[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61114704A - Desalting apparatus by electrodialytic method - Google Patents

Desalting apparatus by electrodialytic method

Info

Publication number
JPS61114704A
JPS61114704A JP59237276A JP23727684A JPS61114704A JP S61114704 A JPS61114704 A JP S61114704A JP 59237276 A JP59237276 A JP 59237276A JP 23727684 A JP23727684 A JP 23727684A JP S61114704 A JPS61114704 A JP S61114704A
Authority
JP
Japan
Prior art keywords
tank
liquid
desalting
desalination
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237276A
Other languages
Japanese (ja)
Inventor
Hiroshi Goto
博 後藤
Jun Fukui
福井 洵
Yujiro Fujisaki
悠二郎 藤崎
Osamu Murata
修 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59237276A priority Critical patent/JPS61114704A/en
Publication of JPS61114704A publication Critical patent/JPS61114704A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To obtain a desalting apparatus conserved in energy and showing high desalting effect, by providing a heat pump for recovering the heat of a liquid after desalting treatment and heating a liquid requiring desalting and bringing an electrodialytic tank to a multistage structure. CONSTITUTION:Seawater passing through a filter 1 and a storage tank 2 is heated in a heat exchanger 4 by the heat exchange with the liquid after desalting treatment and further heated by the heat recovered from the liquid after desalting treatment by a heat pump 5. The heated seawater is sent to a first dialytic tank 9A through a filter 8 and a storage tank 6 while the liquid with intermediate concn. issued from the desalting chamber D of the tank 9A is sent to the concn. chamber C and desalting chamber D of the second dialytic tank 9B in a rear stage side. The final desalted water issued from the tank 9B is sent to the heat exchanger 4 and the heat pump 5 along with conc. water from the first dialytic tank 9A to contribute to the heating of new seawater. The desalted water insufficient in desalting in the second dialytic tank 9B is refluxed to the first dialytic tank 9A to successively perform desalting.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、電気透析槽内でイオン交換膜の選択透過性
を利用して、塩分イオンを電気的に移動分離させる電気
透析法による脱塩装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention is a desalination method using an electrodialysis method in which salt ions are electrically moved and separated by utilizing the selective permeability of an ion exchange membrane in an electrodialysis tank. It is related to the device.

(従来技術) 従来、この種の脱塩装置は、海水を電気透析槽を通過さ
せて淡水化するために利用されている。
(Prior Art) This type of desalination apparatus has conventionally been used to desalinate seawater by passing it through an electrodialysis tank.

上記電気透析槽は、陽イオンだけを透過する陽イオン交
換膜と、陰イオンだけを透過する陰イオン交換膜とを交
互に配列した多室電気透析槽からなり、海水を供給しな
がら両端の電極に直流電圧を印加すると、電位差により
陽イオンは陰極側に、陰イオンは陽極側に移動し、この
移動過程の間において、陽イオンは陰イオン交換膜に、
また陰イオンは陽イオン交換膜にそれぞれその移動が阻
止される。その結果、上記電気透析槽により。
The above-mentioned electrodialysis tank consists of a multi-chamber electrodialysis tank in which cation exchange membranes that pass only cations and anion exchange membranes that pass only anions are arranged alternately. When a DC voltage is applied to , cations move to the cathode side and anions to the anode side due to the potential difference. During this movement process, cations move to the anion exchange membrane,
Further, the movement of anions is blocked by the cation exchange membrane. As a result, by the electrodialyzer mentioned above.

イオンの濃縮された濃縮室と、イオンの脱塩ないし希釈
(以下、単に「脱塩」と称す)された脱塩室とが交互に
発生し、この塩分の薄いところから淡水が取り出される
A concentration chamber in which ions are concentrated and a desalination chamber in which ions are desalinated or diluted (hereinafter simply referred to as "desalination") are generated alternately, and fresh water is extracted from the area where the salt content is low.

上記電気透析槽の電圧は、陽極と陰極に印加される電圧
と、イオン交換膜および海水の電気抵抗による電圧から
なり、海水の電気抵抗による電圧が摺電圧のほぼ50%
を占めているのが現状である、そのため、海水の電気抵
抗を低下させることが、電気透析法の省エネルギに有効
であることが知られている。
The voltage of the electrodialysis tank consists of the voltage applied to the anode and cathode, and the voltage due to the electrical resistance of the ion exchange membrane and seawater, and the voltage due to the electrical resistance of the seawater is approximately 50% of the sliding voltage.
Therefore, it is known that lowering the electrical resistance of seawater is effective in saving energy in electrodialysis.

