JPS61108463A - Casting use spherical granular flux having good heat retaining property - Google Patents
Casting use spherical granular flux having good heat retaining propertyInfo
- Publication number
- JPS61108463A JPS61108463A JP22960984A JP22960984A JPS61108463A JP S61108463 A JPS61108463 A JP S61108463A JP 22960984 A JP22960984 A JP 22960984A JP 22960984 A JP22960984 A JP 22960984A JP S61108463 A JPS61108463 A JP S61108463A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- flux
- casting
- cao
- granules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
鋼の鋳造時、なかでも連続鋳造の際に使用する鋳造用フ
ラフクスの改良に関してこの明細、書で述べる技術内容
は顆粒状フラックスの保温性の向上についての開発成果
を提案するものである。[Detailed Description of the Invention] (Industrial Application Field) The technical content described in this specification and book regarding the improvement of casting fluff used during steel casting, particularly during continuous casting, is to improve the heat retention properties of granular flux. It proposes development results for improvement.
(従来の技術)
鋼の鋳造時には鋳型に注入した溶鋼上に鋳造用フラフク
スと称する添加剤を投入するが、従来は粉末状のため投
入の際の発塵により作業環境が悪化していた。(Prior Art) When casting steel, an additive called casting fluffx is added to the molten steel poured into a mold. Conventionally, since the additive was in powder form, dust was generated when it was added, which worsened the working environment.
発明者らの属する研究グループは、かような作業環境を
改善して、しかもより優れた鋳片表面品質を得ることが
できる顆粒状フラックスの開発に成功し、さきに特開昭
50−141528号、特開昭53−70040号公報
に開示をした。しかしながら最近の目覚しい鋳造技術の
進歩に従い、とりわけ高速鋳造操作に対処する新規な顆
粒状フランクスの必要性が生じてきた。それというのは
連続鋳造操作において、鋳造速度が高速化するにつれて
鋳型と鋳片間のスラグ流人が阻害され勝ちになり、従っ
て、スラグによる潤滑機能が乏しくなるため、鋳片の凝
固シェルに作用する摩擦力が増大してブレークアウトが
発生し易くなるからである。The research group to which the inventors belong succeeded in developing a granular flux that can improve the working environment and obtain better surface quality of slabs, and has previously published Japanese Patent Application Laid-Open No. 50-141528. , was disclosed in Japanese Patent Application Laid-Open No. 53-70040. However, with recent dramatic advances in casting technology, a need has arisen for new granular flanks that specifically address high speed casting operations. This is because in continuous casting operations, as the casting speed increases, the flow of slag between the mold and the slab tends to be inhibited, and therefore the slag's lubricating function becomes poor, which affects the solidified shell of the slab. This is because the frictional force increases, making breakout more likely to occur.
(発明が解決しようとする問題点)
高速鋳造作業下においては、スラグ流人量を確保してス
ラグ潤滑性を維持しながら鋳造することが安定操業上重
要な管理ポイントである。(Problems to be Solved by the Invention) During high-speed casting operations, it is an important management point for stable operation to ensure a sufficient amount of slag flow and perform casting while maintaining slag lubricity.
この流入スラグは鋳造用フラックスが溶鋼した溶解スラ
グ層から供給されるため、溶鋼上に十分な溶解スラグ層
を確保することがまず先決である。Since this inflow slag is supplied from the molten slag layer where the casting flux is molten steel, the first priority is to ensure a sufficient molten slag layer on the molten steel.
溶解スラグ層厚は溶鋼熱により鋳造用フラックスが溶解
スラグ化する速度と、溶解スラグが鋳型と鋳片間に流入
してスラグフィルムとなり潤滑機能を果たしながら消費
してゆく速度とのバランスによって決るため、とくに高
速鋳造化に伴い、時間当たりのスラグ消費量をより多く
必要とする状況下においては、スラグ潤滑の消耗補給を
専ら司るべき溶解スラグ量、つまりは溶解スラグ層厚の
十分な確保が特に重要視される。The thickness of the molten slag layer is determined by the balance between the speed at which the casting flux turns into molten slag due to the heat of the molten steel, and the speed at which the molten slag flows between the mold and the slab, forms a slag film, and is consumed while fulfilling its lubricating function. In particular, in situations where higher slag consumption per hour is required due to high-speed casting, it is especially important to ensure a sufficient amount of molten slag, which is responsible for replenishing the consumption of slag lubrication, or in other words, a sufficient thickness of the molten slag layer. considered important.
