JPS61135056A - Manufacture of organic electrolyte cell - Google Patents
Manufacture of organic electrolyte cellInfo
- Publication number
- JPS61135056A JPS61135056A JP59256709A JP25670984A JPS61135056A JP S61135056 A JPS61135056 A JP S61135056A JP 59256709 A JP59256709 A JP 59256709A JP 25670984 A JP25670984 A JP 25670984A JP S61135056 A JPS61135056 A JP S61135056A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- cupric oxide
- chalcopyrite
- positive electrode
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、正極活物質として酸化第二銅とカルコパイラ
イトとの混合物を用い、負極としてリチウムもしくはリ
チウムを主体とする合金を用いる有機電解質電池の製造
法の改良に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the production of organic electrolyte batteries using a mixture of cupric oxide and chalcopyrite as a positive electrode active material and lithium or a lithium-based alloy as a negative electrode. Concerning improvements in law.
従来の技術
従来、有機電解質電池としては、正極活物質として、フ
ン化炭素、二酸化マンガン、塩化チオニー/し、二酸化
イオウなどを用いるいわゆる3v級リチウム電池が実用
化されている。BACKGROUND OF THE INVENTION Conventionally, so-called 3V class lithium batteries have been put into practical use as organic electrolyte batteries, using carbon fluoride, manganese dioxide, thionychloride, sulfur dioxide, etc. as positive electrode active materials.
これに対し、最近有機電解質電池のすぐれた保存特性、
耐漏液性に着目し、電子ウォッチなどの精密電子機器に
用いられている酸化銀電池、アルカリマンガン電池など
と直接互換性をもつ、いわゆる1、5v級リチウム電池
の開発が試みられている。In contrast, recently, organic electrolyte batteries have excellent storage properties,
Focusing on leakage resistance, attempts are being made to develop so-called 1.5v class lithium batteries that are directly compatible with silver oxide batteries, alkaline manganese batteries, etc. used in precision electronic devices such as electronic watches.
この種電池としては、正極活物質に酸化第二銅。This type of battery uses cupric oxide as the positive electrode active material.
二硫化秩、酸化ビスマス、ビスマス酸鉛などを用いたリ
チウム電池が既に知られており、中でも酸化第二銅/リ
チウム電池は容量が大きく、良好な保存特性を有するな
どから最も有望な電池系であると言える。Lithium batteries using disulfide, bismuth oxide, lead bismuth oxide, etc. are already known, and among them, cupric oxide/lithium batteries are the most promising battery system because of their large capacity and good storage characteristics. I can say that there is.
発明が解決しようとする問題点
しかし、この電池系は、電池の放電特性、特に放電の初
期に電圧が一定の値に落ち着く迄に電圧が一時的に落ち
込むという欠点がある。この現象は特に電子ウォッチな
どの精密電子機器に使用する場合は重要な問題となる。Problems to be Solved by the Invention However, this battery system has a drawback in the discharge characteristics of the battery, particularly in that the voltage temporarily drops before the voltage settles to a constant value at the beginning of discharge. This phenomenon becomes an important problem especially when used in precision electronic equipment such as electronic watches.
この電圧の落ち込み現象は、酸化第二銅/リチウム電池
特有のものであり、電解液を種々変えても解消されない
。This voltage drop phenomenon is unique to cupric oxide/lithium batteries, and cannot be resolved even if the electrolyte is changed.
従って、この電圧の落ち込みを解消する一つの方策とし
て、酸化第二銅よりも高い放電電圧をもつ活物質を酸化
第二銅と混合し、電池の放電初期に、混合した活物質を
優先的に反応させることにより、電圧の落ち込み現象を
消滅させることが考えられる。Therefore, one measure to eliminate this drop in voltage is to mix an active material with a higher discharge voltage than cupric oxide with cupric oxide, and to preferentially use the mixed active material in the early stage of battery discharge. It is possible to eliminate the voltage drop phenomenon by causing the reaction to occur.
この場合、混合する活物質が酸化第二銅と反応するもの
であってはならないことは勿論のことであるが、電池の
放電電圧が二段とならないためにも、この活物質とリチ
ウム負極と組み合せた電池としての放電電圧が、酸化第
二銅/リチウム電池の放電電圧とはソ等しく、しかもわ
ずかに高いものであることが望ましい。同時に、その活
物質の理論電気容量が大きなものでなければならない。In this case, it goes without saying that the active material to be mixed must not react with cupric oxide, but in order to prevent the discharge voltage of the battery from becoming two-stage, the active material and the lithium negative electrode must be compatible. It is desirable that the discharge voltage of the combined battery is equal to, but slightly higher than, the discharge voltage of the cupric oxide/lithium battery. At the same time, the active material must have a large theoretical capacitance.
特開昭58−206056号公報では、この混合すべき
活物質として、カルコバイライトを挙げている。JP-A-58-206056 mentions chalcobyrite as the active material to be mixed.
