[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61126448A - Detection of foreign matter in polymer - Google Patents

Detection of foreign matter in polymer

Info

Publication number
JPS61126448A
JPS61126448A JP59247937A JP24793784A JPS61126448A JP S61126448 A JPS61126448 A JP S61126448A JP 59247937 A JP59247937 A JP 59247937A JP 24793784 A JP24793784 A JP 24793784A JP S61126448 A JPS61126448 A JP S61126448A
Authority
JP
Japan
Prior art keywords
foreign matter
polymer
gel
filter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59247937A
Other languages
Japanese (ja)
Inventor
Shiro Tatefuru
立古 史朗
Moriji Matsumura
松村 盛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP59247937A priority Critical patent/JPS61126448A/en
Publication of JPS61126448A publication Critical patent/JPS61126448A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To improve measuring accuracy and to simplify the measurement by irradiating laser light of a light emission wavelength in a UV range to a polymer, detecting the fluorescence intensity of part of the scattered light and detecting the gel and the size and number of other foreign matter. CONSTITUTION:For example, an He-cd laser light source 1 having the wavelength in the UV region, a condenser lens 8, a fluorescent filter 9 and a photoelectric multiplier 10 are provided to a grain size meter having a condenser lens 3, a stationary filter 4, a rotary filter 5, a condenser lens 6 and a photoelectric multiplier 7. The laser light of the wavelength (about 440m) of the UV region is irradiated from the light source 1 to a sample 2, then the foreign matter emits fluorescence if said matter is the gel. The presence or absence of such fluorescence is detected by the photoelectric multiplier 10 by which the gel is discriminated from the other foreign matter. The number and grain size of the foreign matter and gel in the polymer are thus easily measured with good accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶融状態、溶解状態又はフィルム状、繊維状な
どの状態にあるポリマー中の異物、特にゲル状異物の大
きさおよび個数を検出する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention detects the size and number of foreign substances, especially gel-like foreign substances, in polymers in a molten state, dissolved state, film form, fiber form, etc. Regarding the method.

(従来技術) ポリマー中に混入している異物、即ち触媒異物停の無機
異物、高結晶化ポリマー等の有機異物、及びポリマー劣
化物から生成されたゲル化物は成形工程で多大の影曽を
及ぼす。
(Prior art) Foreign matter mixed into the polymer, that is, inorganic foreign matter such as catalytic foreign matter, organic foreign matter such as highly crystallized polymer, and gelled products generated from polymer deterioration products have a large impact on the molding process. .

ポリエステル糸の製造工程を例に羊げて説明すると、紡
糸1物において、ポリマー中の無@異物及び/有機異物
は紡糸バック中のポリマー濾過層に捕捉されるため、濾
過層の目詰りによってバック圧力が上昇する。そして、
かかるパンク圧があまりにも上昇すると、バック濾過層
に捕捉されている異物が流出して紡糸断糸、及び延伸工
程での単繊維切れを発生させるため、バック圧が一定圧
まで上昇するとバックを交換して捕捉異物の流出を防止
している。このため、前記無機異物及び有機異物を有し
ているポリマーでは、バック交換が頻発して生産性を大
巾に低下させるのである。
To explain this using the manufacturing process of polyester yarn as an example, in a single spun product, foreign matter and/or organic foreign matter in the polymer are captured by the polymer filtration layer in the spinning bag, so the bag becomes clogged due to clogging of the filtration layer. Pressure increases. and,
If the puncture pressure rises too much, the foreign matter trapped in the bag filtration layer will flow out and cause yarn breakage and single fiber breakage during the drawing process, so when the bag pressure rises to a certain level, the bag must be replaced. This prevents trapped foreign matter from flowing out. For this reason, in polymers containing inorganic and organic foreign substances, bag replacement occurs frequently, which greatly reduces productivity.

