短期間の内に
それらの構成部品が破損してしまうという欠点があった
Therefore, when a combustion vibration phenomenon occurs in the gas turbine combustor, the transition piece in the combustor and the
There was a drawback that repeated loads exceeding the design value were applied to parts such as the stage stationary vanes, which were exposed to the highest temperatures and had the lowest design margin, and these components were damaged within a relatively short period of time.

〔発明の目的〕[Purpose of the invention]

本発明は背景技術における上述の如き欠点を除去し、燃
焼振動による異常振動を回避し得るガスタービン燃焼制
御装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas turbine combustion control device that can eliminate the above-mentioned drawbacks in the background art and avoid abnormal vibrations caused by combustion vibrations.

〔発明の概要〕[Summary of the invention]

本発明のガスタービン燃焼制御装置は上述の目的を達成
するため、タービン部と、これに燃焼ガスを送り込む燃
焼器と、この燃焼器に圧縮空気を送り込む圧縮機とを備
えたガスタービンにおいて、前記燃焼器の燃料ノズルを
複数群に分け、8詳の燃料ノズルに燃料を送り込む燃料
配管のそれぞれに燃料流量調整弁と燃料流量検出器を設
け、燃空比判別器の出力に基づいて前記燃料流m’JA
整弁の開度を一方は上方に、他方は下hヘシフトさせる
ことにより燃焼振動を防止するようにしたことを特徴と
するものである。
In order to achieve the above-mentioned object, the gas turbine combustion control device of the present invention provides a gas turbine equipped with a turbine section, a combustor that sends combustion gas to the turbine section, and a compressor that sends compressed air to the combustor. The fuel nozzles of the combustor are divided into a plurality of groups, and a fuel flow regulating valve and a fuel flow rate detector are provided in each of the fuel pipes that feed fuel to the eight fuel nozzles. m'JA
This is characterized in that combustion oscillations are prevented by shifting the opening degree of the valve adjustment upward on one side and downward on the other.

次に本発明の作動原理を説明する。Next, the operating principle of the present invention will be explained.

前述した燃焼振動現象の解明は、従来から多くの研究者
によって多方面の研究がなされてきている。この燃焼振
りJは極めて複雑で、今日でも未解明の部分が相当に残
されているが、木発明者等の実験によれば、燃焼振動に
伴う燃焼器内の圧力変動は、第3図に示すように、燃空
比に大きく依存し、特に燃空比が、同図中のBの範囲内
で異常に大きくなることがN認された。また、燃空比を
増加させると、第4図中の実線りで示すように、燃焼器
内の圧力変動周波数は次第に低下するが、この実線りと
、点線Eにて示ツ燃焼器内の気柱周波故どの交点付近の
燃空比において第3図の8に示す異常振動が発生するこ
とが判明した。
To elucidate the above-mentioned combustion oscillation phenomenon, many researchers have been conducting research in various fields. This combustion swing J is extremely complicated, and there are still many parts that remain unexplained even today, but according to the experiments of the inventors such as Wood, the pressure fluctuation inside the combustor due to combustion vibration is shown in Figure 3. As shown, it was found that the fuel-air ratio greatly depends on the fuel-air ratio, and that the fuel-air ratio in particular becomes abnormally large within the range B in the figure. Furthermore, when the fuel-air ratio is increased, the pressure fluctuation frequency within the combustor gradually decreases as shown by the solid line in Figure 4, but this solid line and the dotted line E indicate It has been found that the abnormal vibration shown at 8 in FIG. 3 occurs at the fuel-air ratio near the intersection point due to the air column frequency.

これは燃空比を第3図のAまたはCの範囲内に設定して
おけば燃焼振動に伴う異常振動を回避し得ること、およ
び異常振動時においても燃空比を第3図のB範囲からA
またはC範囲にシフトさせれば異常振動を解消し得るこ
とを意味する。
This is because if the fuel-air ratio is set within the range A or C in Figure 3, abnormal vibrations due to combustion vibration can be avoided, and even in the event of abnormal vibration, the fuel-air ratio is set within the range B in Figure 3. From A
Alternatively, it means that abnormal vibration can be eliminated by shifting to the C range.