他方、海水の導電率は、第2図に示すように、たとえば
塩分3.5%で温度20℃の海水が、温度10℃上昇す
ると、約10%上昇することが知られている。
On the other hand, as shown in FIG. 2, it is known that the electrical conductivity of seawater increases by about 10% when the temperature of seawater with a salinity of 3.5% and a temperature of 20° C. increases by 10° C., for example.

このように、海水の温度が上昇することにより、海水自
身の導電率が上昇、つまり海水の電気抵抗が低下するば
かりでなく、イオン交換膜の電気抵抗の低下も期待する
ことができる。
As described above, as the temperature of seawater increases, not only the electrical conductivity of the seawater itself increases, that is, the electrical resistance of the seawater decreases, but also the electrical resistance of the ion exchange membrane can be expected to decrease.

そこで、従来、エンジンの排熱、太陽熱、ヒータなどに
よる直接加熱によって、海水を加熱することが試みられ
ているけれども、エンジンの排熱を利用する場合には、
エンジン自体の存在が必要であり、また、太陽熱の利用
の場合には、太陽熱を集熱するための集熱器が大形化し
、ざらにヒータなどによる直接加熱では、エネルギロス
が大き過ぎる欠点があった。
Therefore, attempts have been made to heat seawater by direct heating using engine exhaust heat, solar heat, heaters, etc., but when using engine exhaust heat,
The presence of the engine itself is necessary, and in the case of using solar heat, the collector for collecting solar heat becomes large, and direct heating with a heater etc. has the disadvantage of too much energy loss. there were.

さらに、従来の電気透析槽は1台の透析槽で構成されて
いるため、原水と脱塩水の濃度比を大きくしようとする
場合には、C縮室と脱塩室の濃度比が大きくなる結果、
濃縮室から脱塩室への塩イオンの拡散が著しくなり、本
来の電流によるイオンの移動が打ち消される欠点があっ
た。
Furthermore, since the conventional electrodialysis tank consists of one dialysis tank, when trying to increase the concentration ratio of raw water and desalinated water, the concentration ratio between the C condensation chamber and the demineralization chamber increases. ,
There was a drawback that the diffusion of salt ions from the concentration chamber to the desalination chamber became significant, and the original movement of ions due to electric current was canceled out.

(発明の目的) この発明は、−上記欠点を改善するためになされたもの
で、エネルギロスか少なく、省エネルギに貢献できると
ともに、海水などの脱塩を要する液体の脱塩効果が十分
な電気透析法による脱塩装置を提供す、ることを目的と
する。
(Purpose of the Invention) This invention was made to improve the above-mentioned drawbacks, and can contribute to energy saving with less energy loss. The purpose is to provide a desalination device using the dialysis method.

(発明の構成) 上記目的を達成するため、この発明は、脱塩処理後の液
体熱を回収して脱塩を要する液体を加熱するヒートポン
プと、このヒートポンプで昇温された液体を脱塩するた
めの電気透析槽とを備え。
(Structure of the Invention) In order to achieve the above object, the present invention provides a heat pump that recovers liquid heat after desalination treatment and heats a liquid that requires desalination, and a heat pump that desalinates the liquid heated by the heat pump. Equipped with an electrodialysis tank for

この電気透析槽は複数の透析槽から構成され、前 □段
の透析槽で得た中間濃度の液が後段側の透析槽の濃縮室
および脱塩室に流れるように接続されている。
This electrodialysis tank is composed of a plurality of dialysis tanks, which are connected so that the intermediate concentration liquid obtained in the previous dialysis tank flows into the concentration chamber and desalination chamber of the subsequent dialysis tank.

このように接続すると、格段の透析槽において、濃縮室
と脱塩室の濃度比を一定値以下に抑制しながら、しかも
、原水と最終的に得られた脱塩水の濃度比を大きくとる
ことができる。
By connecting in this way, it is possible to suppress the concentration ratio between the concentration chamber and the desalination chamber to a certain value or less in a particularly large dialysis tank, while increasing the concentration ratio between the raw water and the finally obtained desalinated water. can.

上記ヒートポンプは、液体熱の熱回収効率がきわめて優
れているから、脱塩を要する液体を有効に加熱すること
ができ、省エネルギに貢献することができる。
Since the heat pump described above has extremely high heat recovery efficiency of liquid heat, it can effectively heat a liquid that requires desalination, and can contribute to energy saving.

