JPS61128499A - Shift type plasma torch - Google Patents
Shift type plasma torchInfo
- Publication number
- JPS61128499A JPS61128499A JP24993184A JP24993184A JPS61128499A JP S61128499 A JPS61128499 A JP S61128499A JP 24993184 A JP24993184 A JP 24993184A JP 24993184 A JP24993184 A JP 24993184A JP S61128499 A JPS61128499 A JP S61128499A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- plasma torch
- anode
- ignition
- ignition anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Plasma Technology (AREA)
- Discharge Heating (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の分野〕
本発明は移行形プラズマトーチに関し、特にプラズマ発
生部の電極構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a transitional plasma torch, and more particularly to an electrode structure of a plasma generating portion.
本発明が対象とする移行形プラズマトーチは、物体の加
熱に用いられ1例えば、転炉から連続鋳造のモールドに
供給する溶鋼をある段階で加熱するために用いられる。The transitional plasma torch to which the present invention is directed is used to heat an object, for example, to heat molten steel supplied from a converter to a continuous casting mold at a certain stage.
たとえば溶鋼の加熱には、誘導加熱やプラズマトーチに
よる加熱が用いられる。プラズマトーチには、プラズマ
移行形のものと非移行形のものがある。プラズマ移行形
のものは、加熱対象物を陽極として、プラズマトーチの
カソードと加熱対象物との間に放電を行なわせるもので
あり、非移行形のものは、プラズマトーチのカソードと
陽極の間に放電を行なわせ、電極間にプロセスガスを供
給し、カソード−陽極間を通った気体を加熱対象物に当
てるものである。For example, induction heating or heating with a plasma torch is used to heat molten steel. There are two types of plasma torches: plasma transfer type and non-plasma transfer type. The plasma transfer type uses the object to be heated as an anode and generates a discharge between the cathode of the plasma torch and the object to be heated, while the non-transfer type uses the object to be heated as an anode to generate a discharge between the cathode and the anode of the plasma torch. A discharge is caused, a process gas is supplied between the electrodes, and the gas passing between the cathode and the anode is applied to the object to be heated.
移行形プラズマトーチにおいても、電極を雰囲気から遮
断するため、N2 y Ar(不活性ガスが好ましい)
等のプロセスガスが用いられるが、非移行形のプラズマ
トーチでのプロセスガスの消費の方がはるかに多く、こ
のプロセスガスの消費量により、非行形プラズマトーチ
は運転コストが高い。In the transition type plasma torch, N2 y Ar (preferably an inert gas) is used to isolate the electrode from the atmosphere.
However, the consumption of process gas in non-transfer type plasma torches is much higher, and due to this process gas consumption, non-transfer type plasma torches have high operating costs.
移行形プラズマトーチとして例えば特公昭56−435
2号あるいは特開昭58−223300号のものが知ら
れている。As a transition type plasma torch, for example, Japanese Patent Publication No. 56-435
No. 2 or Japanese Patent Application Laid-Open No. 58-223300 is known.
特公昭5B−4352号のものは第1図に示す如く、内
室部4に流入させる冷却された本体3内にねじ込まれた
電極(カソード)lをトーチの中心部に、その周囲には
冷却水通路5を有する円筒状のノズル2があり、電極1
とノズル2との間にはプロセスガス流路6が形成されて
いる。この装置の着火は電極lとノズル2との間でパイ
ロットアークを形成させて行う、然し、この形状のプラ
ズマトーチは電極1の先端が尖っているので、加熱アー
クが先端に集中し、先端の消耗が激しく、特にアーク電
流を大きくして加熱量を大きくする場合、電極先端の寿
命が短い。また電極先端が尖っているこの種のトーチは
加熱アークが先端に集中するが着火時にはアークが不安
定であることがあり、メインアークが電極1の先端を外
れたり、先端にあっても曲るという所謂「迷走アーク」
が発生し、この迷走アークによりその中に発生する熱エ
ネルギーで燃焼してノズル2に孔を形成してノズル2が
損耗するという問題があった。この問題を解決する一つ
の方法が特開昭58−223300号である。特開昭5
8−223300号のものを第2図に示す。第1I!I
と同じ機能のものには同じ符号を付した。第2図のもの
は迷走アークによる前記ノズル2の損耗を防ぐためにノ
ズル2の外表面にグラファイト等の高融点導電層7を設
けたものである。即ちこの高融点電導層に迷走アークを
引き付けて、その中に発生した熱エネルギーを分散させ
てノズル2を保護するものである。この導電層7は破線
8で示されるようにノズル2の外表面の先端を越えて、
あるいは先端まで延びて、ノズル2の先端も保護される
。As shown in Fig. 1, the torch of Japanese Patent Publication No. 5B-4352 has an electrode (cathode) l screwed into the cooled main body 3, which flows into the inner chamber 4, at the center of the torch, and around the There is a cylindrical nozzle 2 with a water passage 5, and an electrode 1