酸化第二銅正極とリチウム負極の組み合せでは約1.4
vの放電電圧を示し、かつ放電初期に電圧の落ち込みが
みられるのに対し、カルコパイライト正極とリチウム負
極の姐み合せでは約1.6vの放電電圧を示し、放電初
期の電圧の落み込みも認められない。但し重量当りのエ
ネルギー密度は、酸化第二銅がa y 3mAh/gで
あるのに対し、カルコパイライトは544〜584 f
f1Ah/、9であり、放電容量は酸化第二銅を用いた
場合の方が大きい。Approximately 1.4 for the combination of cupric oxide positive electrode and lithium negative electrode
In contrast, the combination of chalcopyrite positive electrode and lithium negative electrode shows a discharge voltage of approximately 1.6 V, with a voltage drop at the beginning of discharge. is also not accepted. However, the energy density per weight of cupric oxide is ay 3mAh/g, while chalcopyrite is 544-584f
f1Ah/, 9, and the discharge capacity is larger when cupric oxide is used.
従って、これら酸化第二銅とカルコバイライトを適量混
合することにより、放電電圧が1.4〜1.6Vで、放
電初期の電圧の落ち込みもなく、放電容量も比較的大き
い電池を得ることができる。Therefore, by mixing appropriate amounts of these cupric oxides and chalcobyrite, it is possible to obtain a battery with a discharge voltage of 1.4 to 1.6V, no drop in voltage at the initial stage of discharge, and a relatively large discharge capacity. can.
これまで提案されている1、5v級リチウム電池のなか
では、この酸化第二銅とカルコパイフィトとの混合活物
質とリチウムを組み合せた電池系が最もすぐれたもので
あると言えるが、これを実用電池として用いる場合一つ
の問題点が挙げられる。Among the 1.5V class lithium batteries that have been proposed so far, it can be said that this battery system that combines lithium with a mixed active material of cupric oxide and chalcopyrite is the best. There is one problem when using it as a practical battery.
通常、これら1.6v級リチウム電池は、リチウム電池
特有の自己放電がすくない、耐漏液性にすぐれるという
特長を生かし、低消費電流で長期間作動させる電子ウォ
ッチ、小形電卓などの電源を指向するものである。従っ
て電池の自己放電に係る電池の貯蔵特性が重要な要件と
なる。Normally, these 1.6v class lithium batteries take advantage of the characteristics of lithium batteries, such as low self-discharge and excellent leakage resistance, and are intended to be used as power sources for electronic watches, small calculators, etc. that operate for long periods with low current consumption. It is something. Therefore, the storage characteristics of the battery regarding self-discharge of the battery are important requirements.
一方、主活物質である酸化第二銅は、通常硝酸銅、炭酸
銅、水酸化銅などを、空気中で約70000前後の温度
で加熱して得られる物質である。同様に酸化第一銅(C
u20)を空気中もしくは酸素ガス中で、加熱して得ら
れる方法も知られている。On the other hand, cupric oxide, which is the main active material, is a substance usually obtained by heating copper nitrate, copper carbonate, copper hydroxide, etc. in air at a temperature of about 70,000 °C. Similarly, cuprous oxide (C
A method of heating u20) in air or oxygen gas is also known.
いずれにしても、得られる酸化銅は、100%の酸化第
二銅ではなく、わずかに酸化第一銅を含むものである。In any case, the resulting copper oxide is not 100% cupric oxide, but contains a slight amount of cuprous oxide.
勿論、電池の電気特性的には、殆んど問題となる景では
ない。但し、この酸化第一銅はその表面に酸化第二銅以
上に酸素(02,O−)を吸着し易いことはよく知られ
ており、且つ、酸化第一銅、第二銅ともに非常に触媒作
用の強い物質であることもよく知られている。このこと
は酸化第二銅を単独で正極活物質として用いる場合は間
Hdないが、カルコパイライトを開店物質として混合し
て用いる場合、特に微量の水分の存在下で、酸化銅の触
媒作用と上述の吸着酸素とにより、一部カルコパイライ
トを分解し、酸化鉄(Fe2O2)を表面に生成する。Of course, this is hardly a problem in terms of the electrical characteristics of the battery. However, it is well known that cuprous oxide adsorbs oxygen (02,O-) on its surface more easily than cupric oxide, and both cuprous oxide and cupric oxide are highly catalytic. It is also well known that it is a powerful substance. This means that when cupric oxide is used alone as a cathode active material, there is no Hd, but when chalcopyrite is used in combination as an opening material, especially in the presence of a trace amount of water, the catalytic action of copper oxide and the above-mentioned Chalcopyrite is partially decomposed by the adsorbed oxygen, and iron oxide (Fe2O2) is generated on the surface.
