JPS61102069A - field effect transistor - Google Patents
field effect transistorInfo
- Publication number
- JPS61102069A JPS61102069A JP59222917A JP22291784A JPS61102069A JP S61102069 A JPS61102069 A JP S61102069A JP 59222917 A JP59222917 A JP 59222917A JP 22291784 A JP22291784 A JP 22291784A JP S61102069 A JPS61102069 A JP S61102069A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- channel
- semiconductor layer
- low resistance
- electron affinity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 11
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000009825 accumulation Methods 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 11
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- -1 AuGa/Au Chemical class 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明はへテロ接合界面C:電子親和力の差に、より
誘起される2次元的な電子の蓄積層を導電チャネルとす
るヘテロ接合を利用した電界効果トランジスタに係わり
、特に電流飽和特性、電流遮断特性(ピンチオフ特性)
に優れた電界効果トランジスタに関する。[Detailed Description of the Invention] [Technical Field of the Invention] This invention utilizes a heterojunction interface C: a heterojunction in which a two-dimensional electron accumulation layer induced by a difference in electron affinity serves as a conductive channel. Regarding field effect transistors, especially current saturation characteristics and current cutoff characteristics (pinch-off characteristics)
Regarding field effect transistors with excellent performance.
n型の不純物を含んだ電子親和力の小さい半導体層と1
、実質的に不純物を含まない電子親和力の大きい半導体
層の間にヘテロ接合を形成すると両者の電子親和力の差
に起因して界面に2次元的な電子の蓄積層が形成される
。この電子蓄積層を導電チャネルとして利用する電界効
果トランジスタは高電子移動度トランジスタ(HEMT
) 、或いは選択ドープ電界効果トランジスタ(MD
FET )等の名称で知られており、通常の金属−半導
体電界効果トランジスタ(MB8FET )に比べ高周
波特性に優れている。A semiconductor layer with low electron affinity containing n-type impurities and 1
When a heterojunction is formed between substantially impurity-free semiconductor layers with high electron affinity, a two-dimensional electron accumulation layer is formed at the interface due to the difference in electron affinity between the two. A field effect transistor that uses this electron storage layer as a conductive channel is a high electron mobility transistor (HEMT).
), or selectively doped field effect transistor (MD
FET), etc., and has superior high frequency characteristics compared to ordinary metal-semiconductor field effect transistors (MB8FET).
通常、高電子移動度トランジスタは第3図に示す様に、
半絶縁基板(例えばGaAs )上に電子親和の大きい
ノンドープの半導体層(例えばGaAs)を比較的厚く
(〜1#m)エピタキシアル成長し、更1:その上(:
n型の不純物を含有した電子親和力の小さい半導体層(
例えばAlGaAs )をエピタキシアル成長した構造
を持っている。ヘテロ接合界面に形成されるチャネルへ
のオーミック接触は半導体表面から形成された低抵抗の
合金属を介して行なわれる。Normally, high electron mobility transistors are as shown in Figure 3.
A non-doped semiconductor layer (e.g. GaAs) with high electron affinity is epitaxially grown relatively thick (~1 #m) on a semi-insulating substrate (e.g. GaAs), and
A semiconductor layer with low electron affinity containing n-type impurities (
For example, it has a structure formed by epitaxially growing AlGaAs. Ohmic contact to the channel formed at the heterojunction interface is made through a low resistance metal alloy formed from the semiconductor surface.
この様な構造のトランジスタが良好な高周波特性を示す
事は実験的に検証されてきているが、チャネル長の短か
い素子を作製した場合、電流飽和領域での飽和特性が必
ずしも良好ではなく、また、ゲートに逆電圧を印加した
際の電流遮断特性も十分でない場合が多かった。飽和特
性、遮断特性の低下は電流かへテロ接合界面より下の半
導体層中に回り込んで流れる現象に起因するものである
事は定性的には理解され、特性改善の為に、半導体基板
とチャネル層の間に電子親和力の小さい層を導入し、こ
こに電位障壁を形成する試みも発表されているが、電流
の回り込みの定量的理解がなされていないために、この
層を導電チャネルよりどの程度の深さく:形成する事が
有効であるか等については明確にされていなかった。It has been experimentally verified that transistors with this type of structure exhibit good high-frequency characteristics, but when a device with a short channel length is fabricated, the saturation characteristics in the current saturation region are not necessarily good. In many cases, the current blocking characteristics when applying a reverse voltage to the gate were also insufficient. It is qualitatively understood that the decrease in saturation and cutoff characteristics is due to the phenomenon that current flows around the semiconductor layer below the heterojunction interface, and in order to improve the characteristics, it is necessary to Although attempts have been made to introduce a layer with low electron affinity between the channel layers and form a potential barrier there, there is no quantitative understanding of current wraparound, It was not clear whether or not it would be effective to form the following:
本発明は上記の点に鑑み、短チヤネル化した場合にも良
好な電流飽和特性と電流遮断特性を有するヘテロ接合電
界効果トランジスタを提供する事を目的とする。In view of the above points, it is an object of the present invention to provide a heterojunction field effect transistor that has good current saturation characteristics and current cutoff characteristics even when the channel is shortened.
