JPS61126771A - Fuel cell - Google Patents
Fuel cellInfo
- Publication number
- JPS61126771A JPS61126771A JP59247356A JP24735684A JPS61126771A JP S61126771 A JPS61126771 A JP S61126771A JP 59247356 A JP59247356 A JP 59247356A JP 24735684 A JP24735684 A JP 24735684A JP S61126771 A JPS61126771 A JP S61126771A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- fiber
- thickness
- electrolyte layer
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/08—Fuel cells with aqueous electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
- H01M8/0293—Matrices for immobilising electrolyte solutions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は電解質層の構造を改良した燃料電池に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a fuel cell with an improved electrolyte layer structure.
燃料電池(以下、電池と略記する)は燃料がもっている
化学エネルギーを直接電気エネルギーに変換する装置で
ある。電池は通常電解質層を挟んで一対の多孔質電極を
配置するとともに、一方の電極の背面に水素のような燃
料ガスを接触させ、また他方の電極の背面に酸素のよう
な酸化剤ガスを接触させる。このときに両電極間で起る
電気化学的反応を利用して両電極間から電気エネルギー
を取り出すように構成したものである。A fuel cell (hereinafter abbreviated as battery) is a device that directly converts chemical energy contained in fuel into electrical energy. Batteries usually have a pair of porous electrodes with an electrolyte layer in between, and a fuel gas such as hydrogen is brought into contact with the back of one electrode, and an oxidant gas such as oxygen is brought into contact with the back of the other electrode. let The structure is such that electrical energy is extracted from between the two electrodes by utilizing the electrochemical reaction that occurs between the two electrodes at this time.
電解質として溶融塩、アルカリ溶液及び酸溶液などがあ
るが、代表的なりん酸を電解質とする電池の原理につい
て説明する。第2吋において、電解質層1は繊維質シー
トや鉱物質粉末に)ん酸を含浸しである。この電解質層
1の両側にはアノード電極2及びカソード電極2&を配
設する。これら両電極2,2aは炭素質部材からなる多
孔性部材から形成される。またこれら両電極2.21の
夫々電解質層1側には、通常は白金触媒を塗布している
。アノード電極2及びカソード電極2aは、夫々電解質
層1側と反対側には、燃料ガスが流れる燃料ガス室3及
び酸化剤ガスが流れる酸化剤ガス室3aとが夫々設けら
れる。一般にりん酸形燃料電池においては燃料ガスは水
素ガスであり、また酸化剤ガスは空気である。Although there are molten salts, alkaline solutions, acid solutions, etc. as electrolytes, the principle of a typical battery using phosphoric acid as an electrolyte will be explained. In the second stage, the electrolyte layer 1 is a fibrous sheet or mineral powder impregnated with phosphoric acid. An anode electrode 2 and a cathode electrode 2& are provided on both sides of this electrolyte layer 1. Both electrodes 2 and 2a are formed from porous members made of carbonaceous material. Further, a platinum catalyst is usually coated on the electrolyte layer 1 side of each of these electrodes 2.21. The anode electrode 2 and the cathode electrode 2a are provided with a fuel gas chamber 3 through which the fuel gas flows and an oxidant gas chamber 3a through which the oxidant gas flows, respectively, on the side opposite to the electrolyte layer 1 side. Generally, in a phosphoric acid fuel cell, the fuel gas is hydrogen gas, and the oxidant gas is air.
このようなりん酸形電池について作用を説明する。燃料
ガス室3に流入したガス中の水素ガスは多孔質なアノー
ド電極2の空所に拡散して触媒に達する。そして触媒の
作用によって水素ガスは水素イオンと電子とに解離する
。The operation of such a phosphoric acid battery will be explained. Hydrogen gas in the gas that has flowed into the fuel gas chamber 3 diffuses into the cavity of the porous anode electrode 2 and reaches the catalyst. Then, the hydrogen gas is dissociated into hydrogen ions and electrons by the action of the catalyst.
すなわち反応式はH2→2H” + 2 eである。That is, the reaction formula is H2→2H''+2e.