その結果、電池を長期貯蔵、特に亮濡で長期貯蔵する場
合、酸化鉄が電解液中に溶解し、セパレータを通して負
極リチウム上へ析出し、電池の微小短絡を生じ、電池電
圧の低下、放電電気量の減少という問題が部分的に発生
する場合がみられた。この傾向は、特に高温多湿下の貯
蔵において顕著に認められる。As a result, when a battery is stored for a long time, especially in a humid environment, iron oxide dissolves in the electrolyte and is deposited on the negative electrode lithium through the separator, causing a micro short circuit in the battery, resulting in a decrease in battery voltage and discharge electricity. In some cases, the problem of volume reduction occurred. This tendency is particularly noticeable during storage under high temperature and humidity.
高度の信頼性が要求される電子ウォッチあるいは小形電
卓などに、この電池を用いる場合、電池電圧の低下、放
、電電気量の低下は大きな問題となる。When this battery is used in electronic watches or small calculators that require a high degree of reliability, a drop in battery voltage, discharge, and a drop in the amount of electricity become a major problem.
本発明は、主活物質である酸化第二銅と副活物質である
カルコパイライトとの混合物を正極活物質とする電池の
貯蔵特性を向上さすことを目的とする。An object of the present invention is to improve the storage characteristics of a battery whose positive electrode active material is a mixture of cupric oxide, which is the main active material, and chalcopyrite, which is the sub-active material.
問題点を解決するだめの手段
本発明は酸化第二銅とカルコパイライトとの混合物を正
極活物質とし、負極をリチウムとする電池において、酸
化第二銅をあらかじめ、窒素ガス雰囲気あるいは不活性
ガス雰囲気中で加熱処理、もしくは減圧下で加熱処理し
、窒素ガスあるいは不活性ガスで置換し、常圧にもどす
処理をおこなうことを特徴とする。Means to Solve the Problems The present invention provides a battery in which a mixture of cupric oxide and chalcopyrite is used as the positive electrode active material and lithium is used as the negative electrode. It is characterized by performing heat treatment in a vacuum chamber or heat treatment under reduced pressure, purging with nitrogen gas or inert gas, and returning to normal pressure.
作用
酸化第二銅とカルコパイライトとの混合物を正極活物質
とする電池においては、上述した如く、長期貯蔵、特に
高温多湿下における長期貯蔵中に、カルコパイライトか
ら発生した酸化鉄が溶解して負極に析出し、微小短絡、
容量低下という現象が一部にみられ、問題となる。In a battery that uses a mixture of cupric oxide and chalcopyrite as a positive electrode active material, as mentioned above, during long-term storage, especially long-term storage under high temperature and humidity, iron oxide generated from chalcopyrite dissolves and forms a negative electrode. precipitation, micro short circuit,
The phenomenon of capacity reduction is observed in some cases, which is a problem.
主活物質である酸化第二銅に混合すべき、カルコパイラ
イトの量は、電池としての放電電圧特性電気容量などか
ら、重量比で全活物質中の2Q〜40%カ適当であるが
、特にカルコパイライトの混合量が多い場合に、鉄の負
極への析出が顕著にみられる。The amount of chalcopyrite to be mixed with cupric oxide, which is the main active material, is appropriate from 2Q to 40% by weight of the total active material, considering the discharge voltage characteristics and electric capacity of the battery. When a large amount of chalcopyrite is mixed, precipitation of iron on the negative electrode is noticeable.
この要因としては、同様に上述した如く、酸化第二銅の
触媒性、酸化第二銅(一部酸化第一銅を含む)への吸着
酸素、電池外部から内部へ侵入した水分の3者の相互作
用があると考えられる。As mentioned above, this is caused by three factors: the catalytic properties of cupric oxide, oxygen adsorbed by cupric oxide (including some cuprous oxide), and moisture entering the battery from outside. It is thought that there is an interaction.
酸化第二銅の触媒性を減じることは、電池特性の低下を
招きかねず、まだ外部からの水分の侵入は、電子ウォッ
チの電源として用いるような小形電池においては、樹脂
によるクリンプシール方式を用いる以上、成る程度はや
むを得ないと考えられる。Reducing the catalytic properties of cupric oxide may lead to a decline in battery characteristics, and to prevent moisture from entering from the outside, small batteries, such as those used as power sources for electronic watches, require a resin crimp seal method. The above is considered to be unavoidable.
従って、電池の貯蔵特性低下を阻止する最も有効な手段
は、酸化第二銅(一部酸化第一銅を含む)への吸着酸素
を減すること、もしくはなくすことであると考えられる
。Therefore, it is considered that the most effective means for preventing the deterioration of storage characteristics of a battery is to reduce or eliminate oxygen adsorbed to cupric oxide (partly containing cuprous oxide).
本発明者等は、酸化第二銅を窒素ガスもしくは不活性ガ
ス雰囲気中で加熱処理、または減圧下で加熱処理し、大
気圧にもどす場合に窒素ガスもしくは不活性ガスで置換
することによって、酸化銅への吸着酸素が殆んど除去で
き、結果として電池の良好な保存特性が得られることを
見い出した。The present inventors have demonstrated that cupric oxide can be oxidized by heat treatment in a nitrogen gas or inert gas atmosphere or under reduced pressure, and by replacing the cupric oxide with nitrogen gas or inert gas when returning to atmospheric pressure. It has been found that most of the oxygen adsorbed on copper can be removed, resulting in good storage characteristics of the battery.
