[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61139719A - Semiconductive rotation sensor - Google Patents

Semiconductive rotation sensor

Info

Publication number
JPS61139719A
JPS61139719A JP59260782A JP26078284A JPS61139719A JP S61139719 A JPS61139719 A JP S61139719A JP 59260782 A JP59260782 A JP 59260782A JP 26078284 A JP26078284 A JP 26078284A JP S61139719 A JPS61139719 A JP S61139719A
Authority
JP
Japan
Prior art keywords
slit
cantilevered beam
cantilever
stress
cantilever beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59260782A
Other languages
Japanese (ja)
Other versions
JPH0374926B2 (en
Inventor
Tamotsu Tominaga
冨永 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59260782A priority Critical patent/JPS61139719A/en
Publication of JPS61139719A publication Critical patent/JPS61139719A/en
Publication of JPH0374926B2 publication Critical patent/JPH0374926B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To enhance sensitivity, by providing a slit to the central part of the beam in the vicinity of a cantilevered beam and forming piezoelectric resistor elements to both sides of the slit in parallel to the longitudinal direction of the cantilevered beam. CONSTITUTION:When the signal with resonant frequency of a cantilevered beam 1 is applied to a semiconductive rotation sensor from an oscillator 7 through an electrode 4, the free end 2 of the cantilevered beam 1 vibrates at the resonant frequency. When the cantilevered beam 1 is rotated around a rotary axis to the direction shown by the arrow in this state, Corioli's force shown by the arrow 10 is applied. This force is added to one side of a slit as compression stress and added to the other side thereof as tensile stress. Because the slit 6 is provided to the central part of the cantilevered beam 1 and a piezoelectric resistor element is formed in parallel to the longitudinal direction of the cantilevered beam 1, deformation stress can be concentrated to the piezoelectric resistor element and the stress of a largely deformable part can be detected and, therefore, sensitivity can be enhanced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体単結晶の片持梁を所定の周波数で振動さ
せ1片持梁の回転速度に応じて片持梁に生ずる変形を検
出することによって回転速度を検出する振動型半導体回
転センサに関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention vibrates a semiconductor single crystal cantilever at a predetermined frequency and detects the deformation that occurs in the cantilever depending on the rotation speed of one cantilever. This invention relates to a vibration-type semiconductor rotation sensor that detects rotational speed.

〔従来技術〕[Prior art]

半導体回転センサとしては、例えば第2図に示すごとき
ものがある。
As a semiconductor rotation sensor, there is one shown in FIG. 2, for example.

第2図において、(A)は平面図、(B)は(A)のA
−A’断面図、(C)は動作説明図である。
In Figure 2, (A) is a plan view, and (B) is A of (A).
-A' sectional view, (C) is an operation explanatory diagram.

第2図において、Si基板25にSL単結晶の片持梁2
0が形成されている。
In FIG. 2, a cantilever beam 2 of SL single crystal is mounted on a Si substrate 25.
0 is formed.

そして、片持梁20に設けた電極24とSi基板25と
の間に、発振器23から片持梁20の共振周波数の周波
数を持った信号を印加すると、片持梁20の自由端21
が共振周波数で振動する。
Then, when a signal having the resonance frequency of the cantilever beam 20 is applied from the oscillator 23 between the electrode 24 provided on the cantilever beam 20 and the Si substrate 25, the free end 24 of the cantilever beam 20
vibrates at a resonant frequency.

そして、この半導体回転センサを矢印に示す回転方向に
回転させると、片持梁20には矢印26で示すように回
転方向と逆向きのコリオリの力が印加され、片持梁20
によじれの歪を生ずる。
Then, when this semiconductor rotation sensor is rotated in the rotation direction shown by the arrow, a Coriolis force in the opposite direction to the rotation direction is applied to the cantilever beam 20 as shown by the arrow 26, and the cantilever beam 20
This causes kinked distortion.