しかるに玉揚したものも含め一般に従来の顆粒状フラン
クスは、粉末状フラックスに比較して溶解スラグ層厚が
薄い傾向にあり、この点、経験的に認識されているため
、高速鋳造には顆粒状フランクスを使用することが逅巡
され勝ちであった。However, in general, conventional granular fluxes, including doffed ones, tend to have a thinner melted slag layer than powdered fluxes, and this point has been empirically recognized, so granular fluxes are suitable for high-speed casting. It was decided to use Franks and it was a victory.
さて鋳造用フラックスの溶解過程については、溶鋼表面
に添加された鋳造用フラックス被覆層の底部にて、溶鋼
表面からの伝熱によって溶解スラグ化が進行し、従って
このフラックス被覆層の垂直方向2点の温度差にて、そ
の保温性、断熱性を代表させ得ると考えられる。Now, regarding the melting process of casting flux, at the bottom of the casting flux coating layer added to the molten steel surface, molten slag progresses due to heat transfer from the molten steel surface, and therefore, two points in the vertical direction of this flux coating layer It is thought that the temperature difference can represent the heat retention and insulation properties.
そこでこの溶解スラグ化をシミュレートして加熱始から
一定時間後のフラックス被覆層の垂直方向に隔たる2測
定点間の温度差を保温評価指数とし、粉末状フラックス
およびそれを従来の方法で顆粒にした顆粒状フラックス
について比較したところ、粉末は顆粒にくらべて一般に
保温評価指数が高く保温性に優れていることが判明した
。Therefore, by simulating this melting into slag, the temperature difference between two measuring points vertically separated on the flux coating layer after a certain period of time from the start of heating was used as a heat retention evaluation index, and powdered flux and it were granulated using the conventional method. A comparison of the granular fluxes revealed that powders generally have a higher heat retention evaluation index and are superior in heat retention than granules.
保温性の良いということは被覆層内の蓄熱量が大きいと
いうことであり、粉末と顆粒の溶解スラグ層厚の違いは
被覆層内の蓄熱量の違い、すなわち保温性の差によるも
のと推察される。Good heat retention means a large amount of heat storage within the coating layer, and it is assumed that the difference in the thickness of the molten slag layer between powder and granules is due to the difference in the amount of heat storage within the coating layer, that is, the difference in heat retention. Ru.
鋳造用フラックス被覆層の如き充填層の伝熱は粒子間の
熱伝達定数に依存するが、粉末や顆粒のように空隙が密
閉されていない場合は空隙間の通気による伝熱も大きい
割合を占めると考えられる。Heat transfer in a packed layer such as a flux coating layer for casting depends on the heat transfer constant between particles, but in cases where the voids are not sealed, such as in powder or granules, ventilation in the voids also accounts for a large proportion of the heat transfer. it is conceivable that.
連鋳鋳型内での伝熱問題のように熱源が下方に在り上方
に伝熱する場合は、上昇気流も発生するので空隙間の通
気伝熱は一層大きくなりしかも、顆粒は粒子径が粉末に
比べて格段に大きいので、空隙間隔、空隙間の通気性も
大きい傾向にあり、このことの故に顆粒が粉末に比較し
て保温性に劣る原因となる。When the heat source is located below and the heat is transferred upwards, as in the case of heat transfer problems in continuous casting molds, upward air currents are also generated, so the ventilation heat transfer through the gaps becomes even larger. Since the granules are much larger than the powder, the gap between the spaces and the air permeability of the spaces tend to be large, and this causes the granules to have inferior heat retention properties compared to the powder.
発明者らは上記の知見から、顆粒においても粒子間の空
隙間隔を減じ、つまり充填密度を高くすることにより、
空隙間の通気性を少なくすりば、粉末におけるような上
湯発塵の不利を伴うことな(してしかも粉末と匹°敵す
る保温性を有する顆粒が得られるのでないかと研究した
結果この発明の球形顆粒状フラックスの開発に成功した
ものである。Based on the above findings, the inventors reduced the void space between particles in the granules, that is, increased the packing density.