ここでの加熱処理の温度としては、80〜350°Cの
範囲が良く、これ以下の温度であれば、吸着酸素の除去
に長時間を要し、又これ以上の温度であれば、酸化第二
銅の分解が一部開始し、望ましくない。The temperature for the heat treatment here is preferably in the range of 80 to 350°C; if the temperature is lower than this, it will take a long time to remove the adsorbed oxygen, and if the temperature is higher than this, the oxidation process will take place. Partial decomposition of dicopper begins, which is undesirable.
実施例 以下本発明の詳細は実施例で説明する。Example The details of the present invention will be explained below using Examples.
(実施例1)
酸化第二銅とカルコパイライトを種々の比率で混合し、
これに導電材としてアセチレンブラックを、結着剤とし
て4フツ化エチレンと67ノ化プロピレンとの共重合体
の水性ディスパージョンを混合し、乾燥後、直径8.5
mm、厚さ0.7mmの円盤状に加圧成形し、正極とし
だ。(Example 1) Cupric oxide and chalcopyrite were mixed in various ratios,
This was mixed with acetylene black as a conductive material and an aqueous dispersion of a copolymer of tetrafluoroethylene and 67-propylene as a binder, and after drying, the diameter was 8.5 mm.
It was press-molded into a disk shape with a thickness of 0.7 mm and a positive electrode.
酸化第二銅とカルコパイライトとの混合比率。Mixing ratio of cupric oxide and chalcopyrite.
導電材量、結着剤量、およびそのときの活物質の理論充
填電気量を第1表に示す。Table 1 shows the amount of conductive material, the amount of binder, and the theoretical amount of electricity charged in the active material at that time.
第1表でA−Fは酸化第二銅をそのまま用いたもの、(
A’) 〜(F’)は酸化第二銅を6annHg以下の
減圧下で100°Cで6時間加熱した後、窒素ガスを通
気し、大気圧にもどしたものを使用したものである。In Table 1, A-F are those using cupric oxide as is, (
In A') to (F'), cupric oxide was heated at 100° C. for 6 hours under a reduced pressure of 6 annHg or less, and then nitrogen gas was passed through it to return the pressure to atmospheric pressure.
これらの正極を用いて、第1図に示すボタン形電池をく
み立てた。第1図において、1はニッケルメッキしたス
テンレス鋼よりなる封口板で、その内面には、直径6.
7碓、厚み0.7mmの金属リチウムよりなる負FM2
を圧着している。負極の理論電気容量は50 mAhで
ある。A button-shaped battery shown in FIG. 1 was constructed using these positive electrodes. In Fig. 1, numeral 1 is a sealing plate made of nickel-plated stainless steel, and its inner surface has a diameter of 6 mm.
7. Negative FM2 made of metallic lithium with a thickness of 0.7 mm
is crimped. The theoretical capacitance of the negative electrode is 50 mAh.
3はポリプロピレン製のセパレータで、プロピレンカー
ボネートと1.2ジメトキシエタンとを体積比で1:1
の割合に混合した溶媒に、過塩素酸リチウムを1モ/L
//71の割合で溶解させた電解液を含浸させている。3 is a polypropylene separator containing propylene carbonate and 1.2 dimethoxyethane in a volume ratio of 1:1.
Add 1 mo/L of lithium perchlorate to the solvent mixed in the ratio of
It is impregnated with an electrolytic solution dissolved at a ratio of //71.
4は前述した円盤状の正極で、ニッケルメッキした鉄製
電池ケース6内で更に加圧成形している。6はポリプロ
ピレン製のガスケットである。完成電池の寸法は、直径
9.5ff、高さは2−01111である。正極の理論
充填電気量は第1表に示した通りである。Reference numeral 4 denotes the disk-shaped positive electrode described above, which is further pressure-molded within a nickel-plated iron battery case 6. 6 is a gasket made of polypropylene. The dimensions of the completed battery are 9.5 ff in diameter and 2-01111 in height. The theoretical amount of electricity charged in the positive electrode is as shown in Table 1.
これら電池A−F、および(A′)〜(F′)を20°
Cにおいて30にΩの負荷で放電した時の特性を第2図
に示す。まだ電池ム〜F 、 (A’)〜(F′)を6
0’C,90%の多湿下で6ケ月間貯蔵した後、20°
Cで30にΩの負荷で放電した時の電池A〜Fの特性を
第3図に、電池(A′)〜(F′)の特性を第4図にそ
れぞれ示す。These batteries A-F, and (A') to (F') at 20°
Figure 2 shows the characteristics when discharging at C with a load of 30Ω. Still battery M~F, (A')~(F') 6
After storage for 6 months at 0'C and 90% humidity, 20°
FIG. 3 shows the characteristics of batteries A to F when discharged under a load of 30 Ω at C, and FIG. 4 shows the characteristics of batteries (A') to (F'), respectively.
