[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61137214A - Wafer for thin film magnetic head - Google Patents

Wafer for thin film magnetic head

Info

Publication number
JPS61137214A
JPS61137214A JP25757684A JP25757684A JPS61137214A JP S61137214 A JPS61137214 A JP S61137214A JP 25757684 A JP25757684 A JP 25757684A JP 25757684 A JP25757684 A JP 25757684A JP S61137214 A JPS61137214 A JP S61137214A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
wafer
head
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25757684A
Other languages
Japanese (ja)
Inventor
Mitsuo Abe
阿部 光雄
Seiji Kishimoto
清治 岸本
Isao Oshima
大島 勲
Katsuo Konishi
小西 捷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25757684A priority Critical patent/JPS61137214A/en
Publication of JPS61137214A publication Critical patent/JPS61137214A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce the bearing work of a thin film magnetic head sharply and to improve mass-productivity by adjacently arraying different patterns necessary for bearing to constitute a wafer for a thin film magnetic head. CONSTITUTION:In the wafer 6 for the thin film magnetic head, respective thin film head elements 2 are two-dimensionally and regularly arranged (20X25 elements in a 2-inch square) and the gap azimuth angles of respective elements are alternately changed in the positive and negative directions in each string. If it is supposed that the front direction of the drawing is a head sliding surface, the string of A1-An... is negative azimuth (-theta) elements and the string of B1-Bn... is positive azimuth (+theta) elements. The dispersion of head characteristics in the wafer substrate is extremely low between adjacent chips, so that efficient bearing can be automatically obtained by combining these adjacent chips.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はビデオテープレコーダ等の記録再生に好適な薄
膜磁気ヘッドのコアチップを多数個形成した薄膜磁気ヘ
ッド用ウェハに関する。 。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a wafer for a thin film magnetic head on which a large number of core chips of a thin film magnetic head suitable for recording/reproducing in a video tape recorder or the like are formed. .

〔発明の背景〕[Background of the invention]

近年ビデオテープレコーダ用の磁気テープと。 In recent years, magnetic tape for video tape recorders.

してメタルテープが提案されている。またかか。Metal tape has been proposed. It's here again.

るメタルテープに適した磁気ヘッドとして、飽5和磁束
密度の高いセンダスト、パーマロイある。
Sendust and Permalloy, which have a high saturation magnetic flux density, are suitable magnetic heads for metal tapes.

いはアモルファス等の磁性薄膜をコア材料に用。Alternatively, a magnetic thin film such as amorphous is used as the core material.

いた薄膜磁気ヘッドが提案されている。その例。A thin film magnetic head has been proposed. An example.

として実公昭43−15255号公報、特開昭。Publication No. 43-15255, Japanese Unexamined Patent Publication No. Sho.

52−74322号公報、特開昭57−1411000
8号公報に示される構造及び製法を述べる・と、連続し
た共通の非磁性基板上に上記した礎・性薄膜からなるコ
アとこれを横切る非磁性ギヤ・ツブスペーサを被着させ
、面内で閉じた磁気面。
Publication No. 52-74322, JP 57-1411000
The structure and manufacturing method shown in Publication No. 8 will be described.A core made of the above-mentioned basic thin film and a nonmagnetic gear tube spacer crossing this are deposited on a continuous common nonmagnetic substrate, and the core is closed in the plane. magnetic surface.

路を形成してなるものである。        15こ
のヘッドの特徴は、トラック幅を磁性薄膜。
It is formed by forming a road. 15 The feature of this head is that the track width is covered with a magnetic thin film.

の膜厚で制御するので、10μm程度の狭トラツク。Since it is controlled by the film thickness, the track is as narrow as 10 μm.

が可能となり、ギャップ形成時に機械的ボンデ。This enables mechanical bonding during gap formation.

イングを排除し薄膜積層によりギャップを形成。Gap is formed by layering thin films.

するのでギャップ寸法精度が向上し、かつウニ、。This improves the gap dimension accuracy and improves the accuracy of the gap.

積形成できてきわめて量産性が良い。    。It can be formed into layers and is extremely suitable for mass production.    .

このようにして得た各コアチップに巻線を施。Each core chip obtained in this way was wound with wire.

し薄膜磁気ヘッドとする。次に所定の仕様の薄。and a thin film magnetic head. Next is the thinness of the given specifications.

膜研気ヘッドを組合わせて回転シリンダに搭載1する。Combine the membrane polishing head and mount it on a rotating cylinder.

その組合せは要求システムによって異な。The combination differs depending on the required system.

す、例えば (1)アジマス角の異なる組合せ(VH8では+。For example, (1) Combinations of different azimuth angles (+ for VH8).

6°と一6°)によるアジマス記録用システム。  。6° and -6°) azimuth recording system.  .

(2)トラック幅の異なる組合せ(約60μmと約20
10μm)による長時間録画システム。
(2) Combinations of different track widths (approximately 60 μm and approximately 20 μm
10μm) long-term recording system.