本発明はかかる知見に基づいてなされたもので、ガスタ
ービンに設置された燃焼器の魔数個の燃料ノズルを複数
群に分け、各群の燃料ノズルが第3図の範囲AまたはC
の燃空比で作動するよう構成したものである。
The present invention has been made based on this knowledge, and consists of dividing the maximum number of fuel nozzles of a combustor installed in a gas turbine into a plurality of groups, and dividing the fuel nozzles of each group into ranges A or C in FIG.
It is configured to operate at a fuel-air ratio of .

(発明の実施例〕 次に、第1図を参照し、本発明の詳細な説明する。(Embodiments of the invention) Next, the present invention will be described in detail with reference to FIG.

第1図の圧縮機3は第2図のニーI線に沿う矢視断面で
示されており、その周囲には8個の同形の燃焼Z10a
〜10hが円周方向に等間隔をおいて配列固定されてい
る。
The compressor 3 in FIG. 1 is shown in a cross section taken along the knee I line in FIG.
~10h are arranged and fixed at equal intervals in the circumferential direction.

これらの燃焼器は第2図につき説明したように燃料ノズ
ル13a〜13hを備えてお、す、それらから送り込ま
れる燃料と、圧縮機3から圧送される圧縮空気によって
燃焼反応を行ない、その結果17られた高温高圧ガスを
タービン部に送り込み、タービンに回転力を付与する。
These combustors are equipped with fuel nozzles 13a to 13h as explained with reference to FIG. The high-temperature, high-pressure gas thus generated is sent to the turbine section, applying rotational force to the turbine.

8個の燃焼器10a〜10hのうら、1個おきに隣り合
う燃焼器10a、10c、10e、10gの燃料ノズル
13a、13C,13e、13Gはそれぞれ、分岐管3
0a、30c、30e、30gを通して燃料配管30に
接続されており、残りの燃焼器10b、10d、10f
、1Qhの燃料ノズル13b。
The fuel nozzles 13a, 13C, 13e, and 13G of the combustors 10a, 10c, 10e, and 10g that are adjacent to each other at the back of the eight combustors 10a to 10h are connected to branch pipes 3, respectively.
It is connected to the fuel pipe 30 through 0a, 30c, 30e, 30g, and the remaining combustors 10b, 10d, 10f
, 1Qh fuel nozzle 13b.

14d、13f、13hはそれぞれ、分岐管40b、4
0d、40f、40hを通して燃料配管40に接続され
ている。
14d, 13f, and 13h are branch pipes 40b and 4, respectively.
It is connected to the fuel pipe 40 through 0d, 40f, and 40h.

これらの燃料配管30.40にはそれぞれ、分岐管の上
流側に燃料流量調整弁31,41と燃料流層検出器32
.42とが介挿されており、更にその上流側で合流し、
燃料元管50を介して燃料供給装置51に接続されてい
る。
These fuel pipes 30 and 40 are provided with fuel flow regulating valves 31 and 41 and a fuel flow layer detector 32 on the upstream side of the branch pipe, respectively.
.. 42 is inserted, and further merges on the upstream side,
It is connected to a fuel supply device 51 via a fuel main pipe 50.

燃料流旦検出器32.42の出力信月は流吊演弾器60
を経て加算器61に入力され、この加算器61の出力信
号61Aは燃空比設定器62に入力される。
The output signal of the fuel leakage detector 32.42 is the leakage projector 60.
The output signal 61A of the adder 61 is input to the fuel/air ratio setter 62.

この燃空比設定器62は加算器61から入力される燃料
流ω信号61Aと、燃焼器に送入される燃焼空気流m信
号63Aと、ガスタービン出力段定直信号64Aとに基
づいて必要な燃空比を設定し、その設定値信号62Aを
燃空比判別器65に向けて出力する。
This fuel-air ratio setting device 62 is necessary based on the fuel flow ω signal 61A input from the adder 61, the combustion air flow m signal 63A sent to the combustor, and the gas turbine output stage straightening signal 64A. The fuel-air ratio is set and the set value signal 62A is outputted to the fuel-air ratio discriminator 65.