また、電気透析槽は複数の透析槽から構成され、第1段
の透析槽での脱塩が不十分な脱塩水を後段側の透析槽に
還流させて、再度の脱塩を順次実行するように接続され
ているから、海水などの脱塩を妾する液体の脱塩効果が
十分であり、所望の脱塩水を得ることができる。
In addition, the electrodialysis tank is composed of multiple dialysis tanks, and the desalted water that has not been sufficiently desalinated in the first stage dialysis tank is returned to the subsequent stage dialysis tank to sequentially perform desalination again. , the desalination effect of the liquid that undergoes desalination, such as seawater, is sufficient, and the desired desalinated water can be obtained.

(実施例) 以下、この発明の実施例を図面にしたがって説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は海水を浄化するフィルタ、2は浄
化された海水を一時貯溜する貯溜タンク、3は貯溜タン
ク2から浄化された海水を取り出すポンプ、4はこのポ
ンプ3からの海水を脱塩処理後の液体との熱交換で加熱
する熱交換器、5は熱交換器で加熱された海水をさらに
加熱するヒートポンプで、このヒートポンプ5は、上記
脱塩処理後の液体熱を回収して上記海水をさらに加熱す
るものである。
In Figure 1, 1 is a filter that purifies seawater, 2 is a storage tank that temporarily stores the purified seawater, 3 is a pump that takes out the purified seawater from the storage tank 2, and 4 is the pump that removes the seawater. A heat exchanger 5 heats the seawater by heat exchange with the liquid after salt treatment, and 5 is a heat pump that further heats the seawater heated by the heat exchanger.This heat pump 5 recovers the heat of the liquid after the desalination treatment. The above seawater is further heated.

6はこのヒートポンプ5で昇温された海水を一時貯溜す
る貯溜タンク、7は貯溜タンク6から昇温された海水を
取り出すポンプ、8は昇温された海水を浄化するフィル
タである。
6 is a storage tank that temporarily stores the seawater heated by the heat pump 5, 7 is a pump that takes out the heated seawater from the storage tank 6, and 8 is a filter that purifies the heated seawater.

9は昇温された海水を脱塩するための電気透析槽で、こ
の電気透析槽9は第1および第2の透析槽9A、9Bか
ら構成され、第1の透析槽9Aでの脱塩が不十分な脱塩
水を後段側の第2の透析槽9Bに還流させて脱塩を順次
実行するように接続されている。なお、10はポンプで
、このポンプlOは透析槽9Bの濃縮室Cより液を前段
側の第1の透析槽9Aにおける脱塩室りに電流させるも
のである。11は脱塩水を一時貯溜する貯溜タンクであ
る。
9 is an electrodialysis tank for desalinating heated seawater, and this electrodialysis tank 9 is composed of first and second dialysis tanks 9A and 9B, and the desalination in the first dialysis tank 9A is They are connected so that insufficiently desalinated water is refluxed to the second dialysis tank 9B on the downstream side to sequentially perform desalination. In addition, 10 is a pump, and this pump 10 is used to cause a current to flow from the concentration chamber C of the dialysis tank 9B to the demineralization chamber of the first dialysis tank 9A on the previous stage side. 11 is a storage tank that temporarily stores desalinated water.

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

フィルタ1で浄化された海水は貯溜タンク2で一時貯溜
されたのち、ポンプ3で熱交換器4に送られ、脱塩処理
後の液体との熱交換で加熱され゛る。熱交換器4で加熱
された海水は、ヒートポンプ5により上記脱塩処理後の
液体熱から回収された熱でさらに加熱される。
The seawater purified by the filter 1 is temporarily stored in a storage tank 2, and then sent to a heat exchanger 4 by a pump 3, where it is heated by heat exchange with the desalinated liquid. The seawater heated by the heat exchanger 4 is further heated by the heat pump 5 using the heat recovered from the liquid heat after the desalination treatment.

このヒートポンプ5で昇温された海水は、貯溜タンク6
に一時貯溜されたのち、ポンプ7でこの貯溜タンク6か
ら取り出され、フィルタ8で浄化されて電気透析槽9に
送られる。
The seawater heated by the heat pump 5 is stored in a storage tank 6.
After being temporarily stored in the storage tank 6, it is taken out from the storage tank 6 by a pump 7, purified by a filter 8, and sent to an electrodialysis tank 9.