(3)  シリンダ面からトラック部までの距離(以・
下トラック高さと呼ぶ)の異なる組合せによる・トラッ
キングの最適化システム。
(3) Distance from cylinder surface to track section (hereinafter referred to as
· Tracking optimization system by different combinations of (referred to as lower track height).

などが既に実用化されている。さらに今後の展、5開と
して (4)ギャップ長の異なる組合せによる帯琥分割記。
etc. have already been put into practical use. In addition, as a 5th development in the future, (4) Obiha division by different combinations of gap lengths.

録システム。recording system.

(5)  ギヤ、プデプスの異なる組合せによるヘラ。(5) Spatulas with different combinations of gear and depth.

ドの電気特性(感度とインダクタンス)調整シ、。Adjustment of the electrical characteristics (sensitivity and inductance) of the board.

・ 3 ・ ステム。・ 3 ・ stem.

などの多機能化が考えられ永。その除用いるへ。It can be considered to be multi-functional such as. To get rid of it.

ラド数は2個以上多数個とすれば、1項複数の。If the Rad number is two or more, it has one term or more.

機能を有するシステムも可能となる。またそれ。A system with functions is also possible. That again.

らのヘッドを2個あるいはそれ層上を一体化し5た1チ
ツプ構造とし、その中に互に独立に作動。
Two of these heads or their layers are integrated into a single chip structure with five chips, and each of them operates independently.

する複数個のギャップをもたせることもできる。。It is also possible to have multiple gaps. .

しかしながらいずれの場合もヘッドの組合せ。However, in both cases, the combination of heads.

を決める工程(以下ベアリング作業と呼ぶ)に・於いて
次に述べる欠点があった。      10すなわち量
適の画質を得るために、ペアリン・グする各ヘッドは、
電気的−性及び機械的形状・を揃えるかもしくは所定値
、の差をもたせねばな・らない。そのため、具体的にい
えばインダクタ。
The process of determining the bearing (hereinafter referred to as bearing work) had the following drawbacks. 10 In other words, in order to obtain a suitable image quality, each pairing head should be
The electrical properties and mechanical shapes must be the same or have a predetermined difference. Therefore, specifically, inductors.

ンスやヘッド出力値で±5チ、トラック幅やト、。+/- 5 inches for track width and head output values, track width, and head output values.

ラック位置で±1μm以内に□設定せねばならない。。It must be set within ±1 μm at the rack position. .

しかるにウェハ基板内での磁性薄膜の膜厚や磁。However, the thickness and magnetism of the magnetic thin film within the wafer substrate.

気性性は、蒸着、スパッタリンi□等の薄膜形成。Temperature is thin film formation such as vapor deposition and sputtering i□.

装量の持つビーム不均一性のためばらつき、ウェハ全体
で上記許容値に抑えるのは従来技術で、。
Due to the beam non-uniformity of the loading, conventional technology suppresses the variation within the above tolerance across the entire wafer.

・ 4 ・ は容易でない。そのため現実には、ウェハ内金。・ 4 ・ is not easy. So in reality, the wafer money.

チップについて出力等の電気特性やトラック幅。Electrical characteristics such as output and track width of the chip.

等の機械的形状を検査し、近似特性のヘッド同。Inspect the mechanical shape and approximate characteristics of the head.

志でベアリングしている。この作業のために多。Bearing in mind. Many for this task.

大の労力と時間を費し、ウニハエ程に基く薄膜5磁気ヘ
ツドの持つ貴意性のl IJフット相殺され。
It took a great deal of effort and time to offset the value of the thin-film five-layer magnetic head based on sea urchin flies.

ていた。was.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を。 The purpose of the present invention is to overcome the above-mentioned drawbacks of the prior art.

なくシ、薄膜磁気ヘッドのベアリング作業を大IO幅に
軽減し量産性を向上させるウェハ形状を提・供すること
である。
Instead, it is an object of the present invention to provide a wafer shape that greatly reduces the bearing work of a thin film magnetic head and improves mass productivity.

〔発明の概要〕[Summary of the invention]

本発明では、ウェハ基板内でのヘッド特性ば・らつきは
近接チップ間ではきわめて少なく、こ1、れらの近接チ
ップ同志を組合せると自動的に良。
In the present invention, variations in head characteristics within a wafer substrate are extremely small between adjacent chips, and when these adjacent chips are combined, it is automatically improved.

好なベアリングが可能となる点に注目した。す。We focused on the fact that it enables a good bearing. vinegar.

なわち、従来はウェハ内はすべて同一パターン。In other words, conventionally all the wafers had the same pattern.

の繰返しであったのに対し、本発明では、ベア。In contrast, in the present invention, bare

リングに必要な異種パターンを近接して配列した薄膜磁
気ヘッド用ウェハの構造としたことに。
We decided to create a wafer structure for thin-film magnetic heads in which the different patterns necessary for the ring are arranged closely.