また、ポリマー劣化物から生成されたゲル化物は紡糸バ
ック中の濾過層に捕捉され難く、或いは一旦捕捉されて
も流出し易いため、紡糸糸中に混入して延伸工程で単繊
維切れが多発し、得られる延伸糸は商品価値が極めて低
いものとなる。
In addition, gelled products generated from degraded polymers are difficult to be captured by the filtration layer in the spinning bag, or even if they are captured, they easily flow out, so they get mixed into the spun yarn and cause frequent breakage of single fibers during the drawing process. , the resulting drawn yarn has extremely low commercial value.

更に、ポリエステルフィルムに成形する場合にもポリマ
ー中の異物はフィルム表面に突起物を作り、ビデオテー
プにおいてはいわゆるドロップアウトの原因となる。
Furthermore, when molding into a polyester film, foreign matter in the polymer creates protrusions on the film surface, causing so-called dropouts in video tapes.

この様vr、 種々の忍影譬を与えるため、ポリマー中
の異物を精度よく簡単に検出できる測定方法は極めてN
をである。
In this way, there are very few measurement methods that can accurately and easily detect foreign substances in polymers to provide various hidden images.
is.

従来、この禄なポリマー中の異物量を測定するには、紡
糸のモデルプラントを作成し、数ゆから数十kgのポリ
マーを目開きの細かいフィルターを押入した紡糸バンク
中を通過さセ、ハック圧上昇を測定すると共に、このフ
ィルターで捕捉された異物をポリマー溶解後顕微鏡等で
観察する方法が行なわれている。
Conventionally, in order to measure the amount of foreign matter in this delicate polymer, a spinning model plant was created, and several kilograms to several tens of kilograms of polymer were passed through a spinning bank with a fine-mesh filter inserted. In addition to measuring the pressure rise, a method is used in which foreign substances captured by the filter are observed using a microscope or the like after dissolving the polymer.

しかしながら、この方法では、相当量のポリマー量が必
要であり、しかもポリマー乾燥等の前処理、フィルター
分解、フィルター上の異物の種類判別等の時間を要し、
しかも測定者の熟練を要する等の欠点が存在する。
However, this method requires a considerable amount of polymer, and also requires time for pretreatment such as polymer drying, filter disassembly, and determining the type of foreign matter on the filter.
Moreover, there are drawbacks such as the need for skill on the part of the measurer.

(発明の目的および構成) 本発明は以上の事情を背景として為されたものであり、
その目的とするところは、精度よくかつ簡便にポリマー
中の異物およびゲルのそれぞれの個数および粒径な測定
する方法を提供することKある。
(Object and structure of the invention) The present invention has been made against the background of the above circumstances,
The purpose is to provide a method for accurately and easily measuring the number and particle size of foreign substances and gels in a polymer.

本発明者等はかかる目的を達成せんとして検討を行った
結果、ポリマーを溶媒に溶解して得られる溶液、或はポ
リマーを成型して得られる薄膜に紫外線を照射すると異
物がゲルの場合に蛍光を発することを利用し、粒子にレ
ーザー光を照射し粒子による散乱光が形成する干渉縞よ
り粒子径を測定する粒度計において、レーザーなHe 
−Cd  レーザーの如く波長が紫外領域にあるものに
すると共に散乱光の一部の蛍光強度を検出することによ
り全異物の数量、大きさを検出しながらその中からゲル
異物を弁別できることを見い出し本発明に至ったもので
ある。すなわち本発明は粒子にレーザー光を照射し散乱
光の干渉縞により粒子の大きさ9個数を、!1】定する
粒度計によりホリマー中の異物を検出する方法において
、粒度計のレーザーを紫外領域にある発光波長としてポ
リマーにレーザー光を照射しJその散乱光の一部の蛍光
強度な1dJi″出してゲルとその他の異物の太ささお
よび個数を別々に検出することを特徴とするポリマー中
の異物検出方法である。
The inventors of the present invention conducted studies to achieve this objective, and found that when a solution obtained by dissolving a polymer in a solvent or a thin film obtained by molding a polymer is irradiated with ultraviolet rays, if the foreign matter is a gel, it will fluoresce. Laser He
-It was discovered that by using a Cd laser whose wavelength is in the ultraviolet region and detecting the fluorescence intensity of a part of the scattered light, it is possible to detect the quantity and size of all foreign substances and to discriminate gel foreign substances from among them. This led to the invention. In other words, the present invention irradiates particles with laser light and determines the size and number of particles using the interference fringes of the scattered light. 1] In the method of detecting foreign substances in a polymer using a granulometer, the laser beam of the granulometer is used to irradiate a polymer with an emission wavelength in the ultraviolet region, and a portion of the scattered light is detected with a fluorescence intensity of 1 dJi''. This is a method for detecting foreign substances in polymers, which is characterized by separately detecting the thickness and number of gel and other foreign substances.