この歪を片持梁20の支持部付近に形成したピエゾ抵抗
素子22の抵抗変化として検出することにより、回転速
度を検出することが出来る。
By detecting this strain as a resistance change of the piezoresistive element 22 formed near the support portion of the cantilever beam 20, the rotation speed can be detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のごとき従来の半導体回転センサにおいては、回転
速度に対応した力後片持梁上に回転軸と垂直方向に形成
したピエゾ抵抗素子によって検出するような構造(この
構造によれば片持梁の振動による変形は検出せず、片持
梁のよじれによる変形のみを検出することが出来る)と
なっていたため、ピエゾ抵抗素子を片持梁の中心線(回
転軸)を横切って形成させざるを得ないが、この中心線
付近は回転に対応する力による変形量が最小の部分であ
り、したがって感度が低くなるという問題があった。
The conventional semiconductor rotation sensor as described above has a structure in which the detection is performed using a piezoresistive element formed perpendicular to the rotation axis on the cantilever beam after a force corresponding to the rotation speed (according to this structure, the cantilever beam (It is possible to detect only the deformation due to twisting of the cantilever beam without detecting deformation due to vibration.) Therefore, it was necessary to form the piezoresistive element across the center line (rotation axis) of the cantilever beam. However, the area around this center line is the area where the amount of deformation due to the force corresponding to rotation is minimal, and therefore there is a problem in that the sensitivity is low.

本発明は上記のごとき従来技術の問題点を解決すること
を目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

〔問題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明においては、片持梁
の支持部付近の梁の中央部分にスリットを設け、該スリ
ットの側方に片持梁の長手方向と平行にピエゾ抵抗素子
を形成することにより、片持梁に加わるねじれ変形応力
が上記スリットの両側に集中するのを利用して感度を向
上させるように構成している。
In order to achieve the above object, in the present invention, a slit is provided in the center of the beam near the support part of the cantilever beam, and a piezoresistive element is formed on the side of the slit in parallel with the longitudinal direction of the cantilever beam. By doing this, the torsional deformation stress applied to the cantilever is concentrated on both sides of the slit, which is utilized to improve sensitivity.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例図であり、(A)は平面図、
(B)は(A)のA−A’断面図、(C)は動作説明図
である。
FIG. 1 is a diagram showing an embodiment of the present invention, and (A) is a plan view;
(B) is a sectional view taken along the line AA' in (A), and (C) is an explanatory diagram of the operation.

第1図において、Si基板8にはSi単結晶からなる片
持梁1が形成されている。
In FIG. 1, a cantilever beam 1 made of Si single crystal is formed on a Si substrate 8. As shown in FIG.

又、片持梁1の支持部3付近の梁の中央部分には、スリ
ット6が設けられている。
Further, a slit 6 is provided in the central portion of the cantilever beam 1 near the support portion 3.

そして、このスリット6の側方の両側に片持梁1の長手
方向と平行に2本のピエゾ抵抗素子5が形成されている
Two piezoresistive elements 5 are formed on both sides of the slit 6 in parallel to the longitudinal direction of the cantilever beam 1.

この半導体回転センサに電極4を介して、発振器7から
片持梁1の共振周波数の信号を印加すると、片持梁1の
自由端2が共振周波数で振動する。
When a signal at the resonant frequency of the cantilever beam 1 is applied from the oscillator 7 to this semiconductor rotation sensor via the electrode 4, the free end 2 of the cantilever beam 1 vibrates at the resonant frequency.

その状態でこの半導体回転センサを回転軸9の回りに矢
印方向に回転させると、矢印1oで示すようなコリオリ
の力が印加される。
When this semiconductor rotation sensor is rotated in the direction of the arrow around the rotating shaft 9 in this state, a Coriolis force as shown by the arrow 1o is applied.

この力は矢印11及び12に示すように、スリット6の
一方の側方では圧縮応力として加わり、他方の側方では
引張応力として加わる。
This force is applied as a compressive stress on one side of the slit 6 and as a tensile stress on the other side, as shown by arrows 11 and 12.

この応力をピエゾ抵抗素子5で検出することによって1
回転速度を検出することが出来る。
By detecting this stress with the piezoresistive element 5,
Rotation speed can be detected.