This invention was developed as a result of research into whether it would be possible to obtain granules with heat retaining properties comparable to powders by reducing the air permeability of the voids, without the disadvantage of hot water dust generation that occurs with powders. This was the successful development of spherical granular flux.
(問題点を解決するための手段)
この発明はAlto3を2〜20wt%アルカリおよび
アルカリ土類金属の弗化物を3〜30賀t%、
アルカリおよびアルカリ土類金属の酸化物をCaOは算
入しないこととして2〜30w t%、そして炭素粉末
を0.2〜7wt%
含むほか、残部がCab/ 5tot比の値で0.65
〜1.5の割合いとなるCaOおよび5iftを含有す
る組成より成り、粒径3.0以下に造粒した粒子であっ
て、粒径0.1〜2.0mm : 90wt%以
上粒径0.1mm未満 : 5wt%以下粒径2
.0〜3.Omn+ : 5wt%以下の粒度分
布に成ることを特徴とする保温性の良い鋳造用球形顕粒
状フラックスであり、フラックス組織と粒度分布との結
合が枢容事項である。(Means for solving the problem) This invention contains Alto3 at 2 to 20 wt%, alkali and alkaline earth metal fluorides at 3 to 30 wt%, and alkali and alkaline earth metal oxides not included in CaO. In particular, it contains 2 to 30 wt%, and 0.2 to 7 wt% of carbon powder, and the balance is 0.65 in terms of Cab/5tot ratio.
Particles consisting of a composition containing CaO and 5ift at a ratio of ~1.5, granulated to a particle size of 3.0 or less, with a particle size of 0.1 to 2.0 mm: 90 wt% or more and a particle size of 0. Less than 1mm: 5wt% or less particle size 2
.. 0-3. Omn+: A spherical, fine-grained flux for casting with good heat retention, characterized by a particle size distribution of 5 wt% or less, and the combination of the flux structure and particle size distribution is a key issue.
(作 用) 。(for production).
まずフラックス組成について上記のように限定をする理
由から説明を進め、ここにwt%は単に%で示す。First, the reason for limiting the flux composition as described above will be explained, and wt% is simply expressed as %.
A l zos : 2〜20%
AlzO,は含有量が少なすぎて2%を下まわると軟化
溶解速度が上昇し、フラックス溶解速度が遅くなる。ま
た、1203含有量が20%をこえて多すぎると130
0℃以下の低温で粘度が急激に上昇したり、凝固時に結
晶が晶出する可能性がきわめて多くなり、ノロカミ等の
表面欠陥が発生し易い。Alzos: 2 to 20% The content of AlzO is too small and when it falls below 2%, the softening and dissolving rate increases and the flux dissolving rate becomes slow. In addition, if the 1203 content is too high, exceeding 20%, 130
At a low temperature of 0° C. or lower, the viscosity increases rapidly, crystals are very likely to crystallize during solidification, and surface defects such as slag are likely to occur.
従ってフラックス中のAIZO!含有量は2〜20%と
する。Therefore AIZO in flux! The content is 2 to 20%.
アルカリ金属およびアルカリ土類金属の弗化物:3〜3
0%
アルカリ金属およびアルカリ土類金属の弗化物は、主と
して軟化溶解温度、粘度などを調節する働きを有するが
、30%より多すぎるとガラス傾向を阻害する一方3%
より少なすぎると軟化溶解温度が高くなりすぎて、溶鋼
表面上で不均一をし易くなるので3〜30%に限定する
。Alkali metal and alkaline earth metal fluorides: 3-3
0% Alkali metal and alkaline earth metal fluorides mainly have the function of adjusting softening and melting temperatures, viscosity, etc., but if the amount exceeds 30%, the glass tendency is inhibited, while 3%
If it is too small, the softening and melting temperature will become too high, making it easy to cause unevenness on the surface of the molten steel, so it is limited to 3 to 30%.