以下、本発明を図面に基いて説明する。畠1図は本発明
を実施する装置の概略斜視説明図である。
Hereinafter, the present invention will be explained based on the drawings. Figure 1 is a schematic perspective view of an apparatus for carrying out the present invention.

図において1はレーザーでシシ、図示していないビーム
エクスパングーなどKよシ光束を適当な大きさにしたあ
と、水等に希釈した粒子を流すようにしたガラス管より
なるサンプルセル2に照射される。
In the figure, 1 is a laser beam, and a beam expander (not shown) is used to make the light beam to an appropriate size, and then irradiates it onto a sample cell 2, which is made of a glass tube through which particles diluted with water, etc. are flowed. be done.

サンプル2に粒子があるとレーザー光は歓乱されるが、
散乱光は後方に設けた集光レンズ3により平行光となっ
た後、味集光レンズ3の焦点位証に設けたスリット孔口
を有する固定フィルター4および複数個(例えば13個
)の窓5aを有する回転フィルター5を通り、更KQ方
に設けた集光レンズ6によ9光が回転フィルター5のど
の窓5aを通過したかにかかわらず後方の光電子倍増管
7に集光するようになっている。以上は従来の粒度計(
例えばLead@& Northrup社製の商品名M
ierotrac )と同一の構成であり異物粒子の散
乱光は干渉縞(リング状)を固定フィルター4上に作る
が固定フィルター4にはスリット孔41を設けてあり干
渉縞を中心からある半径方向に切り出した像を通過させ
る。
If there are particles in sample 2, the laser light will be scattered, but
After the scattered light is turned into parallel light by a condensing lens 3 provided at the rear, a fixed filter 4 having a slit opening provided at the focal point of the condensing lens 3 and a plurality of (for example, 13) windows 5a are used. The light passes through the rotating filter 5 having a 9-axis beam, and is focused by the condensing lens 6 provided on the KQ side onto the photomultiplier tube 7 at the rear, regardless of which window 5a of the rotating filter 5 the light passes through. ing. The above is a conventional particle size meter (
For example, the product name M manufactured by Lead@& Northrup
ierotrac), and the scattered light of foreign particles creates interference fringes (ring-shaped) on the fixed filter 4, but the fixed filter 4 has a slit hole 41 that cuts out the interference fringes in a certain radial direction from the center. pass the statue.

し固定フィルター4を通過した*<光)は回転フィルタ
ー5に達するが、回転フィルター5には複数個(13ケ
)の窓5凰が等角度にかつ、中心からの距離が等差ずつ
増加するように設けられるともに、図示していないが回
転軸部に回転位置検出装置が設けられており、スリット
4aの後方に回転フィルター5のどの窓5aが位置した
かわかるようになっており、粒子の粒子径によって変化
する干渉縞の径を回転フィルター5を回転させc 腹数
個の窓5aを順次通過する光量の変化より求めるもので
ある。
The light that has passed through the fixed filter 4 reaches the rotating filter 5, but the rotating filter 5 has a plurality of windows (13) at equal angles, and the distance from the center increases by equal steps. In addition, although not shown, a rotational position detection device is provided on the rotational shaft so that it can be determined which window 5a of the rotary filter 5 is located behind the slit 4a, and it is possible to detect particles. The diameter of the interference fringes, which changes depending on the particle diameter, is determined by rotating the rotary filter 5 and determining the change in the amount of light that sequentially passes through several windows 5a.