特徴がある。It has characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明す。 Embodiments of the present invention will be described below with reference to the drawings.

る。第1図は本発明による薄膜磁気ヘッド用つ5エバ±
の斜視図で、ウェハ状の非磁性基板1上”にアジマス角
の異なる多数個の薄膜ヘッド素子。
Ru. FIG. 1 shows a 5 evaporator for a thin film magnetic head according to the present invention.
This is a perspective view showing a large number of thin film head elements with different azimuth angles on a wafer-shaped non-magnetic substrate 1.

2を形成しである。各薄膜ヘッド素子2は、コ。2 is formed. Each thin-film head element 2 includes a.

ア材となる磁性薄膜3.3′が非磁性基板1の法・線方
向に対し所定の傾斜角(アジマス角)をも10つギャッ
プ4を介し閉磁路をなし、中央部には・巻線穴5を有す
る。非磁性基板1としては2イ・ンチ角の感光性ガラス
を用い、予めホトエッチ・ングにより所定位置に巻線穴
5を穿孔しておい。
A magnetic thin film 3.3', which serves as a material, forms a closed magnetic path at a predetermined inclination angle (azimuth angle) with respect to the normal/linear direction of the non-magnetic substrate 1 via gaps 4, and a winding wire is formed in the center. It has a hole 5. A 2-inch square photosensitive glass is used as the non-magnetic substrate 1, and winding holes 5 are previously punched at predetermined positions by photo-etching.

た。磁性薄膜3,3′はセンダストあるいはアモ、5ル
ファス合金(Co系)をスパッタリングにて所。
Ta. The magnetic thin films 3 and 3' are formed by sputtering Sendust or Amo-5 Rufus alloy (Co-based).

望トラック幅相当(約30μm厚)付着させた。ギ。The film was deposited to correspond to the desired track width (approximately 30 μm thick). Gi.

ヤップ4は5iO1等の非磁性膜を0.3〜0.5μm
厚だけスパッタリングで形成した。ギャップ4を礎。
YAP 4 is a non-magnetic film such as 5iO1 with a thickness of 0.3 to 0.5 μm.
The thickness was formed by sputtering. Based on Gap 4.

性薄膜3,3′で挾み込む方法として、本実施例、。This embodiment is a method of sandwiching the adhesive thin films 3 and 3'.

では、ギャップ4の位置を境界として一方の側。Now, one side with the position of gap 4 as the boundary.

に第1の磁性薄膜3を形成し、ギャップ位置に。A first magnetic thin film 3 is formed at the gap position.

沿ってダイヤモンドバイトにより磁性薄膜3の。A magnetic thin film 3 is formed along the line using a diamond tool.

端面を所定アジマス角となるよう鏡面切削加工。The end face is mirror-cut to a specified azimuth angle.

してギャップ面を得、この面に非磁性膜を付着5し、続
いて残りの反対側に第2の磁性薄膜3′を。
A gap surface is obtained, and a non-magnetic film 5 is deposited on this surface, followed by a second magnetic thin film 3' on the remaining opposite side.

埋込形成した。Embedded.

上記薄膜磁気ヘッド用ウェハ6に於て、各藩。In the above-mentioned wafer 6 for thin film magnetic head, each domain.

膜ヘッド素子2は規則的に2次元配列しく実施・例では
2インチ角ウェハ内に20 X 25素子)、各10素
子のギャップアジマス角を一列単位で正負交・互に切換
えたことに特徴がある。すなわち、図。
The membrane head elements 2 are arranged in a regular two-dimensional arrangement (in the example, 20 x 25 elements in a 2-inch square wafer), and the gap azimuth angle of each of the 10 elements is switched between positive and negative in each row. be. That is, fig.

面子前方向をヘッド摺動面とすれば、Al + At 
l・・・。
If the front direction is the head sliding surface, then Al + At
l...

の列が負アジマス(−θ)、R1,Bt・・・の列が正
The column is negative azimuth (-θ), and the columns R1, Bt... are positive.

アジマス(十〇)からなる素子である。    1゜か
かるウニバカ)ら薄膜磁気ヘッドを得るには。
It is an element consisting of azimuth (10). To obtain a thin film magnetic head from Unibaka, which takes 1°.

次の手順で行なえばよい。まず、分割線7に沿って薄膜
磁気ヘッド用ウェハ6を分割し、第1図(b)に示す連
結チップ8を得る。連結チップ8は隣接する正;負側ア
ジマス角の一対の薄膜へ、。
You can do it by following the steps below. First, the thin film magnetic head wafer 6 is divided along the dividing line 7 to obtain the connected chips 8 shown in FIG. 1(b). The connecting tip 8 is connected to a pair of thin films with adjacent positive and negative azimuth angles.

・ 7 ・ ラド素子2 a + 2 bを含んでいる。次に分割線
7. Contains rad elements 2a + 2b. Next is the dividing line.