本発明の電界効果トランジスタは前述したヘテロ接合界
面からの電流の基板側への回り込みを防ぐため、電子親
和力が小さく、実質的に不純物を含していない半導体層
が、ソース、ドレイン電極に接触して半導体表面より形
成されている低抵抗領域の深さよりも浅い位置にまで形
成されている事を特徴としている。In the field effect transistor of the present invention, in order to prevent current from flowing into the substrate side from the above-mentioned heterojunction interface, a semiconductor layer that has low electron affinity and does not substantially contain impurities is in contact with the source and drain electrodes. It is characterized by being formed at a depth shallower than the depth of the low resistance region formed from the semiconductor surface.
本発明は以下に述べる知見に基づいている。半導体素子
内部の電位、キャリア、電流等の分布を正確にシミュレ
ートできる2次元モデルを開発し、 ゛これを用いて従
来構造の高電子移動度トランジスタの解析を行なった結
果、ヘテロ接合界面より基板側への電流の回り込みの深
さは、ソース、ドレイン電極下に形成されている低抵抗
領域の深さシー密接に関連している事が明らかシ:なっ
た。第4図は計算された素子内部の電流分布の1例であ
る。The present invention is based on the findings described below. We developed a two-dimensional model that can accurately simulate the distribution of potential, carriers, current, etc. inside a semiconductor element, and used this to analyze a high electron mobility transistor with a conventional structure. It is clear that the depth of the current flow to the side is closely related to the depth of the low resistance region formed under the source and drain electrodes. FIG. 4 is an example of the calculated current distribution inside the element.
この素子は1μmのゲート長を有し、ソース、ドレイン
電極下に低抵抗の合金属がチャネルより0.15jmの
深さにまで形成されている。第4図より明らかな様にゲ
ート電極のドレイン側端に生じる電流の基板側への回り
込みはこの合金層の深さ程度に達している。これは、ド
レイン電極に印加された電圧によって生じるゲート端近
傍の伝導帯の形状の変化が、低抵抗領域の形状に左右さ
れる事によっている。従って、基板側への電流の回り込
みを抑制するにはソース、ドレイン電極下の低抵抗領域
なヘテロ接合界面ぎりぎりの深さにまで形成する事が効
果があるが、チャネル領域との間の抵抗を小さく押える
にはこの様な方法は望ましくなく、また、低抵抗領域の
深さの制御を精密に行なう必要があるため菓子作製が難
しくなる。This device has a gate length of 1 μm, and a low-resistance alloy metal is formed under the source and drain electrodes to a depth of 0.15 m from the channel. As is clear from FIG. 4, the current generated at the end of the gate electrode on the drain side reaches the depth of this alloy layer. This is because the change in the shape of the conduction band near the gate edge caused by the voltage applied to the drain electrode depends on the shape of the low resistance region. Therefore, in order to suppress the flow of current toward the substrate side, it is effective to form a low-resistance region under the source and drain electrodes to the depth of the heterojunction interface, but the resistance between the channel region and the This method is undesirable in order to press it down to a small size, and it becomes difficult to make confectionery because it is necessary to precisely control the depth of the low resistance region.
本発明の構造は、ソース・ドレイン電極下の低抵抗領域
の達する深さよりも浅い位置に電子親和力の小さい半導
体層を配し、電流の回り込みを抑制する電位障壁を形成
するものであり、上記の様な特性上、或いは素子作製上
の問題を回避する事ができる。In the structure of the present invention, a semiconductor layer with low electron affinity is arranged at a position shallower than the depth reached by the low resistance regions under the source/drain electrodes, and a potential barrier is formed to suppress current circulation. This makes it possible to avoid various problems in terms of characteristics or device fabrication.
以上に述べた様に、本発明の構造の素子では、素子作製
上の困難、並び1:抵抗成分の増加等を伴なう・事なく
、短チヤネル化した場合にも良好な電流飽和特性、電流
遮断特性が得られる効果がある。As described above, the device with the structure of the present invention has good current saturation characteristics even when the channel is shortened, without any difficulties in device manufacturing. This has the effect of providing current interrupting characteristics.
