[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61131476A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61131476A
JPS61131476A JP59252905A JP25290584A JPS61131476A JP S61131476 A JPS61131476 A JP S61131476A JP 59252905 A JP59252905 A JP 59252905A JP 25290584 A JP25290584 A JP 25290584A JP S61131476 A JPS61131476 A JP S61131476A
Authority
JP
Japan
Prior art keywords
type
diffusion layer
substrate
well
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59252905A
Other languages
Japanese (ja)
Inventor
Takaharu Nawata
名和田 隆治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59252905A priority Critical patent/JPS61131476A/en
Publication of JPS61131476A publication Critical patent/JPS61131476A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance the integration of an IC by forming a CMOS inverter in a vertical structure so that the source diffused layer of an n-channel transistor arrives at a substrate over p-well, thereby eliminating a Vss line, and the con tact hole of the source of the n-channel. CONSTITUTION:Since a source diffused layer is formed in a depth arriving at a substrate over a p-well in an n-channel transistor 7 of a CMOS, Vss potential can be produced through a source diffused layer (n<+> type) and the substrate (n<-> type), the conventional Vss line is not necessarily provided. Then, a p<+> type buried layer 2 is provided to reduce a well resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 、本発iは半導体装置、より詳しくはエピタキシャル層
を用いてpウェルのツース電位を基板からとり、Vss
線をなくした構造の0MOSに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a semiconductor device, more specifically, an epitaxial layer is used to take the tooth potential of a p-well from a substrate, and
This relates to 0MOS with a structure that eliminates lines.

〔従来の技術〕[Conventional technology]

従来のCMOSインバータは第2図に示され、同図にお
いて、21はn型シリコン基板、22はpウェル、23
と24はn+型トドレインソース、25と26はp“型
とn+型のストッパ、27はp+型型数散層28と29
はp1型のソースとドレイン、30はn+型広拡散層3
1は5t02 Ill、 32はゲート電極(入力)、
33は出力端子、34はnチャンネルMOS 、 35
はpチャンネ7L/ MOS、 36はVss線、37
はVdd線、をそれぞれ示す、       ・   
       □(発明が解決しようとする問題点〕 従来は、第2図に示すcFiosインバータにおいてV
ss線を基板の上に設□ける必要があり、それにはコン
タクトホールの形成を伴った。しかし、集積回路(IC
)の集積度を高めるためには、IC上を延在する配線数
を減らす必Qfi< 、%る。また、回路設計上、Vs
s線を設けることが場所とか既に形成されたデバイス、
配線などの関係で難しくなる問題もある。
A conventional CMOS inverter is shown in FIG. 2, in which 21 is an n-type silicon substrate, 22 is a p-well, and 23 is an n-type silicon substrate.
and 24 are n+ type drain sources, 25 and 26 are p" type and n+ type stoppers, and 27 are p+ type scattered layers 28 and 29.
are p1 type source and drain, 30 is n+ type wide diffusion layer 3
1 is 5t02 Ill, 32 is the gate electrode (input),
33 is an output terminal, 34 is an n-channel MOS, 35
is p channel 7L/MOS, 36 is Vss line, 37
indicate the Vdd line, respectively.
□ (Problem to be solved by the invention) Conventionally, in the cFios inverter shown in FIG.
SS lines had to be placed on the substrate, which involved forming contact holes. However, integrated circuits (ICs)
), it is necessary to reduce the number of wiring lines extending over the IC. Also, due to circuit design, Vs
Place the S-line on an already formed device,
There are also problems related to wiring, etc.

〔問題点を解決するための手段〕      □本発明
は、上記問題点を解消したVss線をなくした0MOS
を提供するもので、その手段は、相補型MOS(C−M
OS )構造のnチャンネルトランジスタにおいて、エ
ピタキシセル層のpウェルに設けたドレイン拡散層とソ
ース拡散層のうちソース拡散層は基板内に達する深さの
ものであり、pウェルの基準電位はソース拡散層を通し
て前記基板から引出す構成としたことを特徴とする半導
体装置によってなされる。
[Means for solving the problems] □The present invention is a 0MOS without a Vss line, which solves the above problems.
The means for this purpose is complementary MOS (C-M
In an n-channel transistor with an OS) structure, of the drain diffusion layer and source diffusion layer provided in the p-well of the epitaxial cell layer, the source diffusion layer has a depth that reaches into the substrate, and the reference potential of the p-well is the source diffusion layer. A semiconductor device characterized in that it is drawn out from the substrate through a layer.