この電気透析槽9に送られた海水は、まず第1の透析槽
9Aに送られる。同種の脱塩室りより出る中間濃度の液
は後段側の第2の透析槽9Bにおけ濃縮室Cおよび脱塩
室りに送られ、同種の脱塩室りより出る最終的な脱塩水
は第1の透析槽9Aからの濃縮水とともに、前述した熱
交換器4およびヒートポンプ5に送られ、新規な海水の
加熱に寄与する。これにより上記脱塩処理後の液体熱か
ら回収された熱で新規な海水が加熱され、各透析M9A
、9Bにおける脱塩処理における電力の消費を軽減して
、省エネルギに寄与することができる。
The seawater sent to this electrodialysis tank 9 is first sent to the first dialysis tank 9A. The intermediate concentration liquid discharged from the same type of desalination chamber is sent to the concentration chamber C and the desalination chamber in the second dialysis tank 9B on the downstream side, and the final desalted water discharged from the same type of desalination chamber is Together with the concentrated water from the first dialysis tank 9A, it is sent to the aforementioned heat exchanger 4 and heat pump 5, contributing to the heating of new seawater. As a result, new seawater is heated with the heat recovered from the liquid heat after the desalination process, and each dialysis M9A
, 9B can reduce power consumption in the desalination process, contributing to energy saving.

第2の透析槽9Bでの脱塩が不十分な脱塩水は、前段側
の第1の透析槽9Aに還流させて脱塩を順次実行する。
Desalinated water that has not been sufficiently desalinated in the second dialysis tank 9B is returned to the first dialysis tank 9A on the previous stage side to sequentially perform desalination.

なお、上記実施例では、2台の透析槽9A、9Bで脱塩
を行なうようにしたけれども、これ以上の透析槽で脱塩
を順次実行するようにしてもよく、また、海水に限られ
ず脱塩を要する他の液体の脱塩装置に用いてもよいこと
はいうまでもない。
In the above embodiment, desalination is carried out in two dialysis tanks 9A and 9B, but desalination may be carried out sequentially in more dialysis tanks, and desalination is not limited to seawater. It goes without saying that the present invention may also be used in desalination equipment for other liquids that require salt.

(発明の効果) 以上説明したように、この発明によれば、液体熱の熱回
収効率がきわめて優れているヒートポンプにより脱塩を
要する液体を加熱するようにしたから、液体加熱の省エ
ネルギ化に貢献することがとともに、複数の透析槽から
構成された電気透析槽により、第1段の透析槽での脱塩
が不十分な脱塩水を後段側の透析槽に還流させて脱塩を
順次実行するようにしたから、海水などの脱塩を要する
液体の脱塩効果が十分であり、所望の脱塩水を得ること
ができる。
(Effects of the Invention) As explained above, according to the present invention, the liquid that requires desalination is heated by a heat pump that has extremely high heat recovery efficiency of liquid heat, which contributes to energy saving in heating the liquid. In addition, by using an electrodialysis tank composed of multiple dialysis tanks, desalination water that has not been sufficiently desalinated in the first stage dialysis tank is returned to the subsequent stage dialysis tank, and desalination is performed sequentially. As a result, the desalination effect of liquids that require desalination, such as seawater, is sufficient, and desired desalinated water can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による電気透析法にょる脱塩装置の一
例を示す概略的な配管系統図、第2図は海水の温度−専
念導電率特性図である。 4・・・熱交換器、5・・・ヒートポンプ、9川[気透
析槽、C・・・濃縮室、D・・・脱塩室。 一つ
FIG. 1 is a schematic piping system diagram showing an example of a desalination apparatus using an electrodialysis method according to the present invention, and FIG. 2 is a temperature-dedicated conductivity characteristic diagram of seawater. 4...Heat exchanger, 5...Heat pump, 9-gas dialysis tank, C...Concentration chamber, D...Demineralization chamber. one

Claims (1)