第1図は、本発明の素子構造をGaAsとAlGaAs
を用いて作製した場合の実施例を示したものである。こ
の素子は以下の様にして作製される。まず、半絶縁基板
11上に直接、或いはバッファ層となるζ
ノンドープGaAs層を介して図中12で示した電子親
和力の小さいAIGaAsmをノンドープでエピタキシ
アル成長する。この層の上にチャネル層となるノンドー
プのGaAs層13を電流の回り込みが素子特性に重大
な影響を与えない範囲の厚さに成長する。FIG. 1 shows the device structure of the present invention using GaAs and AlGaAs.
This figure shows an example of the case of fabrication using. This element is manufactured as follows. First, AIGaAsm having a low electron affinity, indicated by 12 in the figure, is epitaxially grown in a non-doped manner on the semi-insulating substrate 11 directly or via a ζ non-doped GaAs layer serving as a buffer layer. On this layer, a non-doped GaAs layer 13, which will become a channel layer, is grown to a thickness within a range where current circulation does not seriously affect device characteristics.
ついで、チャネルに電子を供給するn型の不純物(SL
等)を含んだkl GaA s層14を成長する。これ
ら一連の成長を行なうにはMBE法、或いはMOCVD
法が適当である。この様に形成されたウェハー表面にソ
ース、ドレイン電極となるAuGa/Au等の金属を被
着、成形した後、熱処理を加える事でこれらの電極下に
低抵抗の合金層17を作製する。この合金層はチャネル
層の電子系と良いオーミック接触が得られる様図中12
で示したAI GaA m層まで到達する様に形成する
。最後にウェハー表面にショットキーゲート電極18を
作製して工程は完了する。この素子を作製する際、ソー
ス、ドレイン電極下にオーミック特性を改良するための
n“GaAs 層を挿入したり、また、ソース・ゲート
間の寄生抵抗を低減するためCニゲー計電極下にリセス
構造を導入する等、公知の特性改善技術を組み合せる事
は容易である。Next, an n-type impurity (SL
etc.) is grown. To perform this series of growth, MBE method or MOCVD is used.
The law is appropriate. After metals such as AuGa/Au, which will become source and drain electrodes, are deposited and formed on the surface of the wafer thus formed, a low-resistance alloy layer 17 is formed under these electrodes by applying heat treatment. This alloy layer seems to have good ohmic contact with the electronic system of the channel layer (12 in the figure).
It is formed so as to reach the AI GaA m layer shown in . Finally, a Schottky gate electrode 18 is formed on the wafer surface to complete the process. When manufacturing this device, an n"GaAs layer was inserted under the source and drain electrodes to improve ohmic characteristics, and a recess structure was inserted under the C electrode to reduce parasitic resistance between the source and gate. It is easy to combine known characteristics improvement techniques, such as by introducing.
第2図は本発明の他の実施例を示したものである。この
実施例と第1図に示したものとの相異は、チャネル層の
下に挿入される電子親和力の大きいAlGa8b層のA
1組成比がチャネルに向って徐々に小さくなっている点
である。この様な構造を導入する事によりAJGaAs
r#lJのA1組成比を大きくしてもチャネルGaA
s層との界面に荒れが生じるのを防ぐ事ができ、素子特
性を損ねる事なく、電流のチャネル領域への閉じ込めを
一層有効に行なう事ができる。FIG. 2 shows another embodiment of the invention. The difference between this embodiment and the one shown in FIG. 1 is that the AlGa8b layer with high electron affinity inserted under the channel layer
1 composition ratio gradually decreases toward the channel. By introducing such a structure, AJGaAs
Even if the A1 composition ratio of r#lJ is increased, the channel GaA
It is possible to prevent roughness from occurring at the interface with the s-layer, and it is possible to more effectively confine current in the channel region without impairing device characteristics.
以上の実施例においては半導体の組合せとしてGaAs
とAlGaAsを用いてきたが、本発明の素子は他の物
質の組合せ、例えばInPとInGaAs、 GaAs
とAlGa8b等(=よっても同様に構成され得るもの
である事は言うまでもない。In the above embodiments, GaAs is used as the semiconductor combination.
Although InP and AlGaAs have been used, the device of the present invention can be made of combinations of other materials, such as InP and InGaAs, GaAs
It goes without saying that the structure can be similarly constructed using other materials such as AlGa8b and AlGa8b.