次にこの水素イオン針は電解質層1に入シ、濃度拡散に
よってカソード電極2aに向って泳動してゆく。一方電
子・はアノード電極2に流れ込み、このアノード電極2
は負に課電される。Next, this hydrogen ion needle enters the electrolyte layer 1 and migrates toward the cathode electrode 2a due to concentration diffusion. On the other hand, electrons flow into the anode electrode 2, and this anode electrode 2
is negatively charged.
tたカソード電極21においては、アノード電極2から
泳動してきた水素イオンH+と、酸化剤ガス室3aに流
入した空気中の酸素0□が多孔質なカソード電極2&の
空所に拡散する。この拡散してきた酸素02と、アノー
ド電極2から外部の電気負荷を通って電池に戻って来た
電子・と水素イオンH+との3者が触媒表面で次のよう
な反応を起す。In the cathode electrode 21, hydrogen ions H+ migrating from the anode electrode 2 and oxygen 0□ in the air that has flowed into the oxidant gas chamber 3a diffuse into the void space of the porous cathode electrode 2&. The following reaction occurs on the catalyst surface between the diffused oxygen 02, the electrons and hydrogen ions H+ that have returned to the battery from the anode electrode 2 through the external electrical load.
すなわち、4 H” + 4 e + 02 →2 H
2Oかくして、電気回路としてループを完成し、水素と
酸素は電気エネルギーを外部の電気負荷に与え、カソー
ド電極2&上で水になる。すなわち、水素と酸素が反応
して水を作るときのエネルギーを電気負荷に与えたこと
になる。かつ、この電気エネルギーの一部は電解質層1
内部で電池の内部抵抗として、又触媒附近では濃度分極
作用で電圧降下を生じ、電池の損失として内部で消費さ
れる。この電池内部における電圧降下を少なくすること
、すなわち効率を上げること、及び電極の単位面積当り
の出力を大きくするため、徨々の改良が試みられている
。That is, 4 H" + 4 e + 02 → 2 H
2O thus completing the loop as an electrical circuit, the hydrogen and oxygen provide electrical energy to the external electrical load and become water on the cathode electrode 2&. In other words, the energy used when hydrogen and oxygen react to create water is given to the electrical load. And a part of this electrical energy is transferred to the electrolyte layer 1.
A voltage drop occurs inside the battery as internal resistance and near the catalyst due to concentration polarization, and is consumed internally as battery loss. Many improvements have been made to reduce the voltage drop inside the battery, that is, to increase efficiency and to increase the output per unit area of the electrode.
この電池1個の′−圧は0.6VないしO,SVで、電
源装置として使用するには小さすぎるので、多数の単位
電池10を積層する。このように積層するには電極全面
に燃料あるいは酸化剤ガスを供給するための溝と、電気
的に直列回路を作るための接続体となるように抵抗値の
低い導電性との2つの機能をもった例えば溝付黒鉛質板
からなる中間接続部材、いわゆるインターコネクタを単
位電池10と交互に積層する。Since the '-voltage of one battery is 0.6 V to O.SV, which is too small to be used as a power supply device, a large number of unit batteries 10 are stacked. Layering in this way has two functions: a groove for supplying fuel or oxidant gas to the entire surface of the electrode, and conductivity with low resistance so as to serve as a connection body to create an electrical series circuit. Intermediate connecting members, so-called interconnectors, made of, for example, grooved graphite plates are alternately stacked with the unit batteries 10.
単位電池10を積層した電池の構成を第3図に示す。電
解質を含浸した電解質層すなわちマトリックス11を境
にして、この両側にアノード電極及びカソード電極に相
当する電極12及び12aを夫々配設する。またこれら
電極12及び12mにはマトリックス11に接する側に
夫々白金触媒からなる触媒層13及び13aを形成する
。FIG. 3 shows the structure of a battery in which unit batteries 10 are stacked. Electrodes 12 and 12a corresponding to an anode electrode and a cathode electrode are provided on both sides of an electrolyte layer impregnated with an electrolyte, that is, a matrix 11, respectively. Catalyst layers 13 and 13a made of platinum catalyst are formed on the sides of these electrodes 12 and 12m in contact with the matrix 11, respectively.
そして電極12及び12hの触媒層13及び13aと反
対側に溝15,15*及びリプ16,16hを形成 ′
するとともに電極12の溝15及びリプ16は電極12
aの溝151及びリプ16&と互に直交するように形成
される。このように形成された単位電池10を選定され
た複数個をセパレータ17を介して重ね、端部に集電板
18を当接し、図示しない締付部材を介して全体を締付
固定することによって電池積層体19を構成する。なお
、セパレータ17は炭素又は黒鉛部材からなるシートに
よって形成され、互に隣接する両電極12.12a間の
夫々のガス流の混合を防ぐために設けられる。Then, grooves 15, 15* and lips 16, 16h are formed on the opposite side of the catalyst layers 13 and 13a of the electrodes 12 and 12h.