燃空比判別器65の出力信号65Aは弁開度設定器66
に導かれ、この設定器66から出力される設定信号66
A、66Bにより流m調整弁31゜41の開度は調整さ
れる。
The output signal 65A of the fuel-air ratio discriminator 65 is sent to the valve opening setting device 66.
The setting signal 66 is guided by the setting device 66 and output from the setting device 66.
A and 66B adjust the opening degree of the flow m adjustment valve 31°41.

上述のように構成した本発明装置において、燃空比判別
器65は第3図につき説明したように燃焼器10a〜1
0h内の圧力変動が異常に高まる燃空比範囲Bを記憶し
ている。
In the apparatus of the present invention configured as described above, the fuel-air ratio discriminator 65 is connected to the combustors 10a to 1 as explained with reference to FIG.
A fuel/air ratio range B in which pressure fluctuation within 0h is abnormally increased is stored.

ガスタービンの平常運転時には、弁開度設定器66には
燃空比設定器62の出力信号62△がそのまま入力され
、流0調整弁31.41の開度は同一に制御されるが、
燃空比設定器62が第3図の範囲Bの燃空比を設定した
場合には、これを自動的に判別し、弁開度設定器66に
向【プて、流m調整弁31.41に異なった開度設定を
行なうよう指令を発する。即ち、燃空比が第3図B17
)範囲に設定された場合には、流m調整弁31に連なる
第1群燃焼器10a、10c、10e、10gが例えば
第3図の範囲への燃空比となり、流量調整弁41に連な
る第2群燃焼器10b、10d。
During normal operation of the gas turbine, the output signal 62△ of the fuel-air ratio setting device 62 is input as is to the valve opening setting device 66, and the openings of the zero flow adjustment valves 31 and 41 are controlled to be the same.
When the fuel-air ratio setter 62 sets the fuel-air ratio in the range B in FIG. 41 to set different opening degrees. That is, the fuel-air ratio is B17 in Figure 3.
) range, the first group combustors 10a, 10c, 10e, 10g connected to the flow rate adjustment valve 31 have a fuel-air ratio in the range shown in FIG. 2nd group combustor 10b, 10d.

10f、10hが第3図の範囲Cの燃空比となるよう流
量調整弁31.41の開度を調整する。この場合、両弁
の開度調整は、第1群および第2群燃焼器を合計した燃
空比が燃空比設定器62の設定値と等しくなるように調
整される。
The opening degrees of the flow rate regulating valves 31 and 41 are adjusted so that 10f and 10h have the fuel-air ratio in range C in FIG. In this case, the opening degrees of both valves are adjusted so that the total fuel-air ratio of the first and second group combustors becomes equal to the set value of the fuel-air ratio setting device 62.

上述したように、本発明の一実施例によればガスタービ
ンの燃焼器108〜10hの燃料ノズル138〜13h
を2群に分け、これらの各群に送り込まれる燃料の流量
を調整する流m調整弁を、燃焼振動が生じない燃空比と
なるよう開度調整するようにしたから、燃焼器が異常振
動によって破損することを防止できる。
As mentioned above, according to one embodiment of the present invention, the fuel nozzles 138-13h of the combustors 108-10h of the gas turbine
The combustor is divided into two groups, and the opening of the flow adjustment valve that adjusts the flow rate of fuel sent to each group is adjusted to a fuel-air ratio that does not cause combustion vibrations. can be prevented from being damaged by

bつとも、前述の燃焼撮動は燃空比が第3図の範囲Bに
あると常に発生するとは限らず、ガスタービンの出力設
定値その他の要因が複雑にからみ合って発生ずると考え
られる。
However, the above-mentioned combustion phenomenon does not always occur when the fuel-air ratio is in range B in Figure 3, and it is thought that it occurs due to a complex interaction of the gas turbine output setting and other factors. .

この点を考慮すると、燃空比設定値が第3図Bの範囲に
設定された際に、常に各群燃焼器の燃空比が上方または
下方ヘシフトするよう流の調整弁の開度を制御する必要
はない。
Considering this point, when the fuel-air ratio setting value is set within the range shown in Figure 3B, the opening degree of the flow regulating valve is controlled so that the fuel-air ratio of each group combustor always shifts upward or downward. do not have to.