第2図から明らかなように、初期の電池特性は酸化第二
銅の加熱処理の有無には全く無関係であり、またカルコ
パイライトの混合割合が増加するに従って、酸化第二銅
単独を活物質として用いた場合の放電初期の電圧の落ち
込みが解消される。As is clear from Figure 2, the initial battery characteristics are completely unrelated to the presence or absence of heat treatment of cupric oxide, and as the mixing ratio of chalcopyrite increases, the use of cupric oxide alone as an active material increases. When using this method, the drop in voltage at the initial stage of discharge is eliminated.
即ちカルコパイライトを20%以上混合したもの(C−
Fおよび(C′)〜(F’))は全く電圧の落ち込みは
認められない。但し、60%混合したもの(Fおよび(
F′)1′i、電圧が平坦になるまで比較的長時間を要
する。このことは例えば電子ウォッチなどのような精密
機器の電源として使用する場合は好ましいことではない
。従ってカルコパイライトの混合割合として20%から
40%が望ましい範囲である。That is, a mixture of 20% or more chalcopyrite (C-
No drop in voltage was observed in F and (C') to (F')). However, 60% mixture (F and (
F')1'i, it takes a relatively long time until the voltage becomes flat. This is not preferable when used as a power source for precision equipment such as an electronic watch. Therefore, the desirable mixing ratio of chalcopyrite is 20% to 40%.
第3図から明らかなように、高温、多湿下で貯蔵した場
合、正極活物質中のカルコパイライトの混合割合が多い
程、放電電圧および放電電気量の低下が著しい。これは
上述した如く、カルコパイライトの存在が大きい程、表
面に酸化鉄を生じ易く、その酸化鉄が特性低下を引きお
こすためと考えられる。しかし第4図から明らかなよう
に、減圧下で加熱処理し、大気圧にもどす際に窒素ガス
で置換した酸化第二銅を用いた場合には、これら特性低
下は殆んど認められない。As is clear from FIG. 3, when stored at high temperature and high humidity, the higher the mixing ratio of chalcopyrite in the positive electrode active material, the more significant the decrease in the discharge voltage and the amount of discharged electricity. This is thought to be because, as mentioned above, the greater the presence of chalcopyrite, the more likely iron oxide is produced on the surface, and the iron oxide causes a decrease in properties. However, as is clear from FIG. 4, when cupric oxide is used which is heated under reduced pressure and replaced with nitrogen gas when returning to atmospheric pressure, these properties are hardly deteriorated.
(実施例2)
酸化第二銅を6mmHg以下の減圧下で、温度を200
−450°C迄変えて5時間加熱し、窒素ガスを通気し
、大気圧にもどした後、各酸化第二銅に含まれている酸
素量を測定した結果、および、窒素気流中で2Q〜46
0°Cの範囲で5時間、酸化第二銅を加熱し、その後酸
化第二銅に含まれている酸素量を測定した結果を第6図
に示す。ここで言う酸素量100%とは、試料の酸化第
二銅が完全にCuOになっていると考えた状態、即ち、
銅63.546gに対し、酸素1s 、 999 g含
まれていると仮定した状態である。従って酸素量100
%以下の場合は、一部の酸化第二銅が酸化第一銅もしく
は銅の形で存在している状態、酸素″j#1oo%以上
の場合は吸着酸素を含んでいる状態と考えられる。(Example 2) Cupric oxide was heated to 200°C under reduced pressure of 6mmHg or less.
The results of measuring the amount of oxygen contained in each cupric oxide after heating it for 5 hours at -450°C, passing nitrogen gas through it, and returning it to atmospheric pressure. 46
Figure 6 shows the results of heating cupric oxide in a range of 0°C for 5 hours and then measuring the amount of oxygen contained in cupric oxide. The oxygen content of 100% here refers to the state in which the cupric oxide in the sample is considered to have completely become CuO, that is,
This state is based on the assumption that 1 s, 999 g of oxygen is contained for 63.546 g of copper. Therefore, the amount of oxygen is 100
% or less, it is considered that some cupric oxide exists in the form of cuprous oxide or copper, and when the oxygen content is ``j#1oo%'' or more, it is considered that adsorbed oxygen is included.
第5図から明らかなように、加熱温度が80〜350°
Cの範囲では、酸素量は一定しており約99.5%が酸
化第二銅の状態で存在していると考えられる。一方、2
0″Cでは約2%の吸着酸素をもっており、また350
〜40o°Cにかけて酸素量が急激に減少し、酸化第二
銅の分解がおこり始めていることが認められる。また、
窒素気流中で加熱した場合は減圧下で加熱した場合より
もその変化はわずかにゆるやかであるが、殆んど差はな
いと言える。As is clear from Figure 5, the heating temperature is 80 to 350°.
