JPS61127658A - Manufacture of porous calcium phosphate ceramics - Google Patents
Manufacture of porous calcium phosphate ceramicsInfo
- Publication number
- JPS61127658A JPS61127658A JP59247938A JP24793884A JPS61127658A JP S61127658 A JPS61127658 A JP S61127658A JP 59247938 A JP59247938 A JP 59247938A JP 24793884 A JP24793884 A JP 24793884A JP S61127658 A JPS61127658 A JP S61127658A
- Authority
- JP
- Japan
- Prior art keywords
- calcium phosphate
- porous
- ceramic
- granules
- porous calcium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
近年、口腔外科、整形外科等において、骨の削除手術な
どを行った後の骨欠損部に充填する材料として種々のセ
ラミックの部材が使用されている。このうちヒドロキシ
アパタイト、リン酸三カルシウムなどのリン酸カルシウ
ム系セラミックは生体内に埋入した場合、安全かつ生体
親和性に特に優れていることから注目されている材料で
ある。[Detailed Description of the Invention] [Field of Industrial Application] In recent years, various ceramic members have been used in oral surgery, orthopedic surgery, etc. as materials to fill bone defects after bone removal surgery. ing. Among these, calcium phosphate ceramics such as hydroxyapatite and tricalcium phosphate are materials that are attracting attention because they are safe and have particularly excellent biocompatibility when implanted in a living body.
ところで、これらのリン酸カルシウム系セラミックを骨
欠損部に充填する材料は、l[生骨の増生、進入を容易
にする上で多孔質が望ましく、動物実験あるいは臨床実
験において、増生による骨組織はo、IW+より小さな
空隙にはほとんど進入しないことが確認されていること
から細孔の孔径は0.11111+1以上必要であると
言われている。By the way, the material used to fill bone defects with these calcium phosphate ceramics is desirably porous in order to facilitate growth and penetration of live bone; Since it has been confirmed that pores hardly enter into voids smaller than IW+, it is said that the pore diameter needs to be 0.11111+1 or more.
本発明はかかる孔径を有する多孔体リン酸カルシウム系
セラミックの製造法に関する。The present invention relates to a method for producing a porous calcium phosphate ceramic having such a pore size.
リン酸カルシウム系のセラミック多孔体の製造法として
は、セラミック原料スラリ〜にポリウレタンフォームな
どの連続した有機質多孔体を浸漬して空孔内表面にセラ
ミック原料スラリーを附着させ、次いで加熱して有機質
多孔体を分解させ、附着されたセラミックを焼結させて
セラミック多孔体を形成する方法が知られている(例え
ば特開昭57−7856号公報)。ところが、午の公知
方法では、有機質多孔体の空孔内にセラミック原料スラ
リーが充満しスしまい目づまシが生ずる。その結果連続
した空孔を備え且つ全体にわたって均一に分布したセラ
ミック多孔体ができにくいという欠点を有していた。A method for producing a calcium phosphate ceramic porous body is to immerse a continuous organic porous body such as polyurethane foam in a ceramic raw material slurry to adhere the ceramic raw material slurry to the inner surface of the pores, and then heat the organic porous body. A method is known in which a porous ceramic body is formed by decomposing and sintering the attached ceramic (for example, Japanese Patent Laid-Open No. 7856/1983). However, in the known method, the pores of the organic porous body are filled with the ceramic raw material slurry, resulting in clogging. As a result, it has the disadvantage that it is difficult to produce a ceramic porous body having continuous pores and uniformly distributed throughout.
前述の如く公知セラミック多孔体の製造法ではいずれも
セラミック原料スラリーを微細な空孔の有機質多孔体の
空孔内表面に目づまシすることなく耐着させることがで
きず、連続した空孔を備え且つ全体にわたって均一に分
布した空孔を有する強度のあるセラミック多孔体を製造
することができないなどの問題がある。本発明はこれら
の問題を解消すべく、従来法と全く異なる新規なセラミ
ック多孔体の製造法を提供するものである。As mentioned above, in all known methods for producing porous ceramic bodies, it is not possible to adhere the ceramic raw material slurry to the inner surface of the pores of an organic porous body having fine pores without clogging them, and it is impossible to make the ceramic raw material slurry adhere to the inner surface of the pores of the organic porous body with continuous pores. There are problems such as the inability to produce a strong ceramic porous body having pores that are uniformly distributed throughout. In order to solve these problems, the present invention provides a novel method for manufacturing porous ceramic bodies that is completely different from conventional methods.