従って、本発明においては、ガスタービンまたは各燃焼
器に撮動検出器または圧力変換器(図示せず)を設置し
、これらの検出器または変換器の出力信号を第1図の燃
空比判別器65に入力させるよう構成しておき、燃焼振
動またはその前兆が生じた際に限って燃空比判別器から
各流σ調整弁にシフト信号を出力するようにずれば、燃
費の低下を図りながら、燃焼振動に伴う種々の弊害を回
避することができる。
Therefore, in the present invention, an imaging detector or a pressure transducer (not shown) is installed in the gas turbine or each combustor, and the output signals of these detectors or transducers are used to determine the fuel-air ratio shown in FIG. If the fuel-air ratio discriminator is configured so that the shift signal is output to each flow σ adjustment valve only when combustion oscillation or its precursor occurs, fuel efficiency can be reduced. However, various adverse effects associated with combustion vibration can be avoided.

上述した実施例は8個の燃焼器10a〜10hを円周上
に配置した形式のガスタービンに対して本発明を適用し
た例を示したが、本発明はこれに限らず環状の室を単一
の燃焼室とした燃焼器であって複数個の燃料ノズルとそ
の外側のスワラ−ノズルとを有するものについても適用
できる。第5図はこの種の実施例を示したものであり、
第1図と共通する部分の説明は省略し異なる部分につい
て説明すると次のとおりである。すなわち、この例では
環状の燃焼室に対して41[faの燃料ノズル13a、
13b、13c、13dが配置され、各ノズルの外側に
は燃焼空気用のスワラ−ノズルが同心的に配置されてい
る。
Although the above-mentioned embodiment shows an example in which the present invention is applied to a gas turbine of the type in which eight combustors 10a to 10h are arranged on the circumference, the present invention is not limited to this. The present invention can also be applied to a combustor with a single combustion chamber and a plurality of fuel nozzles and a swirler nozzle outside the fuel nozzle. FIG. 5 shows an embodiment of this kind,
The explanation of the parts common to FIG. 1 will be omitted, and the different parts will be explained as follows. That is, in this example, the fuel nozzle 13a of 41[fa] is connected to the annular combustion chamber.
13b, 13c, and 13d are arranged, and a swirler nozzle for combustion air is arranged concentrically outside each nozzle.

一方、圧縮1170からの圧縮空気は分岐管71a、7
1b、71c、71dを通じTE状の燃焼T内に供給さ
れる。これらの分岐管71a。
On the other hand, the compressed air from the compression 1170 is transferred to the branch pipes 71a and 7
It is supplied into the TE-shaped combustion T through 1b, 71c, and 71d. These branch pipes 71a.

71b、71c、71dには流量調整ノズル72a、7
.2b、72c、72dおよび流は検出器73a、ア3
b、73c、73dが組込まれている。
71b, 71c, 71d have flow rate adjustment nozzles 72a, 7
.. 2b, 72c, 72d and the flow is detected by the detector 73a, A3.
b, 73c, and 73d are incorporated.

これらの流量検出器73a、73b、73c。These flow rate detectors 73a, 73b, 73c.

73dからの出力信号は流量@算器74を経て加算器7
5に入力され、この加算器75からの出力信号63Aが
燃空比設定器62に入力される。
The output signal from 73d is sent to the adder 7 via the flow rate@calculator 74.
5, and an output signal 63A from the adder 75 is input to the fuel/air ratio setter 62.

また、燃空比判別器65からの出力信号65Bはノズル
開度設定器76に導かれ、この設定器76からのノズル
の間麿を調節するための出力信号77a、77b、77
c、77cH;tそレソレ流母調節ノズル72a、72
b、72c、72dに供給され所定の弁開度を設定する
Further, the output signal 65B from the fuel-air ratio discriminator 65 is guided to a nozzle opening degree setting device 76, and output signals 77a, 77b, 77 from this setting device 76 are used to adjust the nozzle spacing.
c, 77cH; t Sole flow mother adjustment nozzles 72a, 72
b, 72c, and 72d to set a predetermined valve opening degree.