〔作用〕[Effect]

上記装置においては、cnosのnチャンネルトランジ
スタにおいて、pウェルの基準電位(νSS )を基板
の表面から配線を用いてとるのではなくて、ソース拡散
層をエピタキシャル層を超えて基板内にまで達する深さ
に形成することにより基板の裏面から基準電位をとるも
のである。
In the above device, in the CNOS n-channel transistor, the p-well reference potential (νSS) is not taken from the surface of the substrate using wiring, but the source diffusion layer is deep beyond the epitaxial layer and reaches into the substrate. The reference potential is taken from the back surface of the substrate by forming the electrode on the back surface of the substrate.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に本発明にかかるCMOSが断面図で示され、同
図において、1はn型シリコン基板、2はp1型埋込層
、3はエピタキシャル層、4はn+型)’レイン拡散層
、5は基板に達する深さのn+型ソース拡散層、6はゲ
ート電極、を示し、これらでnチャンネルトランジスタ
7が構成されている。
FIG. 1 shows a cross-sectional view of a CMOS according to the present invention, in which 1 is an n-type silicon substrate, 2 is a p1-type buried layer, 3 is an epitaxial layer, 4 is an n+ type)' rain diffusion layer, Reference numeral 5 indicates an n+ type source diffusion layer deep enough to reach the substrate, and reference numeral 6 indicates a gate electrode, which constitute an n-channel transistor 7.

そしてこのトランジスタ7において、エピタキシャル層
3はp型不純物の拡散によってpウェルとなっている。
In this transistor 7, the epitaxial layer 3 becomes a p-well by diffusion of p-type impurities.

pチャンネルトランジスタ8の部分は、p−型層9、n
4型層101.p″型のドレイン拡散層11とソース拡
散層12、ゲート13によって構成される。
The p-channel transistor 8 portion has a p-type layer 9, an n
Type 4 layer 101. It is composed of a p'' type drain diffusion layer 11, a source diffusion layer 12, and a gate 13.

本―明は、CMOSのnチャンネルトランジスタ7に特
徴があり、このトランジスタにおいて、ソース拡散層は
、pウェルをこえて基板内に達する深さに形成されてい
るので、Vss電位は、ソース拡散層(nゝ型)一基板
(n−型)の径路でとり出すことができるので、従来の
Vsa線は設ける必要がな(なっている、奄して、p+
型埋込層2はウェル抵抗を減少するために設けたもので
ある。
The present invention is characterized by a CMOS n-channel transistor 7, in which the source diffusion layer is formed deep enough to reach into the substrate beyond the p-well. (n type) can be taken out through the path of one substrate (n- type), so there is no need to provide a conventional Vsa line.
The mold burying layer 2 is provided to reduce well resistance.

次に、第1図の装置のnチャンネルトランジスタ7を作
る方法について説明する。
Next, a method of manufacturing the n-channel transistor 7 of the device shown in FIG. 1 will be explained.

■−固有抵抗1Ω・cm、結晶方位(100)のn型シ
リコン基板1を用意する。そして、pウェル抵抗を減少
するためのp+型埋込層2を、砒素をドーズI X 1
0 i3/ cs+2.20KeVの加速エネルギーで
イオン注入して形成する。
- Prepare an n-type silicon substrate 1 with a specific resistance of 1 Ω·cm and a crystal orientation of (100). Then, the p+ type buried layer 2 for reducing the p-well resistance is doped with arsenic I x 1
It is formed by ion implantation with an acceleration energy of 0 i3/cs+2.20 KeV.

■エピタキシャル成長によって1.5μ鴎の厚さのエピ
タキシャル層3を形成する。
(2) Form an epitaxial layer 3 with a thickness of 1.5 μm by epitaxial growth.

■混酸化法により1μ−の厚さのフィールド酸化膜(図
示せず)を形成する。以下の工程は、フィールド酸化膜
によって分離された素子領域に対して実施される。
(2) A field oxide film (not shown) with a thickness of 1 μm is formed by a mixed oxidation method. The following steps are performed on device regions separated by field oxide films.

■図示しないゲスト絶縁膜(ゲート酸化膜)を形成する
■A guest insulating film (gate oxide film) (not shown) is formed.

■全面に多結晶シリコン(ポリシリコン)を5000A
の膜厚に成長し、それをパターニングしてゲート電極6
を形成する。
■5000A polycrystalline silicon (polysilicon) on the entire surface
The gate electrode 6 is grown by patterning it to a thickness of
form.

■砒素をイオン注入しでドレイン拡散層4とソース拡散
層5を形成する。この段階で、ソース拡散層5の深さは
ドレイン拡散層4の深さ・と同じである。
(2) A drain diffusion layer 4 and a source diffusion layer 5 are formed by ion-implanting arsenic. At this stage, the depth of the source diffusion layer 5 is the same as the depth of the drain diffusion layer 4.

■ドレイン拡散層4をレジストでカバーして、ソース拡
散層5だけに、燐を、ドーズ5 X 1011/cva
’以上、200にeVの加速エネルギーでイオン注入し
てp+埋込層2をこえて基板内に達する拡■全面に燐・
シリケート・ガラス(PSG)を1■PSG層にコンタ
クトホールを′開ける。このとき、nチャンネルトラン
ジスタのソースのコンタクトホールは作らなくてよい。
■Cover the drain diffusion layer 4 with resist and apply phosphorus only to the source diffusion layer 5 at a dose of 5 x 1011/cva.
As described above, ions were implanted at an acceleration energy of 200 eV to spread phosphorus over the entire surface beyond the p+ buried layer 2 and into the substrate.
A contact hole is opened in the PSG layer of silicate glass (PSG). At this time, it is not necessary to make a contact hole for the source of the n-channel transistor.