A process gas flow path 6 is formed between the nozzle 2 and the nozzle 2 . Ignition of this device is performed by forming a pilot arc between the electrode 1 and the nozzle 2. However, since the tip of the electrode 1 in this shaped plasma torch is pointed, the heating arc concentrates on the tip, The electrode tip wears out rapidly, and the life of the electrode tip is short, especially when increasing the arc current to increase the amount of heating. In addition, with this type of torch that has a sharp electrode tip, the heating arc concentrates at the tip, but the arc may be unstable during ignition, and the main arc may come off the tip of electrode 1 or bend even if it is at the tip. The so-called "Stray Arc"
There is a problem in that the stray arc causes combustion due to the thermal energy generated therein, forming a hole in the nozzle 2 and causing the nozzle 2 to wear out. One method for solving this problem is disclosed in Japanese Patent Application Laid-open No. 58-223300. Japanese Patent Application Publication No. 5
8-223300 is shown in FIG. 1st I! I
Components with the same function are given the same reference numerals. In the one shown in FIG. 2, a high melting point conductive layer 7 of graphite or the like is provided on the outer surface of the nozzle 2 to prevent wear and tear of the nozzle 2 due to stray arcs. That is, the nozzle 2 is protected by attracting stray arcs to this high melting point conductive layer and dispersing the thermal energy generated therein. This conductive layer 7 extends beyond the tip of the outer surface of the nozzle 2 as indicated by a broken line 8.
Alternatively, it extends to the tip so that the tip of the nozzle 2 is also protected.
然し、前記いずれのトーチも電極lの周囲にノズル2が
あるので、加熱容量を大きくするために電極1を大きく
すると、必然的にノズル2の径も大きくすることになり
、従ってプラズマトーチ全体の大きさ2重量が増加し、
又取付けのためのスペースも大きくする必要があり不経
済となる。However, since all of the torches mentioned above have the nozzle 2 around the electrode 1, if the electrode 1 is made larger in order to increase the heating capacity, the diameter of the nozzle 2 will inevitably be made larger, and therefore the overall plasma torch size will be increased. Size 2 Weight increases,
Furthermore, it is necessary to increase the space for installation, which is uneconomical.
本発明は上記従来の移行形プラズマトーチと根本的に異
る構造とすることによってノズルの溶損をなくし、カソ
ードを高電流容量とししかも寿命を長くシ、にもかかわ
らずトーチ全体の容積は可及的に小さくすることを目的
とする。The present invention has a structure that is fundamentally different from that of the conventional transition type plasma torch described above, thereby eliminating nozzle erosion, making the cathode have a high current capacity, and prolonging the life of the torch. The purpose is to make it as small as possible.
上記目的を達成するために本発明においては、カソード
を、少なくとも底部を高融点金属とした筒状体とし、こ
のカソードの中空部に外観が棒状の着火用陽極を配置し
、カソードの外側、あるいはカソードと着火用陽極の間
、の少なくとも一方にプロセスガスを供給する構成とす
る。In order to achieve the above object, in the present invention, the cathode is a cylindrical body whose at least the bottom part is made of a high-melting point metal, and an ignition anode having a rod-like appearance is arranged in the hollow part of the cathode. The process gas is supplied to at least one of the cathode and the ignition anode.
これによれば、着火用陽極は格別に大きくする必要がな
いのでその外径は小さく、トーチの外形を従来と同じに
しても、着火用陽極を取り囲むカソードの形状を、従来
よりも大きくでき、電流容量を大きくできる。また、カ
ソードが大きくなり、その中央に着火用陽極が位置する
結果、メインアークが着火用陽極を溶損することはなく
なり、従来のようにノズルを溶損することはなくなる。According to this, since the ignition anode does not need to be particularly large, its outer diameter is small, and even if the external shape of the torch is the same as before, the shape of the cathode surrounding the ignition anode can be made larger than before. Current capacity can be increased. Furthermore, as the cathode becomes larger and the ignition anode is located in the center, the main arc no longer damages the ignition anode, and the nozzle is no longer eroded as in the past.