9に沿って連結チップ8を分割し第1図(c)に示。The connecting chip 8 is divided along the line 9 and shown in FIG. 1(c).

す一対の薄膜磁気へラドチップ10a 、 10bを得
A pair of thin film magnetic Herad chips 10a and 10b were obtained.

る。次に第1図(d)に示す如くこれらのヘッドチ・ツ
ブの摺動面を内研し、巻線穴5に巻線11を施5して得
た薄膜礎槃ヘッド12a 、 12bを得る。第。
Ru. Next, as shown in FIG. 1(d), the sliding surfaces of these head tips and knobs are internally ground, and the windings 11 are applied to the winding holes 5 to obtain thin film foundation heads 12a and 12b. No.

1図(e)はこれら一対の薄膜磁気ヘッド12a 、1
2b・を回転シリンダ13の180度位置に取付けてペ
ア・リングを完成させた状態である。
1(e) shows these pair of thin film magnetic heads 12a, 1.
2b is attached to the rotating cylinder 13 at the 180 degree position to complete the pair ring.

この実施例では、最終的にベアリングを組む1゜薄膜磁
気ヘッド12a 、 12bは、薄膜磁気ヘッド。
In this embodiment, the 1° thin film magnetic heads 12a and 12b that will finally be assembled with bearings are thin film magnetic heads.

用ウェハ6に於て互に隣接位置から得ている。。They are obtained from adjacent positions on the wafer 6 for use. .

その距離は1〜2fi程度ゆえ、スパッタリング。The distance is about 1 to 2 fi, so sputtering.

時の膜厚や磁気特性に差はなく、従ってトラフ。There is no difference in film thickness or magnetic properties during the trough.

り幅等の機械的形状はもちろんのこと、ヘッド15出力
やインダクタンス等の電気的特性を自動的に良く一致さ
せることができた。
It was possible to automatically match the electrical characteristics such as the head 15 output and inductance, as well as the mechanical shape such as the width of the head.

薄膜磁気ヘッド用ウェハ6上の薄膜ヘッド素子2のアジ
マス角を一列ごとに交互に切換えることは上記ダイヤモ
ンドバイトの切削面の傾斜−・ 8 ・ 方向を切換えることで容易に実現できる。また゛チップ
のベアリングは、連結チップ8の形態で゛最終工程まで
その関係が保存されるので作業ミ。
Alternating the azimuth angle of the thin film head elements 2 on the thin film magnetic head wafer 6 row by row can be easily realized by switching the inclination direction of the cutting surface of the diamond cutting tool. In addition, the chip bearings are in the form of a connected chip 8, so the relationship is preserved until the final process, making work easier.

スの発生も少ない。There is also less occurrence of dust.

第2図(alは各素子のアジマス角の異なる薄膜゛磁気
ヘッド用ウェハ6の他の実施例を示す斜視。
FIG. 2 (Al is a perspective view showing another embodiment of the thin film magnetic head wafer 6 in which each element has a different azimuth angle.

図である。同図において非磁性基板1上に配列。It is a diagram. In the figure, they are arranged on a non-magnetic substrate 1.

形成された各薄膜ヘッド素子2ギヤツプ4の傾。The inclination of each formed thin film head element 2 gap 4.

斜方向はすべて同じであるが、巻線穴5の位置。The diagonal directions are all the same, but the position of the winding hole 5.

すなわち、薄膜ヘッド素子2の方向を交互に逆11・向
きとしである。図面でAl* A2・・・の列は手前方
・向、B1.B2・・・の列は奥行方向としてあり、従
っ・てアジマス角が交互に正負に切換わる。次に分・割
線7に沿って分割し、第2図(b)に示す連結チ。
That is, the directions of the thin film head elements 2 are alternately reversed. In the drawing, the rows Al* A2... are towards the front, B1. The columns B2, . . . are arranged in the depth direction, and therefore the azimuth angle is alternately switched between positive and negative. Next, it is divided along the dividing line 7 to form a connecting chain as shown in FIG. 2(b).

ツブ8とした。この連結チップ8は正負側アジ、5マス
の一対の薄膜ヘッド素子2a、2bを含ん。
It was set as Tsubu 8. This connecting chip 8 includes a pair of thin film head elements 2a and 2b on the positive and negative sides and a pair of 5 squares.

でいる。さらにこれを分割線9に沿って分割して、上記
実施例と同様にして一対の正負アジマスの薄膜磁気ヘッ
ドをベアリングできる。この実施例かられかるように、
薄膜磁気ヘッド用つエバ玉止の素子配列は左右方向及び
前後方向い。
I'm here. Furthermore, by dividing this along the dividing line 9, a pair of positive and negative azimuth thin film magnetic heads can be bearing in the same manner as in the above embodiment. As can be seen from this example,
The element arrangement of the evaporator stopper for thin-film magnetic heads is in the left-right and front-rear directions.