このように構成された実施例において、ガスタービンの
平常運転時には弁開度設定器66およびノズル開度設定
器76には燃空比設定器65の出力信号65A、65B
がそのま)入力され、流量調整弁31.41の開度およ
び流量調節ノズル72a、72b、72c、72dの開
度ハ同−ニ制御され、第3図における燃空比のAまたは
Cの範囲内で運転される。これに対して燃空比設定器6
2が第3図の範囲Bの燃空比を設定した場合にはこれを
自動的に判別し、弁開度設定器66およびノズル開度設
定器76に向けて異なった開度設定を行なうよう指令を
発する。すなわち、この場合には、第11!¥の燃料ノ
ズル13a、13Gが第3図の範囲Aの燃空比となり第
2群の燃料ノズル13b、13dが第3図の範囲Cの空
燃比となるように流量調整弁31.32および流量調整
弁72a、72cおよび72b、72dの開度を調整す
る。このような実施例においても前記実施例と同様の作
用効果を秦することができる。なお、空気Gの調整はス
ワラ−ノズルの開度を調節することによって行なっても
良いことはもちろんである。
In the embodiment configured as described above, during normal operation of the gas turbine, the valve opening setting device 66 and the nozzle opening setting device 76 receive the output signals 65A, 65B of the fuel/air ratio setting device 65.
is input as is), and the opening degrees of the flow rate adjustment valves 31 and 41 and the opening degrees of the flow rate adjustment nozzles 72a, 72b, 72c, and 72d are controlled in the same way, and the range of A or C of the fuel-air ratio in FIG. Driven within. On the other hand, the fuel-air ratio setting device 6
2 sets the fuel-air ratio in range B in FIG. Issue a command. That is, in this case, the 11th! The flow regulating valves 31 and 32 and the flow rate are adjusted so that the fuel nozzles 13a and 13G of the second group have a fuel-air ratio in range A in FIG. 3, and the second group of fuel nozzles 13b and 13d have an air-fuel ratio in range C in FIG. The opening degrees of the regulating valves 72a, 72c and 72b, 72d are adjusted. Even in such an embodiment, the same effects as in the above embodiment can be obtained. It goes without saying that the air G may be adjusted by adjusting the opening degree of the swirler nozzle.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明によれば、燃焼器の燃焼低動を防止で
きるので、燃焼器各部、特にトランジションピースやタ
ービンの第1段ノズル等のように最も過酷な条件下で使
用さ机る構成部品が振動によって劣化、破10すること
を防止できる。
As described above, according to the present invention, it is possible to prevent low combustion in the combustor, so that various parts of the combustor, especially components used under the harshest conditions such as the transition piece and the first stage nozzle of the turbine, can be prevented. can be prevented from deteriorating or breaking due to vibration.

従って、各部品のズI命が延びて窓明交換の期間を延長
することができ、信頼性の高いガスタービンを得ること
ができると共に、部品交換に伴う作!首やタービン停止
期間を短縮でき、メインテナンスコストを低下させるこ
とが可能となる。また、蓮転範囲が制約されないので、
使い易いガスタービンを得ることができる。
Therefore, the lifespan of each part is extended, the period for window replacement can be extended, a highly reliable gas turbine can be obtained, and the work associated with parts replacement can be reduced. It is possible to shorten the downtime and turbine downtime, and reduce maintenance costs. Also, since the lotus rotation range is not restricted,
A gas turbine that is easy to use can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の実施例を示す説明図、第2図はガ
スタービンの一例を示す要部の一部縦断正面図、第3図
と第4図は燃焼振動を説明するためのグラフ、第5図は
本発明の他の実施例を示す説明図である。 1・・・タービン部、2,4・・・回転軸、3・・・圧
縮器、5・・・羽根、6・・・空気吸入口、7・・・ケ
ーシング、8・・・圧縮空気、10a〜10.h・・・
燃焼器、11・・・外筒、12・・・内筒、1,3・・
・燃料ノズル、14・・・トランジションピース、20
・・・第1段ノズル、21・・・タービン!FJI翼、
30;’40・・・燃料配管、31.41・・・燃料流
量調整弁、32.42・・・燃料流量検出器、5o・・
・燃料元管、60・・・流は演算器。 第 l 図
Fig. 1 is an explanatory diagram showing an embodiment of the device of the present invention, Fig. 2 is a partially longitudinal front view of main parts showing an example of a gas turbine, and Figs. 3 and 4 are graphs for explaining combustion vibration. , FIG. 5 is an explanatory diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Turbine part, 2, 4... Rotating shaft, 3... Compressor, 5... Vane, 6... Air intake port, 7... Casing, 8... Compressed air, 10a-10. h...
Combustor, 11...outer cylinder, 12...inner cylinder, 1, 3...
・Fuel nozzle, 14...Transition piece, 20
...1st stage nozzle, 21...turbine! FJI Tsubasa,
30;'40...Fuel pipe, 31.41...Fuel flow rate adjustment valve, 32.42...Fuel flow rate detector, 5o...
・Fuel main pipe, 60...The flow is a calculator. Figure l