上記の構成においては、片持梁1の中央部分にスリット
6を設けており、かつピエゾ抵抗素子5を片持梁1の長
手方向と平行に形成しているので、回転に対応して片持
梁に発生する変形応力をピエゾ抵抗素子に集中させるこ
とが出来、又、片持梁の変形が生じない中心線付近から
離れた変形の大きい部分の引張応力、圧縮応力を検出す
ることが出来るので、感度を向上させることが出来る。
In the above configuration, the slit 6 is provided in the center of the cantilever beam 1, and the piezoresistive element 5 is formed parallel to the longitudinal direction of the cantilever beam 1, so that the cantilever beam can rotate in response to rotation. The deformation stress generated in the beam can be concentrated on the piezoresistive element, and the tensile stress and compressive stress in areas where the deformation is large away from the center line where the cantilever beam does not deform can be detected. , sensitivity can be improved.

なお上記の構成においては、ピエゾ抵抗素子は片持梁の
振動による応力も検出する。しかしその応力は、二つの
ピエゾ抵抗素子に同量だけ加えられるのに対し、回転に
応じた応力は、一方の素子には引張応力、他方の素子に
は圧縮応力となるから、二つのピエゾ抵抗素子の出力の
差を検出するように接続すれば、回転に応じた応力のみ
を検出することが出来る。
Note that in the above configuration, the piezoresistive element also detects stress due to vibration of the cantilever beam. However, while the same amount of stress is applied to the two piezoresistive elements, the stress due to rotation becomes tensile stress on one element and compressive stress on the other element, so the two piezoresistors If the devices are connected so as to detect the difference in the output of the elements, only the stress corresponding to rotation can be detected.

また振動による応力は、印加電圧に対応した一定の波形
となるから、ピエゾ抵抗素子の出力からその値を減算す
るように構成してもよい。
Furthermore, since the stress caused by vibration has a constant waveform corresponding to the applied voltage, the structure may be such that the value is subtracted from the output of the piezoresistive element.

次に、第3図は上記のごとき本発明の半導体回転センサ
の製造工程図である。
Next, FIG. 3 is a manufacturing process diagram of the semiconductor rotation sensor of the present invention as described above.

第3図において、まず(A)では、<100>面を主面
とするp型のSiウェハ30の上に片持梁の厚さに相当
するn型エピタキシャル層31を成長させる。
In FIG. 3, first, in (A), an n-type epitaxial layer 31 corresponding to the thickness of a cantilever is grown on a p-type Si wafer 30 whose main surface is a <100> plane.

例えば、300Hz前後の共振周波数で片持梁を振動さ
せる場合には、n型エピタキシャル層31の厚さは片持
梁の長さを500−程度とした場合に、 30虜程度に
する。
For example, when the cantilever beam is vibrated at a resonant frequency of about 300 Hz, the thickness of the n-type epitaxial layer 31 is about 30 mm when the length of the cantilever beam is about 500 mm.

次に、(B)においては、n型エピタキシャル層31上
に形成したSiO□膜32をマスクとして、(B′)に
示すごときパターンでp型不純物(例えばホウ素)をS
iウェハ30に達するまでn型エピタキシャル層31に
拡散する。
Next, in (B), using the SiO□ film 32 formed on the n-type epitaxial layer 31 as a mask, a p-type impurity (for example, boron) is added to S in a pattern as shown in (B').
It diffuses into the n-type epitaxial layer 31 until it reaches the i-wafer 30.

なお(B)は(B′)のA−A’断面を示すものである
Note that (B) shows the AA' cross section of (B').

次に、(C)において、上記と同様の方法にょリ(C′
)に示すごときパターンでp型のピエゾ抵抗35を拡散
して形成する。
Next, in (C), use the same method as above (C'
) A p-type piezoresistor 35 is diffused and formed in a pattern as shown in FIG.

なお、(C)は(C′)のB−B’断面を示す。Note that (C) shows a B-B' cross section of (C').