ずれでも可能であり、薄膜形成時のマスクパタ゛−ン等
の変更により容易に対処できる。
Any deviation is possible and can be easily dealt with by changing the mask pattern etc. during thin film formation.

第3図(a)は、各素子のアジマス角の異なる薄。FIG. 3(a) shows the thickness of each element with different azimuth angles.

膜磁気ヘッド用ウェハ6の他の実施例を示す斜3視図を
示し1チツプ内に2個の独立したギャッ。
This is a perspective view showing another embodiment of a wafer 6 for a film magnetic head, and shows two independent gaps in one chip.

プを含むダブルギヤツブ形構造の場合である。。This is the case of a double gear type structure including a double gear. .

すなわち、薄膜ヘッド素子2′は、3片の磁性薄”必5
,5’、3’と2個のギャップ4.4′と2個の゛巻線
穴5.5′からなる。2個のギャップ4*4’+nは各
々独立して動作し、ビデオテープレコーダ・の特殊再生
機能を実現する為に互にアジマス角。
That is, the thin film head element 2' consists of three pieces of magnetic thin film.
, 5', 3', two gaps 4.4', and two winding holes 5.5'. The two gaps 4*4'+n each operate independently and are at an azimuth angle to each other in order to realize the special playback function of a video tape recorder.

を正負の異なる組合せとし、しかもその正負の。are different combinations of positive and negative, and their positive and negative.

順序を逆とする一対のダブルギヤツブ形薄膜磁。A pair of double gear-shaped thin film magnets in reverse order.

気ヘッドをベアリングする必要がある。そのた、5め第
3図に於てAHe AH・・・列は摺動面から見てギ。
It is necessary to bear the air head. In addition, in the 5th figure 3, the AHe AH... row is gi when viewed from the sliding surface.

ヤップ4,4′がV字形、Bt * 82・・・列は凸
字形の。
Yaps 4 and 4' are V-shaped, and Bt * 82... columns are convex.

2種類の薄膜ヘッド素子2′を交互に配列形成しである
。その後同図(b)〜(d)のように分割し一対のダブ
′ルギャップ形薄膜磁気ヘッド11’a、12’bをベ
アリングする。さらに1チツプ内に2個以−ヒ。
Two types of thin film head elements 2' are arranged and formed alternately. Thereafter, it is divided as shown in FIGS. 12(b) to 2(d) to bear a pair of double-gap type thin film magnetic heads 11'a and 12'b. Furthermore, there are two or more pieces in one chip.

の独立したギャップを含む場合も可能である。。It is also possible to include independent gaps. .

JLhアジマス角の異なる一対のヘッドのペア。JLh A pair of heads with different azimuth angles.

リングについて述べたが、本発明は2個用上の。Although a ring has been described, the present invention is applicable to two rings.

ヘッド数及び千ジマス種類を組合せる他のシスー′テム
にも適用できる。
It can also be applied to other systems that combine the number and type of heads.

第1図〜第3図の実施例で示した素子配列は。The element arrangement shown in the embodiments of FIGS. 1 to 3 is as follows.

左右方向又は前後方向に隣接するチップを連結。Connects adjacent chips in the left/right direction or front/back direction.

チップの形でそのベアリング相手を記憶するた。It memorized its bearing partner in the form of a chip.

めの最も確実な方法である。しかし実際のウニ10ハ内
時性ばらつきは、隣々接またはそれ以上離・れても少な
く、これらの間でベアリングしても・実用上支障ないこ
とが多い。従って素子配列は。
This is the most reliable method. However, in reality, the variation in timing between 10 sea urchins is small even when they are adjacent to each other or further apart, and bearings between them often do not cause any practical problems. Therefore, the element arrangement is.

ベアリングからくる制約を必ずしも受けず、そ。It is not necessarily subject to the constraints imposed by bearings.

の順序を入れ換えてもよい。例えば上記実施例、。You may change the order. For example, the above embodiment.

に於て、その記号を用いればA1tA鵞eBt+Bt+
As。
In this case, using that symbol, A1tA鵞eBt+Bt+
As.

・・・やA1・A2・A3* B1 * Bt * B
31・・・などの配列も許さ。
...and A1, A2, A3* B1 * Bt * B
Arrangements such as 31... are also allowed.

れろ。この場合、各チップにベアリング対を表。Let's go. In this case, each chip shows a pair of bearings.

わすマーキングを施せばベアリング相手を見失。If you apply wasu markings, you will lose sight of the bearing partner.

うことはない。以上述べたことは以下の実□施例・11
 ・ の場合も同様である。           。
There's nothing wrong with that. The above is explained in the following example □Example 11
The same applies to the case of . .

第4図は各素子のトラック幅の異なる薄膜磁。Figure 4 shows thin film magnets with different track widths for each element.

気ヘッド用ウニ・・乙の実施−を票す斜視図であ。It is a perspective view showing the implementation of the sea urchin for the air head.