不発明者らは前述の問題を解消し、所望のリン酸カルシ
ウム系のセラミック多孔体をうるため種々研究を重ねた
結果、従来法とは全く異なった方法を見出したものであ
る。すなわち本発明は、Oa/P原子比1.45〜1.
70のカルシウムのリン酸塩を主体とする粒径0,2〜
2.0 Mの顆粒を所望の形状に成形し700〜140
0℃で焼成することを特徴とする、多孔体リン酸カルシ
ウム系セラミックの製造法である。The inventors of the present invention have conducted various studies in order to solve the above-mentioned problems and obtain a desired calcium phosphate ceramic porous body, and as a result, they have discovered a method that is completely different from conventional methods. That is, in the present invention, the Oa/P atomic ratio is 1.45 to 1.
Particle size 0.2~ mainly composed of 70 calcium phosphate
2.0 M granules are molded into the desired shape and 700 to 140
This is a method for producing a porous calcium phosphate ceramic, which is characterized by firing at 0°C.
本発明で用いるカルシウムのリン酸塩としてはヒドロキ
シアパタイト及びリン酸三カルシウムが好適であシ、勿
論これらの混合粉末も使用でき、 Ca/P原子比が
1.45〜1.70の範囲のものである。1.45未満
ではこれらの含有量が少くなり、1.70を超えると焼
成によl) OaOが生成し、いずれも好ましくない。As the calcium phosphate used in the present invention, hydroxyapatite and tricalcium phosphate are suitable, and of course mixed powders of these can also be used, with a Ca/P atomic ratio in the range of 1.45 to 1.70. It is. If it is less than 1.45, the content of these substances decreases, and if it exceeds 1.70, OaO will be generated during firing, both of which are unfavorable.
かかるリン酸カルシウム系の粉末から顆粒を得る方法と
しては粉末を金型もしくはラバープレス等を用い、1k
f/M以上の圧力で圧縮成形して0.2〜2.0111
の顆粒をつくるか、もしくは圧縮成形後粉砕、篩分けし
0.2〜2.0簡の顆粒にする。なお顆粒は、製品をよ
り均一な多孔体にすること及び鋭利な角があると生体に
対する刺激源になるため球形に近い形にした方が望まし
い。また顆粒の粒径は0.2w+以下では得られる成形
体の孔径がO,Jw+以下となシ、好ましくない。一方
粒径の上限は特にないが、2.0目を越えると得られる
成形体の強度が低下し実用的ではない。A method for obtaining granules from such calcium phosphate powder is to mold the powder using a mold or rubber press, etc.
0.2 to 2.0111 by compression molding at a pressure of f/M or higher
granules, or after compression molding, crush and sieve to make granules of 0.2 to 2.0 pieces. Note that it is preferable that the granules have a shape close to spherical in order to make the product more uniformly porous and since sharp edges can be a source of irritation to living organisms. Furthermore, if the particle size of the granules is less than 0.2w+, the pore size of the resulting molded product will be less than O,Jw+, which is not preferable. On the other hand, there is no particular upper limit to the particle size, but if it exceeds 2.0, the strength of the resulting molded product will decrease and is not practical.
次に、顆粒を所望の形状の型わくに入れ加圧成形するが
その圧力は、製品の必要強度に応じ、顆粒が余9崩れな
い程度の範囲で自由に選択できる。顆粒が崩れ易いとき
は、一旦、最終焼成温度以下で焼成し、強度を上げる処
理をしてから加圧成形してもよい。また、成形が難しい
ときは、水で湿らして成形したシ、有機系の結合剤例え
ばポリアクリル酸アンモニウム、ポリアクリル酸、PV
A、ポリアクリル酸メチル、乳酸等あるいはリン酸カル
シウム系の粉末を使用して成形してもよい。Next, the granules are placed in a mold of a desired shape and press-molded, and the pressure can be freely selected within a range that does not cause the granules to collapse, depending on the required strength of the product. If the granules tend to crumble, they may be fired at a temperature below the final firing temperature to increase their strength, and then pressure molded. In addition, when molding is difficult, we recommend molding by moistening with water, organic binders such as ammonium polyacrylate, polyacrylic acid, PV
A, polymethyl acrylate, lactic acid, etc. or calcium phosphate powder may be used for molding.
このようにして得られた成形体を700〜1400℃、
好ましくは1100〜1300℃で焼成することにより
強度のある均質な多孔質のリン酸カルシウム系セラミッ
クを製造するものである。The molded body thus obtained was heated to 700 to 1400°C.