At the same time, the groove 15 and lip 16 of the electrode 12
The groove 151 and the lip 16& are formed so as to be perpendicular to each other. By stacking a selected plurality of unit batteries 10 formed in this way with a separator 17 in between, abutting a current collector plate 18 at the end, and tightening and fixing the whole unit through a tightening member (not shown). A battery stack 19 is configured. Note that the separator 17 is formed of a sheet made of carbon or graphite material, and is provided to prevent the respective gas flows between the two adjacent electrodes 12.12a from mixing.
この電池積層体19には第4図に示すように、燃料ガス
を供給するマニホールド21と、燃料排ガスを集めるマ
ニホールド21Eと、酸化剤ガスを供給するマニホール
ド23と、酸化剤ガスを集めて排出するマニホールド2
3Eを夫々図示しないガスケットを介して取付ける。こ
のがスケットは電気的絶縁及び気密保持との2つの役目
を果している。またマニホールド2ノには燃料ガスを供
給する・ぐイブ22を設け、マニホールド21Eには燃
料排ガスを排出するパイプ22Eを設ける。同様にマニ
ホールド23及び23Eには夫々酸化剤ガスを供給及び
排出するパイプ24及び24Eを設ける。As shown in FIG. 4, this battery stack 19 includes a manifold 21 that supplies fuel gas, a manifold 21E that collects fuel exhaust gas, a manifold 23 that supplies oxidizing gas, and a manifold 23 that collects and discharges oxidizing gas. Manifold 2
3E are attached via gaskets (not shown). This socket plays the dual role of electrical insulation and airtightness. Further, the manifold 2 is provided with a pipe 22 for supplying fuel gas, and the manifold 21E is provided with a pipe 22E for discharging fuel exhaust gas. Similarly, the manifolds 23 and 23E are provided with pipes 24 and 24E for supplying and discharging the oxidant gas, respectively.
このように形成された電池25にはバイア”、?2から
燃料ガスがマニホールド21に流入する。In the battery 25 formed in this way, fuel gas flows into the manifold 21 from the vias '' and ?2.
次いで多数の溝17に分流した燃料ガスが各単位電池1
0の電極12に供給される。燃料ガスとともに流入する
燃料以外の成分と未反応の燃料すなわち余剰の燃料は燃
料排ガスとなってマニホールド21’B、ノ譬イグ22
Y、を経て排出される。Next, the fuel gas divided into a large number of grooves 17 flows into each unit cell 1.
0 electrode 12. Components other than fuel flowing in with the fuel gas and unreacted fuel, i.e., surplus fuel, become fuel exhaust gas and are transferred to the manifold 21'B and the exhaust gas 22.
It is discharged via Y.
また酸化剤ガスについても同様である。かくして供給さ
れる燃料ガス及び酸化剤ガスは多孔質な電極12.12
*内部を拡散してマトリックス11に達する。そして前
述の原理の通夛に電気エネルギーに変換される。The same applies to the oxidizing gas. The fuel gas and oxidant gas thus supplied are fed to the porous electrode 12.12.
* Diffuses inside and reaches matrix 11. It is then converted into electrical energy using the principles described above.
この電池25の電圧は単位電池10の電圧の和である。The voltage of this battery 25 is the sum of the voltages of the unit batteries 10.
また電流は各単位電池10を直列に流れ集電板よシ外部
にとり出される。Further, the current flows through each unit battery 10 in series and is taken out to the outside through the current collector plate.
ところで、上記マトリックス11は一般に電解質保持剤
に電解質であるりん酸を含浸したものである。ここで電
解質保持剤は、耐りん酸性に優れりん酸を保持するため
細かい粉末であり、現在ではシリコンカーバイト(Si
C)が多く使用されている。また、マトリックス11は
一般にペースト状であり、一方の電極121の上に塗布
される。この場合、均一な厚みを保持しながら電極の全
面にわたって塗布し、その後もう一方の電極12と合わ
せる。そしてさらに、接触状態を良くするためにプレス
によって圧着するが、この場合に圧着力が弱いと接触不
良となり、逆に圧着力が強すぎると電極面への応力不均
一を生じて電極12.12*に損傷が生じる等の問題が
ある。By the way, the matrix 11 is generally made by impregnating an electrolyte holding agent with phosphoric acid, which is an electrolyte. The electrolyte retaining agent here is a fine powder that has excellent phosphoric acid resistance and retains phosphoric acid, and is currently made of silicon carbide (Si).