磁性薄膜3の膜厚はs A1*A1・・・列ではtA、
 B1+ ”B冨・・・列ではjeとした(例えばtA
−=6oμm、tB=3σμm)。これよりト□ラック
幅tAとf、nの異なる薄膜。
The film thickness of the magnetic thin film 3 is s A1 * A1... tA in the column,
B1+ "B wealth..." was set as je (for example, tA
-=6oμm, tB=3σμm). From this, □ Thin films with different track widths tA, f, and n.

磁気ヘッドを得、これらをぺ薔リングした。磁・性薄膜
3の膜厚を列単位で切換えるのは、マス・クスバ、りあ
るいはマスクエツチングの手法で10精度良く実現で勇
る。            。
Magnetic heads were obtained, and these were mounted. Switching the film thickness of the magnetic thin film 3 on a column-by-column basis can be achieved with high accuracy by mass-substrate or mask etching techniques. .

゛第5図は各素子のトラック高さの異なる薄膜。゛Figure 5 shows thin films with different track heights for each element.

磁気ヘッド用ウェハ6の実施例を示す斜視図で。A perspective view showing an example of a wafer 6 for a magnetic head.

ある。同図に於て各薄膜ヘッド素子2の磁性薄。be. In the figure, the magnetic thin film of each thin film head element 2 is shown.

膜3の被着mlから非磁性基板1の底面までの距、5離
゛をAt 、’ At 10.Wll ’t’ 、−!
JA、81. Bs 、Wl ”Q gよ48よ5、こ
れよりトラック高さJAとJLBの異なる薄膜磁気。
The distance from the deposited ml of the film 3 to the bottom surface of the non-magnetic substrate 1, 5", is At,' At10. Wll't',-!
J.A., 81. Bs, Wl "Q g yo 48 yo 5, from this, thin film magnetism with different track heights JA and JLB.

ヘッドを□得、これらをベアリングする。この場。□Get the heads and make these bearings. This place.

合′には、非磁性基板1の上面に段付加工を施す。In this case, the upper surface of the non-magnetic substrate 1 is stepped.

か、他の非磁性材を被着させて段差を形成すれ。Or, create a step by applying another non-magnetic material.

.12゜ ばよい。.. 12° Bye.

さらに他の実施例として、各素子のギャップ。As yet another example, the gap between each element.

長が異なる場合とギャップデプスが異なる”場合。When the length is different and when the gap depth is different.

が可能である(図面省略)。これを得るには前。is possible (drawings omitted). Before you get this.

者はギャップ材被着−にマスクスパッタ法、後5者は巻
線穴位置の変更等の手段で容易に実現で。
The first one can be easily realized by mask sputtering method for applying the gap material, and the latter five can be easily realized by changing the position of the winding hole.

きる。Wear.

以上の実施例では、ヘッド素子のアジマス角。In the above embodiments, the azimuth angle of the head element.

トラック幅等の単一パラメータに着目したが、・本発明
はこれらを複合化した複数パラメータの10場合にも適
゛用≠き名。        ゛    。
Although we focused on a single parameter such as track width, the present invention is also applicable to the case of 10 multiple parameters that combine these parameters.゛.

さらに本発明によ□る他の応用として、薄膜へ。Furthermore, another application of the present invention is to thin films.

ラド素子の磁気回路の構成が異なる電膜’#ffiへ。To the electric film '#ffi with a different configuration of the magnetic circuit of the Radiation element.

ラド甫つェハへの適用がある。すなわち、上鮎。There is an application to Rado Hatsueha. Namely, upper ayu.

実施例での薄膜ヘッド素子は、非磁性基板面に、。The thin film head element in the example is on a non-magnetic substrate surface.

対しギャップ面がほぼ直交し、磁性薄膜からな。On the other hand, the gap planes are almost perpendicular, making it a magnetic thin film.

る磁気回路は非磁性基板面にほぼ平行に配設されている
。とれに対し第6図に示す薄膜ヘッド素子2′は、非磁
性基板1上に磁性薄膜3.3′を“積層し、その間にギ
ャップ4と巻線部“5及び薄膜状の巻線11を形成した
もので、ギャップ面4゜は非磁性基板1とほぼ平行で、
磁気回路は非磁。
The magnetic circuit is arranged approximately parallel to the surface of the non-magnetic substrate. In contrast, the thin film head element 2' shown in FIG. The gap plane 4° is almost parallel to the non-magnetic substrate 1.
The magnetic circuit is non-magnetic.

性基板1とほぼ直交させたものである。まだ第。It is made almost orthogonal to the sexual substrate 1. Not yet.

7図に示す薄膜ヘッド用素子2′は、磁性薄膜3.。The thin film head element 2' shown in FIG. 7 includes a magnetic thin film 3. .