Preferably, a strong, homogeneous, porous calcium phosphate ceramic is produced by firing at a temperature of 1,100 to 1,300°C.
本発明方法によシ製造した多孔質リン酸カルシウムの成
形体は、医師等がこのような代用骨 5一
部材で骨欠損部などを治療するに際しては単に人手によ
シ折割するとか、もしくは超硬工具製手動利器等の簡単
な器具で細工し、充填部に適した形状にして使用すれば
よい。The porous calcium phosphate molded body produced by the method of the present invention can be used by doctors, etc. when treating bone defects etc. with such a bone substitute material by simply manually breaking it, or by using carbide. It can be used by crafting it with a simple tool such as a manual tool and shaping it into a shape suitable for the filling area.
以下実施例によシ本発明をより具体的に説明する。The present invention will be explained in more detail by way of Examples below.
実施例1〜7.9
リン酸カルシウムの粉末を圧縮成形し、仮焼、粉砕、球
状化処理後篩分けした。次に、この顆粒とポリアクリル
酸アンモニウムを混付し、金型で圧縮成形した後焼成す
ることにより多孔体リン酸カルシウムを得た。この結果
を第1表に示す。Examples 1 to 7.9 Calcium phosphate powder was compression molded, calcined, pulverized, spheroidized, and then sieved. Next, the granules and ammonium polyacrylate were mixed together, compression molded in a mold, and then fired to obtain a porous calcium phosphate. The results are shown in Table 1.
実施例8
ヒドロキシアパタイトの粉末を0.5〜0.7mの球状
の顆粒に圧縮成形(金型プレス圧20 kW/all
)したものを仮焼(800℃、1時間)した。この顆粒
とポリアクリル酸アンモニウムを混合し、金型で圧縮成
形した後焼成することによシ多孔体ヒドロキシアパタイ
トを得九。この結果も併せて6一
第1表に示す。Example 8 Compression molding of hydroxyapatite powder into spherical granules of 0.5 to 0.7 m (mold press pressure 20 kW/all
) was calcined (800°C, 1 hour). Porous hydroxyapatite was obtained by mixing these granules with ammonium polyacrylate, compression molding in a mold, and then firing. The results are also shown in Table 1.
本発明方法は、従来の有機質多孔体を使う多孔体リン酸
カルシウム製造法とは全く異なる方法でアリ、従来法の
欠点もなく、均一に分布した空孔を有する強度のある多
孔体リン酸カルシウム系セラミックが簡単に製造できる
。The method of the present invention is completely different from the conventional manufacturing method of porous calcium phosphate using organic porous materials, and has no disadvantages of conventional methods, and it is easy to produce strong porous calcium phosphate ceramics with uniformly distributed pores. can be manufactured.
また、本発明方法によって得られる多孔体リン酸カルシ
ウム系セラミックは、医師等が骨欠損部などの治療に使
用するとき、充填箇所に適した形状に簡単に細工できる
適度な強度を有しており、より実用的な骨欠損部充填材
料としてきわめて有用である。In addition, when the porous calcium phosphate ceramic obtained by the method of the present invention is used by doctors to treat bone defects, etc., it has a suitable strength that allows it to be easily shaped into a shape suitable for the filling site. It is extremely useful as a practical bone defect filling material.