本発明はかかる従来の粒度計をポリマー中の異物の6(
1j定、それも異物をゲルとその他の異物に弁別して計
測すべく改良したもので、レーザー光源1をたとえば)
re−Cdレーザー(波長:約44(1+m)のように
紫外領域に波長のあるようなものに選定するとともに集
光レンズ3とは別角度に更にもう一枚集光レンズ8を設
は散乱光の一部を集光し、蛍光フィルター9を通した後
、光電子倍増管10でこれを検出するようKしたもので
、異物全体の個数、大きさは光電子倍増管7の出力から
求まるが、異物がゲルの場合に限り、異物が蛍光を発す
るので、この蛍光の有無を光電子倍増管10により検知
しゲル異物を他のものと弁別することができる。
The present invention improves the conventional particle size meter by measuring 6 (6) of foreign substances in polymers.
1j constant, which has been improved to distinguish foreign matter into gel and other foreign matter for measurement; for example, laser light source 1)
A re-Cd laser (wavelength: approx. 44 (1+m)) with a wavelength in the ultraviolet region is selected, and another condenser lens 8 is installed at a different angle from the condenser lens 3 to collect scattered light. After condensing a part of the light and passing it through a fluorescence filter 9, it is detected by a photomultiplier tube 10.The total number and size of foreign particles can be determined from the output of the photomultiplier tube 7. Since the foreign matter emits fluorescence only when it is a gel, the presence or absence of this fluorescence can be detected by the photomultiplier tube 10 and the gel foreign matter can be distinguished from other foreign matter.

以下、本発明を実施例で更に具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 〔η) = 0.6 、酸化チタン含有量(1,3wt
%のポリエチレンテレフタレート(以下、PETと示す
)チップ8 kgを溶融させ、目開き2000Mesh
フィルターをバックに組み込んだナス)濾過装置にてF
遇せしめた後、バックに組み込んだフィルターを取り出
しO−クロロフェニールでポリマー成分を溶解してフィ
ルターに捕捉された異物を分離し、全異物量を測定した
Example [η) = 0.6, titanium oxide content (1.3wt
% polyethylene terephthalate (hereinafter referred to as PET) chips were melted and made into a mesh with a mesh size of 2000.
F in the filtration device (eggplant with a filter built into the bag)
After this, the filter installed in the bag was taken out and the polymer component was dissolved with O-chlorophenyl to separate the foreign matter captured by the filter, and the total amount of foreign matter was measured.

更に、分離した異物に紫外線を照射して発生する蛍光を
肉眼観察してゲル化物量を測定した。
Furthermore, the amount of gelled material was measured by irradiating the separated foreign matter with ultraviolet rays and observing the fluorescence generated with the naked eye.

次に、ナス)濾過装置で濾過せしめたポリマーと同一の
PET5IiをO−りppフェノール50m1に加熱し
て完全に浴解し試料として、第1図の装置を用いて異物
を定量した。
Next, PET5Ii, which was the same as the polymer filtered using the eggplant filtration device, was heated in 50 ml of O-ri pp phenol to completely dissolve the sample, and the amount of foreign matter was determined using the device shown in FIG.