[株]全面にアルミニウムを被着し、それをパター;*
(%J(7)ご=:ニス↓::ご゛、1″゛″゛以上説
明し衣ように本発明によれば、C間sインバータにおい
て、nチャンネルトランジスタのソース拡散層をpウェ
ルをこえて基板内に達する縦型構成とすることにより、
従来のVss線が不要になり・更にnチャンネルトラン
ジスタのソースのコンタクトホールも不要になり、Cr
3O2の高集積化が可能になるだけでな″く、設計の自
由度が増大する効果がある。
[Co., Ltd.] Covers the entire surface with aluminum and uses it as a putter; *
(%J(7)GO=:varnish↓::go, 1'''''') As explained above, according to the present invention, in a C-to-C S inverter, the source diffusion layer of an n-channel transistor is connected to a p-well. By adopting a vertical configuration that reaches beyond the board,
The conventional Vss line is no longer required, and the contact hole for the source of the n-channel transistor is also no longer required.
This not only enables high integration of 3O2, but also has the effect of increasing the degree of freedom in design.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の断面図、第2図は従来のcno
sインバータの断面図である。 図中、lはn型シリコン基板、2はp+型埋込層、3は
pウェル、4はn”型ドレイン拡散層、5はn +、型
ソース拡散層、6はゲート電極−17はnチャンネルト
ランジスタ、をそれぞれ示す。 第1図
Figure 1 is a sectional view of the embodiment of the present invention, Figure 2 is a conventional CNO
FIG. 3 is a cross-sectional view of the s-inverter. In the figure, l is an n-type silicon substrate, 2 is a p+ type buried layer, 3 is a p well, 4 is an n'' type drain diffusion layer, 5 is an n+ type source diffusion layer, 6 is a gate electrode -17 is an n The channel transistors are shown in Figure 1.

Claims (1)

【特許請求の範囲】[Claims]  相補型MOS(C−MOS)構造のnチャンネルトラ
ンジスタにおいて、エピタキシャル層のpウェルに設け
たドレイン拡散層とソース拡散層のうちソース拡散層は
基板内に達する深さのものであり、pウェルの基準電位
はソース拡散層を通して前記基板から引出す構成とした
ことを特徴とする半導体装置。
In an n-channel transistor with a complementary MOS (C-MOS) structure, of the drain diffusion layer and source diffusion layer provided in the p-well of the epitaxial layer, the source diffusion layer has a depth that reaches into the substrate; A semiconductor device characterized in that a reference potential is drawn out from the substrate through a source diffusion layer.
JP59252905A 1984-11-30 1984-11-30 Semiconductor device Pending JPS61131476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252905A JPS61131476A (en) 1984-11-30 1984-11-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252905A JPS61131476A (en) 1984-11-30 1984-11-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61131476A true JPS61131476A (en) 1986-06-19

Family

ID=17243797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252905A Pending JPS61131476A (en) 1984-11-30 1984-11-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61131476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489557A (en) * 1987-09-30 1989-04-04 Toshiba Corp Semiconductor device
US6191454B1 (en) 1996-12-11 2001-02-20 Nec Corporation Protective resistance element for a semiconductor device
DE10110458A1 (en) * 2001-03-05 2002-10-17 Kord Gharachorloo Wahid Production of a CMOS inverter comprises preparing a n-doped substrate, masking the surface, forming a p+-doped recess and further processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489557A (en) * 1987-09-30 1989-04-04 Toshiba Corp Semiconductor device
US6191454B1 (en) 1996-12-11 2001-02-20 Nec Corporation Protective resistance element for a semiconductor device
DE10110458A1 (en) * 2001-03-05 2002-10-17 Kord Gharachorloo Wahid Production of a CMOS inverter comprises preparing a n-doped substrate, masking the surface, forming a p+-doped recess and further processing

Similar Documents

Publication Publication Date Title
JPS62174966A (en) Manufacture of semiconductor device
JP2000286346A (en) Semiconductor device and manufacture thereof
JP3206026B2 (en) Semiconductor device having high voltage MISFET
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
JPS63102264A (en) Thin film semiconductor device
JPS60100469A (en) Semiconductor device
JPH08186179A (en) Complementary semiconductor device
JPS58170048A (en) Semiconductor device
JPS61131476A (en) Semiconductor device
JP2000196102A (en) Semiconductor device and its production method
JP2605757B2 (en) Method for manufacturing semiconductor device
JPS63128626A (en) Method of forming contact of semiconductor integrated circuit device
JPH02105566A (en) Complementary semiconductor device
JPS63114160A (en) Integrated circuit for complementary type misfet
JPH01248555A (en) Semiconductor device
JP4517410B2 (en) Semiconductor device
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPH03101264A (en) Manufacture of complementary field effect transistor
JPH0580155B2 (en)
JPH04179162A (en) Semiconductor device and manufacture thereof
JPH02235369A (en) Semiconductor device
JPH01155662A (en) Semiconductor device
JPS61137360A (en) Complementary mos integrated circuit device
JPH04251981A (en) Semiconductor device
JPH07161821A (en) Manufacture of complementary semiconductor device