In the C range, the amount of oxygen is constant and approximately 99.5% is considered to exist in the form of cupric oxide. On the other hand, 2
At 0″C, it has about 2% adsorbed oxygen, and 350
It is observed that the amount of oxygen rapidly decreases from 40oC to 40oC, and decomposition of cupric oxide begins to occur. Also,
When heated in a nitrogen stream, the change is slightly more gradual than when heated under reduced pressure, but it can be said that there is almost no difference.
次に前記各温度で窒素気流中において熱処理した酸化第
二銅とカルコパイフィトとの混合物を正極活物質とする
電池を試作した。Next, prototype batteries were fabricated using a mixture of cupric oxide and chalcopiphyte, which had been heat treated in a nitrogen stream at each of the above temperatures, as a positive electrode active material.
正極は酸化第二銅とカルコパイライトと導電材のアセチ
レンブラックと結着剤の4フツ化エチレンと67フ化プ
ロピレンとの共重合体をそれぞれ重量比でso : 4
o : s : sの割合で混合し、加圧成型したもの
を用いた。即ち、実施例1の電池E(K’)の正極の組
成と全く同じものである。電池は第1図に示したもので
あシ、その他の構成は実施例1と全く同様である。The positive electrode is made of cupric oxide, chalcopyrite, acetylene black as a conductive material, and a copolymer of ethylene tetrafluoride and propylene 67 fluoride as binders at a weight ratio of SO: 4.
The mixture was mixed at a ratio of o:s:s and molded under pressure. That is, the composition is exactly the same as that of the positive electrode of battery E (K') of Example 1. The battery is the one shown in FIG. 1, and the other configurations are exactly the same as in Example 1.
酸化第二銅の熱処理の温度とそれを用いた電池の対比を
第2表に示す。Table 2 shows a comparison of the heat treatment temperatures of cupric oxide and batteries using the same.
第2表
これら電池(、−Mを20℃で30にΩの負荷で製造直
後に放電した時の特性を第6図に、またこれら電池を6
0°C90%の多湿下で6ケ月間貯蔵した後、20°C
で30にΩの負荷で放電した時の特性を第7図にそれぞ
れ示す。Table 2 The characteristics of these batteries (-M) when discharged immediately after manufacture under a load of 30 Ω at 20°C are shown in Figure 6.
After storage for 6 months at 0°C and 90% humidity, 20°C
Figure 7 shows the characteristics when discharged under a load of 30Ω.
第6図から判るように、酸素量の多い電池0゜Hは、放
電初期にわずかに高い電圧を示すが、放電時間(放電容
量)は電池、jJJとはソ同じである。これに対し、電
池1jLは放電電圧がわずかに低くまた放電時間もわず
かに短い。これは、400〜450°Cという高い湿度
で加熱処理しているため、酸化第二銅が一部分解して、
酸化第一銅になっているものと考えられる。この結果か
らも、酸化第二銅の熱分解は約360’Qを越えた温度
から始まるものと思われる。As can be seen from FIG. 6, the battery 0°H with a large amount of oxygen exhibits a slightly higher voltage at the beginning of discharge, but the discharge time (discharge capacity) is the same as that of the battery jJJ. On the other hand, battery 1jL has a slightly lower discharge voltage and a slightly shorter discharge time. Because this is heat treated at high humidity of 400-450°C, the cupric oxide partially decomposes.
It is thought to be cuprous oxide. This result also suggests that thermal decomposition of cupric oxide begins at a temperature exceeding about 360'Q.
第7図の高温多湿下での電池の貯蔵結果をみると、電池
G、Hは明らかに特性が低下しているのが認められる。Looking at the storage results of the batteries under high temperature and high humidity conditions in FIG. 7, it is seen that the characteristics of batteries G and H are clearly deteriorated.
これは実施例1の酸化第二銅を加熱処理しなかった場合
の結果と同様であり、このことから、加熱処理の温度と
しては、すくなくとも80℃以上が必要であることが判
る。This is similar to the result when the cupric oxide of Example 1 was not heat treated, and from this it can be seen that the heat treatment temperature needs to be at least 80°C or higher.
実施例2と同様な電池試験を、6のmHg以下の減圧下
で酸化第二銅を加熱処理し、窒素ガスで置換した場合に
もおこなったが、結果は全く同じであった。The same battery test as in Example 2 was also conducted when cupric oxide was heat treated under reduced pressure of 6 mHg or less and replaced with nitrogen gas, but the results were exactly the same.
まだ、窒素ガスを不活性ガスであるアルゴンガス、もし
くはヘリウムガスに置き換えて同様な試験をおこなって
も結果は全く同じであった。However, even when similar tests were performed by replacing nitrogen gas with inert gases such as argon gas or helium gas, the results were exactly the same.