光源とし″C,出力10 mW を波長441.6 n
mのHe−Cdレーザー光(光径u、3mys)な使用
した。試料を直径500μの円筒状ガラスセルに通過さ
せその散乱光をフォトセンサー7で検出し市販のマイク
ロトラック粘度側の解析装[Kより定量した。同時に異
物がゲルの場合に発生してくる蛍光のみをキャッチすべ
く、色ガラスフィルター9のカット波長を470nmと
した。
The light source is "C", the output is 10 mW, and the wavelength is 441.6 n.
A He-Cd laser beam (light diameter u, 3 mys) was used. A sample was passed through a cylindrical glass cell with a diameter of 500 μm, and the scattered light was detected by a photosensor 7 and quantified using a commercially available Microtrack viscosity analyzer [K]. At the same time, the cut wavelength of the colored glass filter 9 was set to 470 nm in order to catch only the fluorescence generated when the foreign matter was gel.

これにより発生し℃くる反光t)万トセンサー10で検
出し前述のマイクロトラック粘度針の解析装w、に割込
みをかけゲル異物なヲf別してグリント7ウトざ←ヒi
た。
This generates reflection light that is detected by the sensor 10 and interrupts the analysis system of the Microtrac viscosity needle mentioned above to separate out the gel foreign matter and remove the glint 7.
Ta.

この様にして得られた全異物量、及びゲル化物量はナス
トロ過装置で得られた結呆とほぼ同程度であった。
The total amount of foreign matter and the amount of gelled material thus obtained were approximately the same as the amount of gelatinized material obtained using the Nastro filter device.

(発明の効果) 本発明によれば単に異物の数9個数を精度よく検出でき
るVまかりでなく、ポリマー劣化物などからできるゲル
異物を弁別することができ、異物の発生源を同定したり
する上できわめて大きな効果を発揮する。
(Effects of the Invention) According to the present invention, it is not only possible to detect the number of foreign particles with high precision, but also to distinguish gel foreign substances formed from degraded polymers, etc., and to identify the source of the foreign particles. It has a huge effect on the above.

4、 図面の1w!草な駁、明 第1図は本発明を実施する装置の概略斜視説明図である
4. 1w of the drawing! FIG. 1 is a schematic perspective view of an apparatus for carrying out the present invention.

1・・・レーザー、 2・・・サンダルセル、 3・・
・集光レンズ、 4・・・同定フィルター、 5・・・
回転フィルター、6,8・・・集光レンズ。
1... Laser, 2... Sandal cell, 3...
・Condensing lens, 4...Identification filter, 5...
Rotating filter, 6, 8... condensing lens.

7、lO・・・光電子倍増管、 9・・・蛍光フィルタ
特許出1租人 帝人株式会社
7, 1O...Photomultiplier tube, 9...Fluorescence filter patent 1 lease Teijin Ltd.

Claims (1)

【特許請求の範囲】[Claims] 粒子にレーザー光を照射し散乱光の干渉縞により粒子の
大きさ、個数を測定する粒度計によりポリマー中の異物
を検出する方法において、粒度計のレーザーを紫外領域
にある発光波長としてポリマーにレーザー光を照射し、
その散乱光の一部の蛍光強度を検出してゲルとその他の
異物の大きさおよび個数を別々に検出することを特徴と
するポリマー中の異物検出方法。
In the method of detecting foreign substances in polymers using a granulometer, which irradiates particles with laser light and measures the size and number of particles based on the interference fringes of the scattered light, the laser of the granulometer is used to irradiate the polymer with an emission wavelength in the ultraviolet region. irradiate light,
A method for detecting foreign matter in a polymer, comprising separately detecting the size and number of gel and other foreign matter by detecting the fluorescence intensity of a part of the scattered light.
JP59247937A 1984-11-26 1984-11-26 Detection of foreign matter in polymer Pending JPS61126448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59247937A JPS61126448A (en) 1984-11-26 1984-11-26 Detection of foreign matter in polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59247937A JPS61126448A (en) 1984-11-26 1984-11-26 Detection of foreign matter in polymer

Publications (1)

Publication Number Publication Date
JPS61126448A true JPS61126448A (en) 1986-06-13

Family

ID=17170768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59247937A Pending JPS61126448A (en) 1984-11-26 1984-11-26 Detection of foreign matter in polymer

Country Status (1)