Claims (1)

【特許請求の範囲】 1、タービン部と、これに燃焼ガスを送り込む燃焼器と
、この燃焼器に圧縮空気を送り込む圧縮機とを備えたガ
スタービンにおいて、前記燃焼器の燃料ノズルを複数群
に分け、各群の燃料ノズルに燃料を送り込む燃料配管の
それぞれに燃料流量調整弁と燃料流量検出器を設け、燃
空比判別器の出力に基づいて前記燃料流量調整弁を異な
った開度に調整できるように構成したガスタービン燃焼
制御装置。 2、燃空比判別器が、燃空比設定器からの設定値信号が
燃焼振動を生じさせるおそれの範囲であるとき、これを
判別し、一方の燃料調整弁を高開度側に、また他方の燃
料調整弁を低開度側にシフトさせることを特徴とする特
許請求の範囲第1項に記載の制御装置。 3、燃空比判別器が、ガスタービンまたは燃焼器の振動
または圧力を検出する振動検出器もしくは圧力変換器の
出力信号を入力し、燃料調整弁を異なった開度にシフト
させるよう構成したことを特徴とする特許請求の範囲第
1項または第2項に記載の制御装置。 4、前記燃焼器の燃料ノズルを複数群に分け各群の燃料
ノズルに燃料を送り込む燃料配管のそれぞれに燃料流量
調整弁を設けると共に、燃焼器に燃焼空気を供給する空
気供給管を対応する群に分け各群の空気供給管上に供給
空気量を調整する空気流量調整弁を設けたことを特徴と
する特許請求の範囲第1項に記載の制御装置。
[Claims] 1. In a gas turbine comprising a turbine section, a combustor for feeding combustion gas into the turbine section, and a compressor for feeding compressed air into the combustor, the fuel nozzles of the combustor are arranged in a plurality of groups. A fuel flow rate adjustment valve and a fuel flow rate detector are provided in each of the fuel pipes that feed fuel to the fuel nozzles of each group, and the fuel flow rate adjustment valve is adjusted to different opening degrees based on the output of the fuel-air ratio discriminator. A gas turbine combustion control device configured to allow 2. The fuel-air ratio discriminator determines when the set value signal from the fuel-air ratio setter is within the range that may cause combustion vibration, and sets one fuel adjustment valve to the high opening side. 2. The control device according to claim 1, wherein the control device shifts the other fuel adjustment valve to a lower opening degree side. 3. The fuel-air ratio discriminator is configured to input the output signal of a vibration detector or pressure transducer that detects vibration or pressure of the gas turbine or combustor, and shifts the fuel adjustment valve to a different opening degree. A control device according to claim 1 or 2, characterized in that: 4. Divide the fuel nozzles of the combustor into a plurality of groups, and provide a fuel flow rate adjustment valve for each fuel pipe that feeds fuel to the fuel nozzles of each group, and connect air supply pipes that supply combustion air to the combustor to the corresponding groups. 2. The control device according to claim 1, further comprising an air flow rate adjustment valve for adjusting the amount of air supplied on each group of air supply pipes.
JP25325584A 1984-11-30 1984-11-30 Gas turbine combustion control equipment Pending JPS61132729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25325584A JPS61132729A (en) 1984-11-30 1984-11-30 Gas turbine combustion control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25325584A JPS61132729A (en) 1984-11-30 1984-11-30 Gas turbine combustion control equipment

Publications (1)

Publication Number Publication Date
JPS61132729A true JPS61132729A (en) 1986-06-20

Family

ID=17248725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25325584A Pending JPS61132729A (en) 1984-11-30 1984-11-30 Gas turbine combustion control equipment

Country Status (1)