更に、上記実施例1,2で使用したカルコパイライトは
、硫化第一銅と二硫化鉄から合成したもの(CuFeS
x 、 x = 1.s2)を用いたが、合成の条件に
よりXの値の異るもの(X中1.8〜2.0)を用いて
も、また天然のカルコパイライト(GuFeSx 、
x吟2)を用いても、はソ同様の結果が得られた。Furthermore, the chalcopyrite used in Examples 1 and 2 was synthesized from cuprous sulfide and iron disulfide (CuFeS).
x, x = 1. s2), but depending on the synthesis conditions, different values of X (1.8 to 2.0 in X) may be used, and natural chalcopyrite (GuFeS
Similar results were obtained using xgin2).
発明の効果
以上のように、酸化第二銅を主活物質、カルコパイライ
トを開店物質とする正極と、リチウムもしくはリチウム
を主体とする合金を活物質とする負庵を用いる有機電解
質電池において、本発明によ)酸化第二銅を窒素ガスも
しくは不活性ガス雰1IIII気中もしくは減圧下で加
熱処理、好ましくは80〜360′cの温度範囲で加熱
処理した後、窒素力スもしくは不活性ガス吹き込み常圧
にもどす処理をおこなうことにより、高温多湿下での電
池の貯蔵において良好な特性が得られるものであり、そ
の工業的価値は極めて大きい。Effects of the invention As described above, the present invention has been achieved in an organic electrolyte battery using a positive electrode having cupric oxide as the main active material and chalcopyrite as the opening material, and a negative electrode having lithium or an alloy mainly composed of lithium as the active material. According to the invention) cupric oxide is heat treated in a nitrogen gas or inert gas atmosphere or under reduced pressure, preferably in a temperature range of 80 to 360'C, followed by nitrogen gas or inert gas blowing. By performing the treatment to return the battery to normal pressure, good characteristics can be obtained when storing the battery under high temperature and high humidity conditions, and its industrial value is extremely large.
第1図は実施例1および実施例2で用いたボタン形有機
電解質電池の断面図、第2図は未処理および加熱処理し
た主活物質である酸化第二銅と開店物質であるカルコパ
イライトとの混合割合を変えた場合の電池の放電特性を
示す図、第3図は未処理の酸化第二銅を用いた場合の電
池の貯蔵後の特性を示す図、第4図は加熱処理した酸化
第二銅を用いた場合の電池の貯蔵後の特性を示す図、第
6図は加熱処理した時の温度と酸化第二銅中の酸素量を
示す図、第6図は種々の温度で加熱処理した酸化第二銅
を用いた場合の電池の放電特性を示す図、第7図はそれ
らの電池を高温多湿下で貯蔵した後の電池の放電特性を
示す図である。
2・・・・・・リチウム負極、3・・・・・・セパレー
タ、4・・・・・・正極、5・・・・・・ケース。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓
1 図
31.2t)X°レータ4・・・正 槽
6・−・ウーズ
第2図
枚覚T4間(h)
第3図
数し竜峙閲(k)
第5図
Jo 残堪次 (°C)
第6図
枚’tnx(x>Figure 1 is a cross-sectional view of the button-shaped organic electrolyte battery used in Example 1 and Example 2, and Figure 2 is a cross-sectional view of the button-shaped organic electrolyte battery used in Examples 1 and 2. Figure 3 is a diagram showing the battery characteristics after storage when untreated cupric oxide is used, and Figure 4 is a diagram showing the battery characteristics after storage when using untreated cupric oxide. A diagram showing the characteristics of a battery after storage when cupric oxide is used. Figure 6 is a diagram showing the temperature during heat treatment and the amount of oxygen in cupric oxide. Figure 6 is a diagram showing the characteristics of a battery when heated at various temperatures. FIG. 7 is a diagram showing the discharge characteristics of a battery when treated cupric oxide is used, and FIG. 7 is a diagram showing the discharge characteristics of the battery after the batteries are stored under high temperature and high humidity. 2... Lithium negative electrode, 3... Separator, 4... Positive electrode, 5... Case. Name of agent: Patent attorney Toshio Nakao and one other name
1 figure
31.2t) Figure 6 'tnx (x>
Claims (3)
ス雰囲気中で加熱処理もしくは減圧下で加熱処理し、大
気圧にもどす際に上記ガスにより置換してなる主活物質
とカルコパイライトよりなる副活物質との混合物を正極
とし、リチウムもしくはリチウムを主体とする合金から
なる負極を備えた有機電解質電池の製造法。(1) Main active material obtained by heating cupric oxide (CuO) in a nitrogen gas or inert gas atmosphere or under reduced pressure, and replacing it with the above gas when returning to atmospheric pressure, and chalcopyrite. A method for producing an organic electrolyte battery comprising a positive electrode made of a mixture of lithium and a sub-active material, and a negative electrode made of lithium or a lithium-based alloy.
ある特許請求の範囲第1項記載の有機電解質電池の製造
法。(2) The method for producing an organic electrolyte battery according to claim 1, wherein the heat treatment temperature of cupric oxide is 80° to 350°C.
0〜60%である特許請求の範囲第1項または第2項記
載の有機電解質電池の製造法。(3) The proportion of cupric oxide in the positive electrode active material is 8 by weight.