本発明の好ましい実施例では、カソードは、略リング状
の高融点金属を底材としてそれに冷却媒体通流空間を有
する2重円筒を固着した。底中心に穴を有する有底2重
筒とし;着火用陽極は、略カップ状の高融点金属に、冷
却媒体通流空間を有する中空円筒を固着した有底筒とし
;カソードの。In a preferred embodiment of the present invention, the cathode has a substantially ring-shaped high melting point metal base material and a double cylinder having a cooling medium flow space fixed thereto. The ignition anode is a bottomed double cylinder with a hole in the center of the bottom; the ignition anode is a bottomed cylinder in which a hollow cylinder having a coolant flow space is fixed to a substantially cup-shaped high melting point metal; the cathode is a double cylinder with a bottom;
処理対象物に対する放電面以外を、空間を介して外筒で
覆い、この外筒とカソードの間をプロセスガス通流路と
し;しかも、カソードとそれを貫通する着火用陽極の間
の空間をプロセスガス通流路とする。The area other than the discharge surface for the object to be treated is covered with an outer cylinder with a space provided between the outer cylinder and the cathode, and the space between the cathode and the ignition anode passing through it is used as a process gas flow path. Use as a gas passage.
これによれば、カソードおよび着火用陽極がそれぞれ内
部で冷却され、しかもカソードの内、外をプロセスガス
が通ってカソードを内、外で遮断し、外筒と着火用陽極
が保護される。またプロセスガスによりメインアークの
外筒側が熱ピンチで内方(カソード側)へ絞られ、外筒
からメインアークが離れてカソードに収束し、外筒の保
護とメインアークの高安定性が確保される。カソードと
着火用陽極の間を通るプロセスガスによりメインアーク
の内側が熱ピンチで外方(カソード側)へ絞られ、着火
用陽極からメインアークが離れてカソードに収束し、着
火用陽極の保護とメインアークの高安定性が確保される
。According to this, the cathode and the ignition anode are each cooled inside, and the process gas passes through the inside and outside of the cathode to isolate the cathode from the inside and outside, thereby protecting the outer cylinder and the ignition anode. In addition, the process gas causes the outer cylinder side of the main arc to be squeezed inward (to the cathode side) with a thermal pinch, and the main arc separates from the outer cylinder and converges on the cathode, ensuring protection of the outer cylinder and high stability of the main arc. Ru. The inside of the main arc is squeezed outward (toward the cathode) by the process gas passing between the cathode and the ignition anode, and the main arc separates from the ignition anode and converges on the cathode, protecting the ignition anode. High stability of the main arc is ensured.
第3図に本発明の一実施例の外観を、第4図に底面を、
第5図にvt−vt線断面(縦断面)を示す。Fig. 3 shows the appearance of an embodiment of the present invention, Fig. 4 shows the bottom surface,
FIG. 5 shows a vt-vt line cross section (vertical cross section).
パイロットアークの発生時に陽極となるノズル(従来は
第1,2図の2)に相当する着火用陽極12を中心に設
け、逆に、カソード11をその周りに設けている。An ignition anode 12 corresponding to a nozzle (conventionally 2 in FIGS. 1 and 2) which serves as an anode when a pilot arc is generated is provided at the center, and a cathode 11 is provided around it.
着火用陽極12は先端にカップ状の高融点金属を固着し
た導電体有底円筒であり、その内部に冷却水13が通さ
れる6着火用陽極12の外形は、略棒状である。The ignition anode 12 is a conductive bottomed cylinder with a cup-shaped high melting point metal fixed to its tip, and the outer shape of the 6 ignition anode 12, through which the cooling water 13 is passed, is approximately rod-shaped.
この陽極2を取り囲むカソード11は、底面(第4図)
から見ればリング状、縦断面(第5図)では盲穴凸状の
高融点金属を先端に固着した導電体有底2重筒であり、
このカソード11の中心穴に着火用陽極12が通ってい
る。カソード11の内部に冷却水13が通される。The cathode 11 surrounding this anode 2 has a bottom surface (Fig. 4).
When viewed from above, it has a ring shape, and when viewed from the vertical section (Figure 5), it is a conductor bottomed double cylinder with a convex blind hole and a high melting point metal fixed to the tip.
An ignition anode 12 passes through the center hole of this cathode 11. Cooling water 13 is passed inside the cathode 11 .
カソード11は、第5図に示すように、底に開口を設け
た外筒15で取り囲まれている。この外筒15とカソー
ド11の間の空間、ならびに、カソード11と着火用陽
極12の間の空間には、プロセスガス14が通され、ト
ーチ下端より下方に向けて出る。As shown in FIG. 5, the cathode 11 is surrounded by an outer cylinder 15 having an opening at the bottom. A process gas 14 is passed through the space between the outer cylinder 15 and the cathode 11 and the space between the cathode 11 and the ignition anode 12, and exits downward from the lower end of the torch.