C) is often used. Further, the matrix 11 is generally in the form of a paste, and is applied onto one of the electrodes 121. In this case, it is applied over the entire surface of the electrode while maintaining a uniform thickness, and then combined with the other electrode 12. Furthermore, in order to improve the contact state, crimping is performed using a press, but in this case, if the crimping force is too weak, it will result in poor contact, and if the crimping force is too strong, it will cause uneven stress on the electrode surface, resulting in electrode 12.12. There are problems such as damage to *.
本発明は上記のような問題点を解決するために成された
もので、その目的は電解質層の厚みを均一に電極面への
応力を均一にして電極の損傷をなくすることが可能な長
寿命の燃料電池を提供することにある。The present invention was made in order to solve the above-mentioned problems, and its purpose is to make the electrolyte layer uniform in thickness, uniformize the stress on the electrode surface, and eliminate damage to the electrode. Our goal is to provide long-life fuel cells.
上記目的を達成するために本発明では、電解質層を挟ん
で一対の多孔質電極を配置すると共に、一方の電極の背
面に燃料ガスを接触させまた他方の電極の背面に酸化剤
ガスを接触させることにより起る電気化学的反応を利用
して上記一対の電極間から電気エネルギーを取出すよう
にした燃料電池において、上記電解質層にその支持体と
して、耐電解質性に優れた所定の厚みのアスベスト繊維
等の繊維を埋設するようにしたことを特徴とする。In order to achieve the above object, in the present invention, a pair of porous electrodes are arranged with an electrolyte layer in between, and a fuel gas is brought into contact with the back surface of one electrode, and an oxidizing gas is brought into contact with the back surface of the other electrode. In a fuel cell that extracts electrical energy from between the pair of electrodes using the electrochemical reaction that occurs, asbestos fibers of a predetermined thickness with excellent electrolyte resistance are used as a support for the electrolyte layer. It is characterized by having fibers such as these buried therein.
以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.
つまり、本実施例は前述した燃料電池における電解質層
つまシマトリックス中に、その支持体として耐りん酸性
に優れた所定の厚みの棒状のアスベスト繊維を各々平行
にある間隔をおいて埋設するようにするものである。そ
して、かかるマ) IJフックス一対の多孔質電極で挟
んでなる巣位電池は以下のようにして得る。In other words, in this embodiment, rod-shaped asbestos fibers having a predetermined thickness and having excellent phosphoric acid resistance are buried in parallel at certain intervals as supports in the electrolyte layer matrix in the fuel cell described above. It is something to do. Then, such a cell battery formed by sandwiching the IJ Fuchs between a pair of porous electrodes is obtained as follows.
すなわち、第1図においてカソード電極12&は一方に
平坦な面を形成し、当該面と反対側の面には反応ガス流
通用の溝151を堀った面を形成している。また上記平
坦な面の上には、電気化学的反応を促進させるためのカ
ソード触媒13&を塗布する。つぎにこのカソード触媒
13aの上には、予め電解質としてのシん酸を含浸させ
た耐シん酸性に優れた所定の厚みの棒状のアスベスト繊
維30を、カソード電極12&の溝J5mを反応ガスが
流通する方向に対してθ〜90゜(望ましくは45°)
までのある角度をもたせ、各々平行にある間隔をおいて
配置していく。その後、このカソード触媒13a上に置
かれたアスベスト繊維30の上から当該繊維30の厚み
と同等の厚みとなるようにマトリックスを一様に塗布す
る。しかる後この上に、上記カソード電極12aと同一
構造のもう一方のアノード電極を、その平坦な面がマト
リックスと接触するように載せて圧着することによp単
位電池を得る。なお、上記でアスベスト繊維30はその
厚み、つまり太さが数十μmから数nまでのある一定の
太さのものを使用する。That is, in FIG. 1, the cathode electrode 12 & has a flat surface formed on one side, and a surface formed with grooves 151 for reactant gas circulation on the opposite surface. Furthermore, a cathode catalyst 13& for promoting electrochemical reactions is applied on the flat surface. Next, on the cathode catalyst 13a, a rod-shaped asbestos fiber 30 of a predetermined thickness, which has excellent phosphoric acid resistance and has been impregnated with phosphoric acid as an electrolyte, is placed on the cathode catalyst 13a. θ~90° (preferably 45°) with respect to the direction of flow
They are arranged parallel to each other at a certain angle, each at a certain interval. Thereafter, a matrix is uniformly applied onto the asbestos fibers 30 placed on the cathode catalyst 13a so as to have the same thickness as the fibers 30. Thereafter, another anode electrode having the same structure as the cathode electrode 12a is placed on top of the cathode electrode 12a so that its flat surface is in contact with the matrix, and the anode electrode is pressed to obtain a P unit cell. Note that the asbestos fibers 30 used above have a certain thickness, that is, a thickness ranging from several tens of micrometers to several nanometers.