アルカリ金属およびアルカリ土類金属の酸化物をCaO
は算入しないこととして2〜30%アルカリ金属および
アルカリ土類金属の酸化物も主として軟化溶解温度、粘
度等を調節する働きを有するが、これも30%より多す
ぎるとガラス化傾向を阻害するので好ましくなく、また
2%より少ないと殆ど効果が望めなくなるので2〜30
%を限定するのであり、ここに−CaOを不算入とした
のはあとで述べる塩基度に依存したフラックス性状に及
ぼす影響がより重要なためである。Oxides of alkali metals and alkaline earth metals are converted into CaO
2 to 30% oxides of alkali metals and alkaline earth metals also have the function of adjusting the softening melting temperature, viscosity, etc., but if the amount exceeds 30%, the vitrification tendency is inhibited. It is not preferable, and if it is less than 2%, almost no effect can be expected, so 2 to 30
%, and the reason why -CaO is not included here is because its influence on the flux properties depending on basicity, which will be described later, is more important.
炭素粉末 0.2〜7%
炭素粉末はりん片状黒鉛、コークス粉、人造黒鉛、玉状
黒鉛、不炭粉、カーボンブラックなどの何れが単独又は
複合にて配合し、溶解スラグ化速度を調整するのに役立
つが、7%をこえると溶解スラグ化速度が遅くなるため
、十分な溶解スラグ層の生成を阻害する一方、0.2%
より少ないと溶解スラグ化速度の調整機能が望めなくな
るので0.2〜7%の範囲に限定した。Carbon powder 0.2-7% Carbon powder can be blended with flaky graphite, coke powder, artificial graphite, globular graphite, uncharred powder, carbon black, etc., singly or in combination, to adjust the rate of dissolution and slagging. However, if it exceeds 7%, the rate of dissolving slag will slow down, inhibiting the generation of a sufficient dissolved slag layer, while 0.2%
If the amount is less, the ability to adjust the rate of dissolution and slagging cannot be expected, so it is limited to a range of 0.2 to 7%.
この発明のフラックス組成は上記各成分を含んで残部は
、CaOおよび5iOaより成るが、重量%比において
Cab/ Singの値を0.65〜1.5の範囲にし
なければならず、この範囲内においてフラックスのガラ
ス化傾向、鋳型自溶鋼中を浮上するAltosの吸着そ
して溶解速度の諸点で適合し1.0.65より低いとき
AIto、の溶融速度が劣り、また粘度値が高くなりす
ぎるため好ましくないことの不利があり、また1、5を
こえるとフラックスの溶融温度が上昇を来してこれもま
た好ましくないことの点で不満足となる。The flux composition of the present invention contains each of the above components, and the remainder consists of CaO and 5iOa, but the value of Cab/Sing in terms of weight percent ratio must be in the range of 0.65 to 1.5, and within this range. When it is lower than 1.0.65, the melting rate of Alto is poor and the viscosity value becomes too high, so it is preferable. There is a disadvantage that there is no flux, and if it exceeds 1.5, the melting temperature of the flux increases, which is also unsatisfactory.
上記のような適正なフラックスの成分組成においてとく
に球形顕粒状をなすフラックスの粒度分布が重要である
。In the above-mentioned proper composition of the flux, the particle size distribution of the flux in the form of spherical particles is particularly important.
ここで鋳造用顆粒フラックスの一般的な製造方法を顧み
ると次のとおりである。Here, the general method for producing granular flux for casting is as follows.
従来顆粒製造方法は能率良く大量生産できる押し出し式
造粒によるものが一般的である。押し出し式造粒とは公
知のように混練物をパンチングプレートから強制的に押
し出して造粒する方法であり、得られる造粒物の形状は
柱状である。このような柱状物はカドがあることもあっ
て、充填密度が小さくしかも空隙間の通気性が大きい。Conventional methods for producing granules generally involve extrusion granulation, which allows for efficient mass production. Extrusion granulation is a well-known method of granulating a kneaded material by forcibly extruding it from a punching plate, and the shape of the resulting granules is columnar. Because such columnar objects have edges, the packing density is low and the air permeability of the voids is high.
そこで押し出し径を小さくして細粒化してみたが、やは
り通気性が大であるためか保温性は粉末に比較して隔分
劣っていた。Therefore, we tried making the powder finer by reducing the extrusion diameter, but the heat retention was inferior to that of powder, probably due to the high air permeability.