3’、31で構成し、ギャップ面4を非磁性基板15と
ほぼ直交し磁気回路も非磁性基板1にほぼ直。
3' and 31, the gap plane 4 is substantially perpendicular to the non-magnetic substrate 15, and the magnetic circuit is also substantially perpendicular to the non-magnetic substrate 1.

交させたものである。いずれの薄膜ヘッド素子。This is what we exchanged. Any thin film head element.

2′も上記本発明の方法に従いウェハ基板上にへ。2' is also placed on the wafer substrate according to the method of the present invention.

ラド形状各種パラメータが異なるように配列す。Rad shapes are arranged so that various parameters are different.

れば、ベアリングに関し全く同様の効果が得ら10れる
If so, exactly the same effect can be obtained regarding bearings10.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ウェハか・ら多数個
製造する薄膜磁気ヘッドに於て、機械・曲形状と電気的
特性が自動的に良く揃い、各種3.。
As described above, according to the present invention, in thin film magnetic heads manufactured in large numbers from wafers, the mechanical/curved shape and electrical characteristics are automatically well matched, and various 3. .

のアジマス角、トラック幅等のへッドバラメー。Head balance such as azimuth angle and track width.

りの組合せからなる一組の薄膜磁気ヘッドを容。It accommodates a set of thin-film magnetic heads consisting of a combination of

易に得ることができる。このため、従来不可欠。can be obtained easily. For this reason, it is traditionally indispensable.

であったヘッド特性の全数検査とベアリング作。100% inspection of head characteristics and bearing production.

業が大幅に軽減し、薄膜磁気へ゛ラドの量産性の、。This greatly reduces the work involved and facilitates the mass production of thin film magnetic herads.

面で多大の効果がある。It has a great effect in terms of

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明による薄膜磁気ヘッド用つ。 エバの一実施例を示す斜視図、第1図(b)〜(e)は
。 本発明のヘッドベアリングの峠4明図、第2図〜、第5
図は本発明による薄膜磁気ヘッド用ウェハ。 の他の実施例を示す斜視図、第6図、第7図は。 本発明に於ろ薄膜ヘッド素子の他の形状を示す。 斜視図である。 1・・・非磁性基板、   2・・・薄膜ヘッド素子、
 1.。 3.3′・・・磁性薄膜、  4・・・ギャップ、5・
・・巻線穴、     6・・・薄膜磁包ヘッド用ウェ
ハ、       11・・・巻線、12・・・薄膜磁
気ヘッド。 12図 第3図 箪斗 図 ゛・1、 箋5図 第す図 を 第7図 手続補正書(方式) 事件の表不 昭和 59  年特許願第 257576  号発明の
名称 薄膜磁気ヘッド用ウェハ 補正をする者 事件間関係 特許出願人 名  称   (510)株式会i+  日  立  
製  作  所代   理   人 補正の対象 図 面 (第1図) 補正の内容 別紙の通り
FIG. 1(a) shows a thin film magnetic head according to the present invention. FIGS. 1(b) to 1(e) are perspective views showing one embodiment of Eva. Figures 4, 2 to 5 of the head bearing of the present invention
The figure shows a wafer for a thin film magnetic head according to the present invention. FIGS. 6 and 7 are perspective views showing other embodiments. Other shapes of thin film head elements are shown in the present invention. FIG. 1... Nonmagnetic substrate, 2... Thin film head element,
1. . 3.3'...magnetic thin film, 4...gap, 5...
... Winding hole, 6... Wafer for thin film magnetic envelope head, 11... Winding wire, 12... Thin film magnetic head. Figure 12, Figure 3, and Figure 1, Figure 5, Table of Contents, Figure 7, Procedural Amendment (Method), Table of Cases, 1987, Patent Application No. 257576, Name of the Invention, Wafer Correction for Thin Film Magnetic Heads. Relationship between cases Patent applicant name (510) i+Hitachi Co., Ltd.
Manufacturer's agent Drawing to be corrected (Fig. 1) Contents of correction As shown in the attached sheet

Claims (1)