着火時には、最初カソード11と陽極12の間に高周波
の高電圧を印加してこの間に放電を発生させ、次にカソ
ード11をマイナス極、陽極12をプラス極として直流
電圧を印加してパイロットアークを発生させその後高周
波高電圧の印加を停止する6
次にカソード11をマイナス極、加熱対象物をプラス極
として直流電圧を印加し、これらの間にメインアークを
発生させその後カソード11.陽極12の間の直流電圧
印加を停止し、パイロットアークを消滅させる。At the time of ignition, a high frequency high voltage is first applied between the cathode 11 and the anode 12 to generate a discharge between them, and then a DC voltage is applied with the cathode 11 as the negative pole and the anode 12 as the positive pole to create a pilot arc. 6 Next, a DC voltage is applied with the cathode 11 as the negative pole and the object to be heated as the positive pole, a main arc is generated between them, and then the cathode 11. The application of DC voltage between the anodes 12 is stopped, and the pilot arc is extinguished.
外筒15とカソード11の間の空間を通って下方に出る
プロセスガス14oは、カソード11−外筒15間をシ
ールドし、メインアークに外方から内方に向わせる熱ピ
ンチを生起させる。一方、カソード11と着火用陽極1
2の間の空間を通って下方に出るプロセスガス14iは
、着火用陽極12−カソード11間をシールドし、メイ
ンアークに内方から外方に向わせる熱ピンチを生起させ
る。これらのプロセスガスにより外筒15および着火用
陽極12が保護され、しかも上述の内外熱ピンチにより
、メインアークはカソード11の下端面で安定する。こ
の下端面は面積が広いので熱容量が大きく、高アーク電
流での消耗が少ない。The process gas 14o exiting downward through the space between the outer cylinder 15 and the cathode 11 shields the space between the cathode 11 and the outer cylinder 15, and causes a thermal pinch that directs the main arc from the outside to the inside. On the other hand, the cathode 11 and the ignition anode 1
The process gas 14i exiting downward through the space between the ignition anode 12 and the cathode 11 shields the ignition anode 12 and the cathode 11 and causes a thermal pinch that directs the main arc from the inside to the outside. These process gases protect the outer cylinder 15 and the ignition anode 12, and the main arc is stabilized at the lower end surface of the cathode 11 due to the above-mentioned internal and external thermal pinch. This lower end surface has a large area, so it has a large heat capacity and is less consumed by high arc currents.
以上の通り本発明によれば、トーチの外形を従来と同じ
にしても、カソードの形状を従来よりも大きくし、アー
ク電流を大きくすることができる。As described above, according to the present invention, even if the outer shape of the torch is the same as that of the conventional torch, the shape of the cathode can be made larger than that of the conventional torch, and the arc current can be increased.
また、ノズルの溶損がなくなる。Also, nozzle erosion is eliminated.
第1図および第2図は従来の移行形プラズマトーチ断面
図(縦断面図)である。
第3図は本発明の一実施例の要部外観を示す正面図、第
4図は底面図、第5図はVl−VI線断面図(縦断面図
)である。
11:カソード 12:着火用陽極13:水
流 14. l 40.14i :プロセスガス流
15:外筒
第1図
第2図
第3図
町−
蒐4図
第5図1 and 2 are cross-sectional views (longitudinal cross-sectional views) of a conventional transition type plasma torch. FIG. 3 is a front view showing the appearance of essential parts of an embodiment of the present invention, FIG. 4 is a bottom view, and FIG. 5 is a sectional view (vertical sectional view) taken along the line Vl-VI. 11: Cathode 12: Anode for ignition 13: Water flow 14. l 40.14i: Process gas flow 15: Outer cylinder Fig. 1 Fig. 2 Fig. 3 Town - Fig. 4 Fig. 5
Claims (5)
陽極の間にトリガ放電を生起した後に、処理対象物を陽
極としてカソードと処理対象物との間に放電を発生させ
る移行形プラズマトーチにおいて、 カソードを、少なくとも底部を高融点金属とした筒状体
とし、このカソードの中空部に外観が棒状の着火用陽極
を配置し、カソードの外側、あるいはカソードと着火用
陽極の間、の少なくとも一方にプロセスガスを供給する
構成としたことを特徴とする移行形プラズマトーチ。(1) In a transitional plasma torch that is equipped with a cathode and an ignition anode, and after a trigger discharge is generated between the cathode and the ignition anode, a discharge is generated between the cathode and the object with the object to be treated as the anode. , the cathode is a cylindrical body made of a high melting point metal at least at the bottom, an ignition anode having a rod-like appearance is arranged in the hollow part of the cathode, and at least one side of the outside of the cathode or between the cathode and the ignition anode is disposed. A transition type plasma torch characterized by being configured to supply process gas to.