【特許請求の範囲】[Claims] (1)脱塩を要する液体と脱塩処理後の液体との熱交換
で上記脱塩を要する液体を加熱する熱交換器と、上記脱
塩処理後の液体熱を回収して上記脱塩を要する液体を加
熱するヒートポンプと、このヒートポンプで昇温された
液体を脱塩するための電気透析槽とを備え、この電気透
析槽は複数の透析槽から構成され、前段の透析槽で得た
中間濃度の液が後段側の透析槽の濃縮室および脱塩室に
流れるように接続して脱塩を順次実行することを特徴と
する電気透析法による脱塩装置。
(1) A heat exchanger that heats the liquid that requires desalination through heat exchange between the liquid that requires desalination and the liquid that has undergone desalination treatment, and a heat exchanger that heats the liquid that requires desalination and recovers the heat of the desalted liquid to perform the desalination process. It is equipped with a heat pump that heats the required liquid and an electrodialysis tank that desalinates the liquid heated by the heat pump. 1. A desalination apparatus using an electrodialysis method, characterized in that a concentrated solution is connected to flow into a concentration chamber and a desalination chamber of a downstream dialysis tank, and desalination is performed sequentially.
JP59237276A 1984-11-09 1984-11-09 Desalting apparatus by electrodialytic method Pending JPS61114704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237276A JPS61114704A (en) 1984-11-09 1984-11-09 Desalting apparatus by electrodialytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237276A JPS61114704A (en) 1984-11-09 1984-11-09 Desalting apparatus by electrodialytic method

Publications (1)

Publication Number Publication Date
JPS61114704A true JPS61114704A (en) 1986-06-02

Family

ID=17012989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237276A Pending JPS61114704A (en) 1984-11-09 1984-11-09 Desalting apparatus by electrodialytic method

Country Status (1)

Country Link
JP (1) JPS61114704A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264385A (en) * 2009-05-14 2010-11-25 Tohoku Univ Electrodialyzer
GB2487249A (en) * 2011-01-17 2012-07-18 Oceansaver As Water treatment apparatus
US9340437B2 (en) 2011-01-17 2016-05-17 Oceansaver As Electrodialysis unit for water treatment
US9359232B2 (en) 2011-01-17 2016-06-07 Oceansaver As Electrodialysis unit for water treatment
US9561971B2 (en) 2011-01-17 2017-02-07 Oceansaver As Electrodialysis unit for water treatment
JP2021107294A (en) * 2019-12-27 2021-07-29 株式会社 東邦アーステック Method for acquiring iodine-based substance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264385A (en) * 2009-05-14 2010-11-25 Tohoku Univ Electrodialyzer
GB2487249A (en) * 2011-01-17 2012-07-18 Oceansaver As Water treatment apparatus
US9340437B2 (en) 2011-01-17 2016-05-17 Oceansaver As Electrodialysis unit for water treatment
US9359232B2 (en) 2011-01-17 2016-06-07 Oceansaver As Electrodialysis unit for water treatment
US9561971B2 (en) 2011-01-17 2017-02-07 Oceansaver As Electrodialysis unit for water treatment
GB2487249B (en) * 2011-01-17 2017-08-16 Oceansaver As Water treatment
JP2021107294A (en) * 2019-12-27 2021-07-29 株式会社 東邦アーステック Method for acquiring iodine-based substance

Similar Documents

Publication Publication Date Title
EP1347823B3 (en) A method and apparatus for isolation of ionic species from a liquid
Strathmann Electrodialysis, a mature technology with a multitude of new applications
JPH03207487A (en) Water purification
CN105712560A (en) Device and method for treating high-salinity wastewater with forward osmosis technique
AU2002221564A1 (en) A method and apparatus for isolation of ionic species by electrodialysis
JPH10503415A (en) Improvement of electrodialysis including packed cell electrodialysis (electrodeionization)
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
US20230182078A1 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JPS61114704A (en) Desalting apparatus by electrodialytic method
CA2151753A1 (en) A method for treating waste water containing neutral salts comprising monovalent ions
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP3270244B2 (en) Waste liquid treatment method and waste liquid treatment device
CN216946344U (en) Water treatment system based on enhancement mode electrodeionization EDI module
JPS5850791B2 (en) Device that changes salt concentration in liquid
Shahi et al. A novel electrodialyzer for the production of demineralized water by electrodialysis
JP4724194B2 (en) Water treatment apparatus and water treatment method
CN112657339A (en) Electrodialysis device, electrodialysis system, and method for purifying glycolic acid raw material
JP3293475B2 (en) Method for concentrating nitric acid aqueous solution and its concentrating device
CN114455771B (en) Waste acid treatment system and method
JP3202887B2 (en) Wastewater recovery method
CN115432773B (en) Regeneration method of bipolar membrane electric auxiliary deionization device and bipolar membrane electric auxiliary deionization device
LU502575B1 (en) System and method for extracting pure water and concentrating and desalinating seawater
RU2050176C1 (en) Electrodialyzer
JPS6068009A (en) Electrodialysis cell installed with ion exchange membrane and desalting process
Chattopadhyay et al. Electromembrane processes in water purification and energy generation