【特許請求の範囲】 1、磁性薄膜をコア材とし、少なくとも1組の作動ギャ
ップと巻線部を持つ薄膜ヘッド素子を、ウェハ状の非磁
性基板上に二次元配列させて多数個形成した薄膜磁気ヘ
ッド用ウェハに於て、上記薄膜ヘッド素子の形状パラメ
ータを列単位で異ならしめたことを特徴とする薄膜磁気
ヘッド用ウェハ。 2、上記形状パラメータが、上記作動ギャップのアジマ
ス角度、トラック幅、上記非磁性基板の所定面からトラ
ックの一方の端までの距離、上記作動ギャップを構成す
る非磁性材の厚み、上記作動ギャップの巻線部までの深
さの少なくとも1つであることを特徴とする特許請求の
範囲第1項記載の薄膜磁気ヘッド用ウェハ。 3、上記薄膜ヘッド素子の上記作動ギャップ面が上記非
磁性基板面に略直交し、上記磁性薄膜からなる磁気回路
が該非磁性基板面に略平行に配設されたことを特徴とす
る特許請求の範囲第1項または第2項記載の薄膜磁気ヘ
ッド用ウェハ。 4、上記薄膜ヘッド素子の上記作動ギャップ面が上記非
磁性基板面に略平行で、上記磁性薄膜からなる磁気回路
が該非磁性基板面に略直交するよう配設されたことを特
徴とする特許請求の範囲第1項または第2項記載の薄膜
磁気ヘッド用ウェハ。 5、上記薄膜ヘッド素子の上記作動ギャップ面が上記非
磁性基板面に略直交し、上記磁性薄膜からなる磁気回路
が該非磁性基板面に略直交するよう配設されたことを特
徴とする特許請求の範囲第1項または第2項記載の薄膜
磁気ヘッド用ウェハ。
[Claims] 1. A thin film in which a large number of thin film head elements each having a magnetic thin film as a core material and having at least one set of operating gaps and a winding portion are two-dimensionally arranged on a wafer-shaped non-magnetic substrate. 1. A wafer for a thin film magnetic head, characterized in that the shape parameters of the thin film head elements are made different for each row. 2. The shape parameters include the azimuth angle of the working gap, the track width, the distance from the predetermined surface of the non-magnetic substrate to one end of the track, the thickness of the non-magnetic material constituting the working gap, and the width of the working gap. The wafer for a thin film magnetic head according to claim 1, wherein the wafer has a depth of at least one of the depths up to the winding portion. 3. The working gap surface of the thin film head element is substantially orthogonal to the nonmagnetic substrate surface, and the magnetic circuit made of the magnetic thin film is disposed substantially parallel to the nonmagnetic substrate surface. A wafer for a thin film magnetic head according to item 1 or 2. 4. A patent claim characterized in that the working gap surface of the thin film head element is substantially parallel to the surface of the nonmagnetic substrate, and the magnetic circuit made of the magnetic thin film is disposed substantially perpendicular to the surface of the nonmagnetic substrate. A wafer for a thin film magnetic head according to the range 1 or 2. 5. A patent claim characterized in that the operating gap surface of the thin film head element is substantially perpendicular to the surface of the nonmagnetic substrate, and the magnetic circuit made of the magnetic thin film is disposed substantially perpendicular to the surface of the nonmagnetic substrate. A wafer for a thin film magnetic head according to the range 1 or 2.
JP25757684A 1984-12-07 1984-12-07 Wafer for thin film magnetic head Pending JPS61137214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25757684A JPS61137214A (en) 1984-12-07 1984-12-07 Wafer for thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25757684A JPS61137214A (en) 1984-12-07 1984-12-07 Wafer for thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS61137214A true JPS61137214A (en) 1986-06-24

Family

ID=17308187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25757684A Pending JPS61137214A (en) 1984-12-07 1984-12-07 Wafer for thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS61137214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800160A1 (en) * 1996-04-04 1997-10-08 Commissariat A L'energie Atomique Method for manufacturing a double magnetic head with opposite gap-azimuth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800160A1 (en) * 1996-04-04 1997-10-08 Commissariat A L'energie Atomique Method for manufacturing a double magnetic head with opposite gap-azimuth
FR2747226A1 (en) * 1996-04-04 1997-10-10 Commissariat Energie Atomique METHODS OF MAKING A DOUBLE MAGNETIC HEAD WITH OPPOSITE AZIMUTS BETWEEN

Similar Documents

Publication Publication Date Title
KR100274098B1 (en) Magnetic recording/reproducing head and fabrication process
JPH03269809A (en) Production of magnetic head
JPS61137214A (en) Wafer for thin film magnetic head
JP2633097B2 (en) Manufacturing method of magnetic head
JP2535072B2 (en) Method of manufacturing magnetic head
JPS59110023A (en) Manufacture of magnetic head
JPH03252909A (en) Magnetic substrate of groove structure for thin-film head for perpendicular magnetic recording and reproducing
JPH03252906A (en) Thin-film head for perpendicular magnetic recording and reproducing
JPS62262209A (en) Magnetic head
JPS6020308A (en) Magnetic head
JPS6342327B2 (en)
JPS59101027A (en) Manufacture of vertical magnetic recording and reproducing head
JPS61250810A (en) Magnetic head and its production
JPH03100910A (en) Thin-film magnetic head
JPS63209014A (en) Joined magnetic head
JPH041906A (en) Thin film magnetic head
JPH0540910A (en) Manufacture of narrow track magnetic head
JPS6187212A (en) Thin-film magnetic head
JPS62192909A (en) Production of magnetic head
JP2004103177A (en) Magnetic head and manufacturing method of magnetic head
JPS6271013A (en) Magnetic head and its manufacture
JPS63146204A (en) Magnetic head
JPH0447885B2 (en)
JPS61126611A (en) Production of magnetic head
JPH03238609A (en) Thin-film magnetic head and production thereof