The method for producing an organic electrolyte battery according to claim 1 or 2, wherein the content is 0 to 60%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59256709A JPS61135056A (en) | 1984-12-05 | 1984-12-05 | Manufacture of organic electrolyte cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59256709A JPS61135056A (en) | 1984-12-05 | 1984-12-05 | Manufacture of organic electrolyte cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61135056A true JPS61135056A (en) | 1986-06-23 |
Family
ID=17296374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59256709A Pending JPS61135056A (en) | 1984-12-05 | 1984-12-05 | Manufacture of organic electrolyte cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61135056A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62291461A (en) * | 1986-06-12 | 1987-12-18 | Toyota Motor Corp | Fuel injection device for internal combustion engine |
US20100308253A1 (en) * | 2009-04-06 | 2010-12-09 | Eaglepicher Technologies, Llc | Thermal battery cathode materials and batteries including same |
US8394520B2 (en) | 2009-04-06 | 2013-03-12 | Eaglepicher Technologies, Llc | Thermal battery electrolyte materials, electrode-electrolyte composites, and batteries including same |
US8623553B2 (en) | 2009-03-18 | 2014-01-07 | Eaglepicher Technologies, Llc | Non-aqueous electrochemical cell having a mixture of at least three cathode materials therein |
US8652674B2 (en) | 2010-06-24 | 2014-02-18 | Eaglepicher Technologies, Llc | Thermal battery cathode materials containing nickel disulfide and batteries including same |
US8663825B2 (en) | 2009-03-05 | 2014-03-04 | Eaglepicher Technologies, Llc | End of life indication system and method for non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material |
US8669007B2 (en) | 2008-11-07 | 2014-03-11 | Eaglepicher Technologies, LLC. | Non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material |
-
1984
- 1984-12-05 JP JP59256709A patent/JPS61135056A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62291461A (en) * | 1986-06-12 | 1987-12-18 | Toyota Motor Corp | Fuel injection device for internal combustion engine |
US8669007B2 (en) | 2008-11-07 | 2014-03-11 | Eaglepicher Technologies, LLC. | Non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material |
US8663825B2 (en) | 2009-03-05 | 2014-03-04 | Eaglepicher Technologies, Llc | End of life indication system and method for non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material |
US8623553B2 (en) | 2009-03-18 | 2014-01-07 | Eaglepicher Technologies, Llc | Non-aqueous electrochemical cell having a mixture of at least three cathode materials therein |
US20100308253A1 (en) * | 2009-04-06 | 2010-12-09 | Eaglepicher Technologies, Llc | Thermal battery cathode materials and batteries including same |
JP2012523100A (en) * | 2009-04-06 | 2012-09-27 | イーグルピッチャー テクノロジーズ,エルエルシー | Thermal battery cathode material and battery containing the same |
US8394520B2 (en) | 2009-04-06 | 2013-03-12 | Eaglepicher Technologies, Llc | Thermal battery electrolyte materials, electrode-electrolyte composites, and batteries including same |
US8440342B2 (en) * | 2009-04-06 | 2013-05-14 | Eaglepicher Technologies, Llc | Thermal battery cathode materials and batteries including same |
US8652674B2 (en) | 2010-06-24 | 2014-02-18 | Eaglepicher Technologies, Llc | Thermal battery cathode materials containing nickel disulfide and batteries including same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102044674B (en) | Anode material for lithium ion battery and preparation method thereof | |
US3507696A (en) | Battery with an iron electrode having a fused coating | |
JPS61135056A (en) | Manufacture of organic electrolyte cell | |
JPS61288374A (en) | Organic electrolyte cell | |
CN114249311B (en) | Preparation method of porous sodium ion battery positive electrode material sodium iron phosphate | |
JP3396990B2 (en) | Organic electrolyte secondary battery | |
JPS60131768A (en) | Organic electrolyte battery | |
JPS581971A (en) | Organic electrolyte battery | |
JPH0251218B2 (en) | ||
CN116706075B (en) | Sodium supplementing composition, positive electrode plate, preparation method of positive electrode plate and sodium ion battery | |
JPS63138646A (en) | Cylindrical nonaqueous electrolyte cell | |
JPH0338702B2 (en) | ||
JPS5848357A (en) | Manufacture of positive electrode for organic electrolyte battery | |
JPS61284061A (en) | Organic electrolyte battery | |
JPS59217946A (en) | Manufacture of nonaqueous electrolyte battery | |
JPH0251217B2 (en) | ||
US723450A (en) | Reversible galvanic battery. | |
JPH0345863B2 (en) | ||
JPS6151749A (en) | Nonaqueous electrolyte battery | |
JPH01105464A (en) | Organic electrolyte cell | |
JPS6362069B2 (en) | ||
JPH0316744B2 (en) | ||
JPH0316745B2 (en) | ||
JPS5820106B2 (en) | Yuuki Denkai Shitsudenchi | |
JPS61248361A (en) | Manganese dry battery |