Claims (1)
酸塩を主体とする粒径0.2〜2.0mmの顆粒を所望
の形状に成形した後700〜1400℃で焼成すること
を特徴とする多孔体リン酸カルシウム系セラミックの製
造法。Granules with a particle size of 0.2 to 2.0 mm mainly composed of calcium phosphate with a Ca/P atomic ratio of 1.45 to 1.70 are formed into a desired shape and then fired at 700 to 1400 ° C. A manufacturing method for porous calcium phosphate ceramics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59247938A JPS61127658A (en) | 1984-11-26 | 1984-11-26 | Manufacture of porous calcium phosphate ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59247938A JPS61127658A (en) | 1984-11-26 | 1984-11-26 | Manufacture of porous calcium phosphate ceramics |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61127658A true JPS61127658A (en) | 1986-06-14 |
Family
ID=17170783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59247938A Pending JPS61127658A (en) | 1984-11-26 | 1984-11-26 | Manufacture of porous calcium phosphate ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61127658A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230412A (en) * | 1987-11-27 | 1989-09-13 | Kobe Steel Ltd | Calcium phosphate compound granular form and production thereof |
EP0376331A2 (en) * | 1988-12-29 | 1990-07-04 | Asahi Kogaku Kogyo Kabushiki Kaisha | Slow release drug delivery granules and process for production thereof |
JPH03261673A (en) * | 1990-03-09 | 1991-11-21 | Mitsubishi Materials Corp | Calcium phosphate ceramic porous material |
FR2840811A1 (en) * | 2002-06-12 | 2003-12-19 | Hiromi Matsuzaki | Material for the repair of vertebrae fractures, through spinal column compression, is in ceramic pastilles with a polyhedron shape and a structured pitch angle between opposing surfaces |
US10286102B2 (en) | 2010-05-11 | 2019-05-14 | Howmedica Osteonics Corp | Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138006A (en) * | 1978-04-19 | 1979-10-26 | Kyoto Ceramic | Bone break filling ceramic member |
JPS55130854A (en) * | 1979-03-31 | 1980-10-11 | Mitsubishi Mining & Cement Co | Method of burning hydroxyyapatite sintered body |
-
1984
- 1984-11-26 JP JP59247938A patent/JPS61127658A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54138006A (en) * | 1978-04-19 | 1979-10-26 | Kyoto Ceramic | Bone break filling ceramic member |
JPS55130854A (en) * | 1979-03-31 | 1980-10-11 | Mitsubishi Mining & Cement Co | Method of burning hydroxyyapatite sintered body |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230412A (en) * | 1987-11-27 | 1989-09-13 | Kobe Steel Ltd | Calcium phosphate compound granular form and production thereof |
EP0376331A2 (en) * | 1988-12-29 | 1990-07-04 | Asahi Kogaku Kogyo Kabushiki Kaisha | Slow release drug delivery granules and process for production thereof |
JPH03261673A (en) * | 1990-03-09 | 1991-11-21 | Mitsubishi Materials Corp | Calcium phosphate ceramic porous material |
FR2840811A1 (en) * | 2002-06-12 | 2003-12-19 | Hiromi Matsuzaki | Material for the repair of vertebrae fractures, through spinal column compression, is in ceramic pastilles with a polyhedron shape and a structured pitch angle between opposing surfaces |
GB2390548A (en) * | 2002-06-12 | 2004-01-14 | Pentax Corp | Bone replacement material |
GB2390548B (en) * | 2002-06-12 | 2006-01-18 | Pentax Corp | Bone replacement material |
US7238209B2 (en) | 2002-06-12 | 2007-07-03 | Pentax Corporation | Bone replacement material |
US10286102B2 (en) | 2010-05-11 | 2019-05-14 | Howmedica Osteonics Corp | Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910001352B1 (en) | Porous ceramic material and method for producing thereof | |
JP2572606B2 (en) | Manufacturing method of superficially porous calcium phosphate ceramics | |
US5549123A (en) | Process for producing biocompatible implant material by firing a mixture of a granulated powder and a combustible substance | |
US4846838A (en) | Prosthetic body for bone substitute and a method for the preparation thereof | |
Descamps et al. | Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural | |
KR100951199B1 (en) | Machinable preformed calcium phosphate bone substitute material implants | |
US4113500A (en) | Sintered apatite body | |
US4889833A (en) | Granular inorganic moldings and a process for production thereof | |
JP2003507132A (en) | Resorbable bone substitutes and bone constituents | |
Lee et al. | Effect of thermal treatment of the hydroxyapatite powders on the micropore and microstructure of porous biphasic calcium phosphate composite granules | |
Gören et al. | Production of hydroxylapatite from animal bone | |
JPS61127658A (en) | Manufacture of porous calcium phosphate ceramics | |
KR101647951B1 (en) | Artificial bones containing nano TCP by wet chemical method and preparation method thereof | |
JP3231135B2 (en) | Biological implant material and method for producing the same | |
JPS59171546A (en) | Filler for bone substitute | |
JPS6330361A (en) | Manufacture of calcium phosphate base ceramics | |
JP2506826B2 (en) | Granular inorganic molded body and method for producing the same | |
EP2229961A2 (en) | Method for fabrication of highly porous, calcium phosphate bioactive implant material | |
JPS61242968A (en) | Forming material | |
JPH0588623B2 (en) | ||
Ito et al. | Preparation and Evaluation of Cements Using Spherical Porous β-Tricalcium Phosphate Granules | |
JPH08112341A (en) | Bone packing material and its production | |
JPS6389164A (en) | Block-shaped artificial bone | |
JPH05208044A (en) | Natural hydroxyapatite porous body and its manufacture | |
JPH0753616B2 (en) | Block-shaped composite material and method for producing the same |