てそれに冷却媒体通流空間を有する2重円筒を固着した
、底中心に穴を有する有底2重筒とした前記特許請求の
範囲第(1)項記載の移行形プラズマトーチ。(2) The cathode is a bottomed double cylinder with a hole in the center of the bottom, with a substantially ring-shaped high melting point metal as the bottom material and a double cylinder with a coolant flow space fixed thereto. The transitional plasma torch according to item (1).
媒体通流空間を有する中空円筒を固着した有底筒とした
前記特許請求の範囲第(2)項記載の移行形プラズマト
ーチ。(3) The transition type plasma torch according to claim (2), wherein the ignition anode is a bottomed cylinder in which a hollow cylinder having a cooling medium flow space is fixed to a substantially cup-shaped high melting point metal. .
間を介して外筒で覆い、この外筒とカソードの間をプロ
セスガス通流路とした前記特許請求の範囲第(1)項記
載の移行形プラズマトーチ。(4) The cathode, other than the discharge surface facing the object to be treated, is covered with an outer cylinder with a space therebetween, and a process gas flow path is provided between the outer cylinder and the cathode. Transitional plasma torch.
をプロセスガス通流路とした前記特許請求の範囲第(4
)項記載の移行形プラズマトーチ。(5) The space between the cathode and the ignition anode passing through it is a process gas passageway.
) The transitional plasma torch described in section 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24993184A JPS61128499A (en) | 1984-11-27 | 1984-11-27 | Shift type plasma torch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24993184A JPS61128499A (en) | 1984-11-27 | 1984-11-27 | Shift type plasma torch |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61128499A true JPS61128499A (en) | 1986-06-16 |
Family
ID=17200304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24993184A Pending JPS61128499A (en) | 1984-11-27 | 1984-11-27 | Shift type plasma torch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61128499A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136193A (en) * | 1978-01-09 | 1979-10-23 | Inst Elektroswarki Patona | Method of and device for generating plasma in plasma arc torch |
-
1984
- 1984-11-27 JP JP24993184A patent/JPS61128499A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136193A (en) * | 1978-01-09 | 1979-10-23 | Inst Elektroswarki Patona | Method of and device for generating plasma in plasma arc torch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5451739A (en) | Electrode for plasma arc torch having channels to extend service life | |
US5756959A (en) | Coolant tube for use in a liquid-cooled electrode disposed in a plasma arc torch | |
US4958057A (en) | Transfer-type plasma torch with ring-shaped cathode and with processing gas passage provide interiorly of the cathode | |
EP0727922B1 (en) | Plasma torch | |
US6133542A (en) | Process for coating or welding easily oxidized materials and plasma torch for carrying out this process | |
US4558201A (en) | Plasma-arc torch with gas cooled blow-out electrode | |
US4564740A (en) | Method of generating plasma in a plasma-arc torch and an arrangement for effecting same | |
US6066827A (en) | Electrode with emissive element having conductive portions | |
US3130292A (en) | Arc torch apparatus for use in metal melting furnaces | |
US3858072A (en) | Plasma torch with axial supply of the stabilizing gas | |
EP0641269A4 (en) | Improved electrode for high current density plasma arc torch. | |
US4650953A (en) | Plasma torch | |
KR20200058454A (en) | Plasma arc torch head, laser cutting head and plasma laser cutting head, nozzle for assembly, plasma arc torch head, plasma arc torch including the same, laser cutting head including the same, and plasma laser cutting head including the same | |
KR100272917B1 (en) | Plasma cutting method | |
RU2741583C2 (en) | Nozzle protective cap, arc plasma torch containing said protective cap, and use of arc plasma torch | |
US3614376A (en) | Plasma torch | |
KR20150031472A (en) | Electrode for a plasma arc cutting torch | |
JPS63154272A (en) | Plasma torch | |
JP3138578B2 (en) | Multi-electrode plasma jet torch | |
JPS61128499A (en) | Shift type plasma torch | |
JPS63154273A (en) | Plasma torch | |
JPS61128500A (en) | Shift type plasma torch | |
JP3060148B2 (en) | Electrode sleeve for arc furnace lid | |
JPS60247491A (en) | Electrode for oxygen plasma and air plasma cutting and its production | |
JPH06302398A (en) | Electrode structure for plasma torch |