次に、(D)において、エツチングによって電極4とな
る部分のSiO□膜32に窓開けを行なう。
Next, in (D), a window is opened in the portion of the SiO□ film 32 that will become the electrode 4 by etching.

次に、(E)において、後記電解エツチングの際のマス
クとなるCr−Au膜36を蒸着あるいはスパッタ法で
付着させ、さらにその上にAu層37を蒸着し、必要な
部分を残してエツチングで除去する。
Next, in (E), a Cr-Au film 36, which will serve as a mask during electrolytic etching described later, is deposited by vapor deposition or sputtering, and then an Au layer 37 is deposited on top of the Cr-Au film 36, which is then etched leaving the necessary portions. Remove.

次に(F)において、反対側の主面に513N4膜38
をCVD等によって付着させ、必要な部分を残してエツ
チングする。
Next, in (F), the 513N4 film 38 is applied to the main surface on the opposite side.
is deposited by CVD or the like, and etched leaving only the necessary portions.

次に、エチレンジアミン+ピロカテコールあるいはKO
H等の電解エツチング液に浸し、同じエツチング液中に
浸したpt電極に対して、Au層37が正の電位となる
ように接続して電圧を印加し、電解エツチングを行なう
Next, ethylenediamine + pyrocatechol or KO
The Au layer 37 is immersed in an electrolytic etching solution such as H, and connected to a PT electrode immersed in the same etching solution so that the Au layer 37 has a positive potential, and a voltage is applied to perform electrolytic etching.

それによってp型の部分がエツチングされ、(G)に示
すごとく、片持梁39が形成される。
As a result, the p-type portion is etched, and a cantilever beam 39 is formed as shown in (G).

なお上記の電解エツチングの際に、前記(B)及び(B
′)のp+層33の部分もエツチングされるので、(I
)に示すごとく、スリット6も同時に形成されている。
Note that during the above electrolytic etching, the above (B) and (B)
Since the part of the p+ layer 33 of (I) is also etched,
), slits 6 are also formed at the same time.

次に、(H)において、Au層37をマスクとしてCr
−Au層36をエツチングすることにより、電vi4が
形成される。
Next, in (H), using the Au layer 37 as a mask, Cr
- By etching the Au layer 36, a voltage vi4 is formed.

上記の工程によって前記第1図のごとき半導体回転セン
サを製造することが出来る。
Through the above steps, a semiconductor rotation sensor as shown in FIG. 1 can be manufactured.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明においては、片持梁の支持部
付近の梁の中央部分にスリットを設け、該スリットの側
方に片持梁の長手方向と平行にピエゾ抵抗素子を形成し
ているので5回転に対応して片持梁に発生する変形応力
をピエゾ抵抗素子に集中させることが出来、かつ梁の変
形がない中心線付近から離れた変形の大きい部分の圧縮
応力と引張応力との両方を検知することが出来るので、
感度を向上させることが出来るという効果がある。
As explained above, in the present invention, a slit is provided in the center of the beam near the support part of the cantilever beam, and piezoresistive elements are formed on the sides of the slit in parallel to the longitudinal direction of the cantilever beam. The deformation stress generated in the cantilever beam in response to five rotations can be concentrated on the piezoresistive element, and both the compressive stress and tensile stress in the portion where the deformation is large away from the center line where the beam is not deformed can be concentrated. Since it is possible to detect
This has the effect of improving sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例図、第2図は従来装置の一例
図、第3図は本発明の製造工程図である。 符号の説明
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram of an example of a conventional device, and FIG. 3 is a diagram of a manufacturing process of the present invention. Explanation of symbols

Claims (1)