Country Link
JP (1) JPS61126448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126360A1 (en) * 2016-01-21 2017-07-27 東京エレクトロン株式会社 Foreign matter detection device and foreign matter detection method
CN108221059A (en) * 2016-12-13 2018-06-29 中翰盛泰生物技术股份有限公司 A kind of optical encoding library and its preparation method and application of carrier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126360A1 (en) * 2016-01-21 2017-07-27 東京エレクトロン株式会社 Foreign matter detection device and foreign matter detection method
CN108474731A (en) * 2016-01-21 2018-08-31 东京毅力科创株式会社 Detection device for foreign matter and foreign matter detecting method
JPWO2017126360A1 (en) * 2016-01-21 2018-11-08 東京エレクトロン株式会社 Foreign object detection device and foreign object detection method
CN108474731B (en) * 2016-01-21 2021-09-21 东京毅力科创株式会社 Foreign matter detection device and foreign matter detection method
US11402313B2 (en) 2016-01-21 2022-08-02 Tokyo Electron Limited Foreign substance detection device and foreign substance detection method
US11906414B2 (en) 2016-01-21 2024-02-20 Tokyo Electron Limited Foreign substance detection device and foreign substance detection method
CN108221059A (en) * 2016-12-13 2018-06-29 中翰盛泰生物技术股份有限公司 A kind of optical encoding library and its preparation method and application of carrier
CN108221059B (en) * 2016-12-13 2023-02-21 中翰盛泰生物技术股份有限公司 Optical coding library and preparation method and application of carrier thereof

Similar Documents

Publication Publication Date Title
US3864571A (en) Method and Apparatus for Automatically, Identifying and Counting Various Cells in Body Fluids
US4586190A (en) Blood cell discriminator and counter utilizing transmitted and scattered light
FI70481B (en) FOER FARING PROCESSING OF CELLVOLYMEN
US3684377A (en) Method for analysis of blood by optical analysis of living cells
Galbraith Microfluorimetric quantitation of cellulose biosynthesis by plant protoplasts using Calcofluor White
JP3213334B2 (en) Urine cell analyzer
JP3098273B2 (en) Urine cell analyzer
US20070229823A1 (en) Determination of the number concentration and particle size distribution of nanoparticles using dark-field microscopy
JPH10512670A (en) Biospecific multi-parameter assays
EP1979735A1 (en) Method for measuring hydrophobic contaminants in paper pulp
JP2002535614A (en) Apparatus and method for improved flow cytometry
JP2014079259A (en) High purity x-chromosome bearing populations of spermatozoa and y-chromosome bearing populations of spermatozoa
JPH06100596B2 (en) Method for classifying leukocytes by flow cytometry
US9354161B2 (en) Sample analyzing method and sample analyzer
LU82587A1 (en) COMPOSITION SUITABLE FOR EXAMINING TISSUES AND / OR BIOLOGICAL LIQUIDS AND METHOD OF USING SAME
DE4210970A1 (en) Method for optical qualitative and quantitative detection of biomolecules, toxic substances, polymers and pharmaceutical agents by means of laser spectroscopy
EP3047258A1 (en) Device for automatically identifying fluorescence of tracers with a view to automatically sorting and/or controlling the quality of marked products or materials, which may or may not be coloured
CN111948118A (en) Liquid drop delay calculating device and calculating method thereof
CN109297952B (en) Rice paper quality identification system based on laser-induced breakdown spectroscopy technology
JPS61126448A (en) Detection of foreign matter in polymer
US20090130647A1 (en) Method and apparatus for sorting particles
JP2013526714A (en) Configuration for measuring the optical properties of dispersed particles
CN106124477B (en) The detection method of concentration of silver ions and rate is discharged in a kind of nano silver course of dissolution
EP2171434A1 (en) Measuring device and method for determining optical characteristic variables for verifying photochemical and electrochemical degradation reactions
DE69636211T2 (en) Process for the optical measurement of a liquid in a porous material