このようにして得られた単位電池は、圧着の際にアスベ
スト繊維30の厚みの分だけは均一にマトリックスの厚
みが確保されることになる。In the unit battery thus obtained, the thickness of the matrix is ensured to be uniform by the thickness of the asbestos fibers 30 during compression bonding.
したがって、前述の如き電極とマトリックスとの接触不
良を生ずることなく、またマトリックスのはみ出しを最
小限に抑えつつ単位電池を得ることができる。また、マ
トリックスの厚みが均一となって面圧が一定に保たれ、
かつアスベスト繊維30が電極の溝に対しである角度を
もって配置されていることから、電極の溝の堀っである
厚みの薄い部分への集中応力が少なくなり、圧着に伴な
う電極の損傷を確実に防止して長寿命化を図ることが可
能となる。Therefore, a unit battery can be obtained without causing poor contact between the electrode and the matrix as described above, and while minimizing the protrusion of the matrix. In addition, the thickness of the matrix becomes uniform and the surface pressure is kept constant.
In addition, since the asbestos fibers 30 are arranged at a certain angle with respect to the grooves of the electrode, concentrated stress on the thin part of the electrode groove, which is the groove, is reduced, and damage to the electrode due to crimping is reduced. It is possible to reliably prevent this and extend the lifespan.
尚、上記実施例では繊維としてアスベスト繊維を用い、
またt解質とし0ん酸を用いたが、電解質として溶融炭
酸塩等のその他のものを用い、繊維として耐電解質性に
優れたものを用いるようにしてもよいものである。In addition, in the above example, asbestos fiber was used as the fiber,
Furthermore, although phosphoric acid was used as the solute, other materials such as molten carbonate may be used as the electrolyte, and fibers with excellent electrolyte resistance may be used.
以上説明したように本発明によれば、電解質層にその支
持体として耐電解質性に優れた所定の厚みの繊維を埋設
するようにしたので、電解質層の厚みを均一にし電極面
への応力を均一にして電極の損傷をなくすることが可能
な極めて信頼性の高い長寿命の燃料電池が提供できる。As explained above, according to the present invention, fibers having a predetermined thickness and excellent electrolyte resistance are embedded in the electrolyte layer as its support, thereby making the thickness of the electrolyte layer uniform and reducing stress on the electrode surface. It is possible to provide an extremely reliable and long-life fuel cell in which damage to the electrodes can be eliminated with uniformity.
【図面の簡単な説明】
第1図は本発明の一実施例を示す斜視図、第2図はシん
酸型燃料電池の動作原理を示す説明図、第3図は従来の
燃料電池の単位電池を積層した状態を示す斜視図、第4
図は第3図の電池積層体にマニホールドを取付けた状態
を示す斜視図である。
1・・・電解質層、2.12・・・アノード電極、2a
。
12h・・・カソード側溝、3・・・燃料ガス宣、3&
・・・酸化剤ガス室、10・・・単位電池、1ノ・・・
マトリックス、13・・・アノード触媒、13&・・・
カソード側溝、J5・・・アノード側溝、15a・・・
カソード側溝、16.161L・・・リプ、17・・・
触媒、18・・・セパレータ、19・・・電池積層体、
21.21E、23・・・マニホールド、22,22E
、24.24E・・・ノ々イブ、25・・・電池、30
・・・繊維。
出願人代理人 弁理士 鈴 江 武 彦¥711図[Brief Description of the Drawings] Figure 1 is a perspective view showing an embodiment of the present invention, Figure 2 is an explanatory diagram showing the operating principle of a cynic acid fuel cell, and Figure 3 is a conventional fuel cell unit. Perspective view showing a state in which batteries are stacked, No. 4
This figure is a perspective view showing a state in which a manifold is attached to the battery stack of FIG. 3. 1... Electrolyte layer, 2.12... Anode electrode, 2a
. 12h...Cathode gutter, 3...Fuel gas pump, 3&
...oxidant gas chamber, 10... unit battery, 1 no..
Matrix, 13... Anode catalyst, 13 &...