【特許請求の範囲】[Claims] 回転軸に平行に支持される半導体単結晶の片持梁と、該
片持梁の自由端を所定周波数で振動させる手段と、回転
に応じて上記片持梁に生じる変形量を検出する手段とを
備えた振動型半導体回転センサにおいて、上記片持梁の
支持部付近の梁の中央部分にスリットを設け、該スリッ
トの側方の片持梁の支持部近傍に片持梁の長手方向と平
行にピエゾ抵抗素子を形成したことを特徴とする半導体
回転センサ。
A semiconductor single crystal cantilever supported parallel to a rotation axis, means for vibrating the free end of the cantilever at a predetermined frequency, and means for detecting the amount of deformation occurring in the cantilever in response to rotation. In the vibrating semiconductor rotation sensor, a slit is provided in the center of the beam near the support part of the cantilever, and a slit is provided in the vicinity of the support part of the cantilever on the side of the slit parallel to the longitudinal direction of the cantilever. A semiconductor rotation sensor characterized in that a piezoresistive element is formed in the semiconductor rotation sensor.
JP59260782A 1984-12-12 1984-12-12 Semiconductive rotation sensor Granted JPS61139719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260782A JPS61139719A (en) 1984-12-12 1984-12-12 Semiconductive rotation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260782A JPS61139719A (en) 1984-12-12 1984-12-12 Semiconductive rotation sensor

Publications (2)

Publication Number Publication Date
JPS61139719A true JPS61139719A (en) 1986-06-27
JPH0374926B2 JPH0374926B2 (en) 1991-11-28

Family

ID=17352650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260782A Granted JPS61139719A (en) 1984-12-12 1984-12-12 Semiconductive rotation sensor

Country Status (1)

Country Link
JP (1) JPS61139719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778458A1 (en) 1995-12-05 1997-06-11 Murata Manufacturing Co., Ltd. Angular velocity sensor
US5889208A (en) * 1991-12-06 1999-03-30 Canon Kabushiki Kaisha Angular velocity sensor having cantilever beams
USRE42359E1 (en) 1992-10-13 2011-05-17 Denso Corporation Dynamical quantity sensor
JP2011237390A (en) * 2010-05-13 2011-11-24 Gunma Univ Acceleration sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889208A (en) * 1991-12-06 1999-03-30 Canon Kabushiki Kaisha Angular velocity sensor having cantilever beams
USRE42359E1 (en) 1992-10-13 2011-05-17 Denso Corporation Dynamical quantity sensor
EP0778458A1 (en) 1995-12-05 1997-06-11 Murata Manufacturing Co., Ltd. Angular velocity sensor
JP2011237390A (en) * 2010-05-13 2011-11-24 Gunma Univ Acceleration sensor

Also Published As

Publication number Publication date
JPH0374926B2 (en) 1991-11-28

Similar Documents

Publication Publication Date Title
US5005413A (en) Accelerometer with coplanar push-pull force transducers
EP0767915B1 (en) Monolithic silicon rate-gyro with integrated sensors
US5535902A (en) Gimballed vibrating wheel gyroscope
US5488863A (en) Angular velocity sensor making use of tuning fork vibration
JP3434944B2 (en) Symmetric proof mass accelerometer with self-diagnosis capability and method of manufacturing the same
US7188525B2 (en) Angular velocity sensor
GB2249174A (en) Rate of rotation sensor
US5537872A (en) Angular rate sensor
JP2888029B2 (en) Angular velocity sensor
US6453744B2 (en) Low radiation capture cross-section electrode material for prompt radiation environments
JPH1022509A (en) Sensor device
JPS61139719A (en) Semiconductive rotation sensor
JP3346379B2 (en) Angular velocity sensor and manufacturing method thereof
JP3627665B2 (en) Angular velocity sensor
JPH08247768A (en) Angular velocity sensor
JP3230359B2 (en) Resonant vibration element
KR100277425B1 (en) Electrode Structure of Thin Film Moving Wave Rotation Sensor and Its Sensor
JP3265792B2 (en) Angular velocity sensor
JP2624311B2 (en) Semiconductor sensor
JP3181368B2 (en) Gyro device
JPH06294814A (en) Production method for semiconductor acceleration sensor
JPH08293615A (en) Vibrating pressure sensor
JPH1096633A (en) Angular speed detector
JPH0275963A (en) Semiconductor sensor
JPH07301536A (en) Angular velocity sensor