第1図は本発明の1実施例の電界効果トランジスタの構
造図、第2図は本発明の他の実施例の電界効果トランジ
スタの構造図、第3図は従来構造の高電子移動度トラン
ジスタ、第4図は2次元数値解析モデルを用いて得られ
た従来構造の高電子移動度トランジスタ内部の電流分布
を表わす図である。
11・・・半絶縁性半導体基板(GaAs)。
12・・・電子親和力の小さいノンドープ半導体層(A
IGaAs) 。
12’・・・組成が徐々に変化するノンドープ半導体層
。
13・・・電子親和力の大きいノンドープ半導体層(G
aAs)。
14・・・n型不純物を含有する電子親和力の小さい半
導体層(A)GaAs) 。
15・・・ソース電極、16・・・ドレイン電極。
17・・・低抵抗合金層、18・・・ゲート電極。
代理人 弁理士 則 近 憲 佑(ほか1名)第1図
第2図
冷FIG. 1 is a structural diagram of a field effect transistor according to one embodiment of the present invention, FIG. 2 is a structural diagram of a field effect transistor according to another embodiment of the present invention, and FIG. 3 is a high electron mobility transistor with a conventional structure. FIG. 4 is a diagram showing a current distribution inside a high electron mobility transistor with a conventional structure obtained using a two-dimensional numerical analysis model. 11... Semi-insulating semiconductor substrate (GaAs). 12... Non-doped semiconductor layer with low electron affinity (A
IGaAs). 12'...A non-doped semiconductor layer whose composition gradually changes. 13... Non-doped semiconductor layer with high electron affinity (G
aAs). 14... Semiconductor layer (A) GaAs) containing n-type impurities and having low electron affinity. 15... Source electrode, 16... Drain electrode. 17...Low resistance alloy layer, 18...Gate electrode. Agent: Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Rei
Claims (1)
含有しない電子親和力の小さい第1の半導体層と、実質
的に不純物を含有しない電子親和力の大きい第2の半導
体層と、n型の不純物を含有する電子親和力の小さい第
3の半導体層を有し、該第2、第3の半導体層の界面に
形成される電子の蓄積層をチャネルとし、このチャネル
内の電子数を制御するゲート電極と、このチャネルに低
抵抗領域を介してオーミック接触する入出力電極とが半
導体表面に形成され、該低抵抗領域が前記第1の半導体
層まで達している事を特徴とする電界効果トランジスタ
。A first semiconductor layer that does not substantially contain impurities and has a low electron affinity, a second semiconductor layer that does not substantially contain impurities and has a high electron affinity, and is formed in sequence on a semi-insulating substrate. A gate that has a third semiconductor layer containing impurities and has a low electron affinity, has an electron accumulation layer formed at an interface between the second and third semiconductor layers as a channel, and controls the number of electrons in this channel. A field effect transistor characterized in that an electrode and an input/output electrode in ohmic contact with the channel via a low resistance region are formed on a semiconductor surface, and the low resistance region reaches the first semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59222917A JPS61102069A (en) | 1984-10-25 | 1984-10-25 | field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59222917A JPS61102069A (en) | 1984-10-25 | 1984-10-25 | field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61102069A true JPS61102069A (en) | 1986-05-20 |
Family
ID=16789883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59222917A Pending JPS61102069A (en) | 1984-10-25 | 1984-10-25 | field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61102069A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0447327A2 (en) * | 1990-03-15 | 1991-09-18 | Fujitsu Limited | Heterostructure semiconductor device |
-
1984
- 1984-10-25 JP JP59222917A patent/JPS61102069A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0447327A2 (en) * | 1990-03-15 | 1991-09-18 | Fujitsu Limited | Heterostructure semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920003799B1 (en) | Semiconductor device | |
US5153682A (en) | HEMT device with doped active layer | |
JPS6356710B2 (en) | ||
JPH07273310A (en) | Resonant tunneling FET and manufacturing method thereof | |
JPS61102069A (en) | field effect transistor | |
JPH02109360A (en) | Semiconductor device | |
JPS63161677A (en) | Field effect transistor | |
US5693964A (en) | Field-effect transistor and fabrication method | |
JP2695832B2 (en) | Heterojunction field effect transistor | |
JP2804252B2 (en) | Field effect transistor and method of manufacturing the same | |
JP2728427B2 (en) | Field effect transistor and its manufacturing method | |
JP2616032B2 (en) | Method for manufacturing field effect transistor | |
JPH05343435A (en) | Semiconductor device | |
KR930009811B1 (en) | Mes fet transistor and manufacturing method thereof | |
JPS6143443A (en) | Manufacture of semiconductor device | |
JPH01125985A (en) | Semiconductor device | |
JPH04167531A (en) | Iii-v compound semiconductor device and manufacture thereof | |
JPH07153779A (en) | Field effect transistor and manufacture thereof | |
JPH04280640A (en) | Field-effect transistor and manufacture thereof | |
JPS5944871A (en) | Insulated gate field effect transistor | |
JPH0397232A (en) | Field-effect transistor | |
JPH07283402A (en) | Semiconductor device and manufacturing method thereof | |
JPS63226967A (en) | Compound semiconductor junction type field-effect transistor and its manufacture | |
JPH03240241A (en) | Field effect transistor | |
JPS6399579A (en) | Manufacture of field effect transistor |