Cathode side groove, J5... Anode side groove, 15a...
Cathode gutter, 16.161L... lip, 17...
Catalyst, 18... Separator, 19... Battery laminate,
21.21E, 23... Manifold, 22, 22E
, 24.24E...Nonoib, 25...Battery, 30
···fiber. Applicant's agent Patent attorney Takehiko Suzue ¥711
Claims (4)
共に、一方の電極の背面に燃料ガスを接触させまた他方
の電極の背面に酸化剤ガスを接触させることにより起こ
る電気化学的反応を利用して前記一対の電極間から電気
エネルギーを取出すようにした燃料電池において、前記
電解質層にその支持体として耐電解質性に優れた所定の
厚みの繊維を埋設するようにしたことを特徴とする燃料
電池。(1) Electrochemical reactions occur by arranging a pair of porous electrodes with an electrolyte layer in between, and bringing fuel gas into contact with the back surface of one electrode and contacting oxidant gas with the back surface of the other electrode. The fuel cell is characterized in that a fiber of a predetermined thickness with excellent electrolyte resistance is embedded in the electrolyte layer as a support for the electrolyte layer. Fuel cell.
とを特徴とする特許請求の範囲第(1)項記載の燃料電
池。(2) The fuel cell according to claim (1), characterized in that asbestos fibers are used as the fibers.
たことを特徴とする特許請求の範囲第(1)項記載の燃
料電池。(3) The fuel cell according to claim (1), wherein the fibers are arranged in parallel at certain intervals.
°の角度をもたせて配置するようにしたことを特徴とす
る特許請求の範囲第(3)項記載の燃料電池。(4) The fiber is 45 mm in direction of gas flow in the electrode.
The fuel cell according to claim 3, wherein the fuel cell is arranged at an angle of .degree.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59247356A JPS61126771A (en) | 1984-11-22 | 1984-11-22 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59247356A JPS61126771A (en) | 1984-11-22 | 1984-11-22 | Fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61126771A true JPS61126771A (en) | 1986-06-14 |
Family
ID=17162195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59247356A Pending JPS61126771A (en) | 1984-11-22 | 1984-11-22 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61126771A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100606978B1 (en) | 2004-04-09 | 2006-08-01 | 엘지전자 주식회사 | Fuel Cell |
JP2008072109A (en) * | 2001-09-28 | 2008-03-27 | Univ Leland Stanford Jr | Electroosmotic microchannel cooling system |
-
1984
- 1984-11-22 JP JP59247356A patent/JPS61126771A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008072109A (en) * | 2001-09-28 | 2008-03-27 | Univ Leland Stanford Jr | Electroosmotic microchannel cooling system |
KR100606978B1 (en) | 2004-04-09 | 2006-08-01 | 엘지전자 주식회사 | Fuel Cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7799482B2 (en) | Stack of generators and fuel cell system having the same | |
CA2490877C (en) | Humidity controlled solid polymer electrolyte fuel cell assembly | |
US6303245B1 (en) | Fuel cell channeled distribution of hydration water | |
US8034510B2 (en) | Gas diffusion layer in a fuel cell | |
KR100543483B1 (en) | Fuel cell | |
JP3555215B2 (en) | Method of manufacturing fuel cell and flow path forming member used therein | |
KR100709212B1 (en) | Fuel cell system and stack | |
JPS61126771A (en) | Fuel cell | |
JP7249981B2 (en) | Electrochemical reaction cell stack | |
JPS61126775A (en) | Fuel cell | |
US20030170528A1 (en) | Moldable separator plate for electrochemical devices and cells | |
KR100627373B1 (en) | Stack for fuel cell | |
KR100529080B1 (en) | Fuel cell system and stack used thereto | |
KR101030044B1 (en) | Fuel cell system, stack and separator used thereto | |
JPS5927466A (en) | Fuel cell | |
KR20060022017A (en) | Fuel cell system, stack and separator used thereto | |
JP2007005222A (en) | Fuel cell and separator for fuel cell | |
JPH0850904A (en) | Fuel cell | |
JP2001202974A (en) | Solid polymer fuel cell stack | |
JPH0652873A (en) | Fuel cell | |
KR20020092694A (en) | Bipolar plate for polymer electrolyte membrane fuel cells | |
JPS59149658A (en) | Fuel cell | |
KR20050086246A (en) | Fuel sell system and stack used thereto | |
JPS62150661A (en) | Manufacture of molten carbonate type fuel cell | |
JPH04296455A (en) | Fuel cell |