Country Link
JP (1) JPS61132729A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000677A1 (en) * 1988-07-15 1990-01-25 Sundstrand Corporation Assuring reliable starting of turbine engines
US4920740A (en) * 1987-11-23 1990-05-01 Sundstrand Corporation Starting of turbine engines
US5036657A (en) * 1987-06-25 1991-08-06 General Electric Company Dual manifold fuel system
JPH05126335A (en) * 1991-11-07 1993-05-21 Hitachi Ltd Gas turbine combustion controller and gas turbine combustion control method
JP2015219004A (en) * 2014-05-13 2015-12-07 ゼネラル・エレクトリック・カンパニイ System and method for reducing modal coupling of combustion dynamics in combustion system
CN106523164A (en) * 2016-12-08 2017-03-22 中国科学院工程热物理研究所 Low-emission three-loop lean oil pre-mixing and active combustion control device and method
JP2019168144A (en) * 2018-03-22 2019-10-03 三菱重工業株式会社 Gas turbine combustor and gas turbine comprising the same, and method of preventing combustion vibration of gas turbine combustor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036657A (en) * 1987-06-25 1991-08-06 General Electric Company Dual manifold fuel system
US4920740A (en) * 1987-11-23 1990-05-01 Sundstrand Corporation Starting of turbine engines
WO1990000677A1 (en) * 1988-07-15 1990-01-25 Sundstrand Corporation Assuring reliable starting of turbine engines
US4936090A (en) * 1988-07-15 1990-06-26 Sundstrand Corporation Assuring reliable starting of turbine engines
JPH05126335A (en) * 1991-11-07 1993-05-21 Hitachi Ltd Gas turbine combustion controller and gas turbine combustion control method
JP2015219004A (en) * 2014-05-13 2015-12-07 ゼネラル・エレクトリック・カンパニイ System and method for reducing modal coupling of combustion dynamics in combustion system
CN106523164A (en) * 2016-12-08 2017-03-22 中国科学院工程热物理研究所 Low-emission three-loop lean oil pre-mixing and active combustion control device and method
CN106523164B (en) * 2016-12-08 2018-01-05 中国科学院工程热物理研究所 A kind of lean premixed active combustion control device and method in the loop of low emission three
JP2019168144A (en) * 2018-03-22 2019-10-03 三菱重工業株式会社 Gas turbine combustor and gas turbine comprising the same, and method of preventing combustion vibration of gas turbine combustor

Similar Documents

Publication Publication Date Title
EP2375167B1 (en) Combustor exit temperature profile control via fuel staging and related method
US8122725B2 (en) Methods and systems for operating gas turbine engines
CN109028142B (en) Propulsion system and method of operating the same
US6986254B2 (en) Method of operating a flamesheet combustor
US7104069B2 (en) Apparatus and method for improving combustion stability
EP2613085B1 (en) Turbine engine and method for flowing air in a turbine engine
EP3076085B1 (en) Micromixer system for a turbine system and an associated method thereof
EP1806479A2 (en) Gas turbine engine and method of operation thereof
JPH05248268A (en) Gas turbine combustion system
JP2742998B2 (en) Cooling air supply manifold
US5697209A (en) Power plant with steam injection
US20200248905A1 (en) Rotating detonation combustor with discrete detonation annuli
JP7165211B2 (en) Systems and methods for improving combustion stability in gas turbines
JPH01163427A (en) Turbine engine
US20210278086A1 (en) Fuel nozzle assembly and gas turbine combustor including the same
JPS61132729A (en) Gas turbine combustion control equipment
EP1369563B1 (en) System for control and regulation of the flame temperature for single-shaft gas turbines
EP3477120A1 (en) Gas turbine engine control method and system
JP5449759B2 (en) Controlled purging method of a fuel supply system in a gas turbine combustor
US11719108B2 (en) Transition piece, combustor, and gas turbine engine
JP2004316506A (en) Combustor, gas turbine, and jet engine
EP4067746B1 (en) Combustor having a wake energizer
JP3551215B2 (en) Steam injection gas turbine and its control method
US20080127630A1 (en) Turbine for application to pulse detonation combustion system and engine containing the turbine
US10808557B2 (en) Nozzle assembly for a combustion chamber of an engine