すなわち、押し出し成造粒物のようにカドのある柱状形
状では粒子径を小さくして細粒顆粒にしてもなお目的と
している保温性向上は望めない。That is, in the case of extruded granules having a columnar shape with corners, even if the particle size is reduced to form fine granules, the desired improvement in heat retention cannot be expected.
無論限りなく小さな粒子径にすめば可能性はあると思わ
れるが、ここでは押し出し式造粒として一般的に量産製
造可能な粒子径でなければ意味がないのは明らかである
。Of course, there is a possibility if the particle size is made as small as possible, but it is clear that it is meaningless unless the particle size is one that can be generally mass-produced by extrusion granulation.
発明者らは保温性の良い顆粒を得るには、充填密度を上
げ、かつ、空隙間の通気性を少なくすればよいと考えて
研究した結果、球状で粒径0.1mm〜2.On+mの
範囲が90重量%以上でかつ、この粒度範囲で正規分布
に近い粒度分布を有する顆粒であればこの発明の目的で
ある鋳造用フラックスとし、ての保温性を確保し得るこ
とを見出した。The inventors conducted research on the idea that in order to obtain granules with good heat retention properties, it would be best to increase the packing density and reduce the air permeability of the voids. It has been found that if the On+m range is 90% by weight or more and the granules have a particle size distribution close to normal distribution in this particle size range, it is possible to obtain the casting flux that is the object of this invention and ensure the heat retention properties. .
さて第1図は粉末状フラックス(A)とそれを造粒して
得られた柱状顆粒(B)、細柱状顆粒(C)およびこの
発明の球状顆粒(D)について、保温評価指数と嵩比重
を測定した結果を示す。Now, Figure 1 shows the heat retention evaluation index and bulk specific gravity of the powdered flux (A), columnar granules (B), fine columnar granules (C), and spherical granules of the present invention (D) obtained by granulating the flux. The results are shown below.
ここに保温評価指数については鋳造用フラックスの実施
における溶解状態を近似した実験的な溶解スラグ化挙動
をシミョレートする第2図の測定装置にて試料に底部の
みからの一方向加熱による伝熱によって溶解させ、底部
から加熱しつつ試料層中の伝熱状態を垂直方向2点A、
Bの温度差が第3図の如き、温度プロフィルを呈するこ
とで評価した。Here, regarding the heat retention evaluation index, the sample was melted by heat transfer by unidirectional heating from the bottom only using the measuring device shown in Figure 2, which simulates the experimental melting and slagging behavior that approximates the melting state in the practice of casting flux. Then, while heating from the bottom, the heat transfer state in the sample layer was measured at two points A and A in the vertical direction.
Evaluation was made based on the temperature difference of B exhibiting a temperature profile as shown in FIG.
第2図において1は黒鉛るつぼ、2はその底壁加熱装置
、3は耐火断熱れんが、そして4は温度センサ、5は試
料である。In FIG. 2, 1 is a graphite crucible, 2 is its bottom wall heating device, 3 is a refractory insulation brick, 4 is a temperature sensor, and 5 is a sample.
第1図によれば球状顆粒(D)が粉末に匹敵する保温性
を有していることが明らかである。According to FIG. 1, it is clear that the spherical granules (D) have heat retaining properties comparable to powder.
これは第1図にあわせ示すように球状顆粒が柱状顆粒に
比べて嵩比重が大きくかつ、第4図のように充填密度も
高いために空隙が少なく、しかも球状であるので空隙間
の通気性も少ないことが保温性向上の原因であるといえ
る。This is because, as shown in Figure 1, spherical granules have a larger bulk specific gravity than columnar granules, and as shown in Figure 4, they have a higher packing density, so they have fewer voids, and their spherical shape makes the voids more breathable. It can be said that the reason for the improvement in heat retention is that there is less heat retention.
ここに粒径はJIS標準標準フル上るフルイ目開きによ
って表し、一方嵩比重は内径50mmφ、容積100c
cの円筒状容器に容器1端より50mm以内の高さから
、試料を自然落下させ容器から少し溢れるくらいまで入
れ、これを100ccに切り取ったときの重量で表す。Here, the particle size is expressed by the JIS standard full-length sieve opening, while the bulk specific gravity is expressed by an inner diameter of 50 mmφ and a volume of 100 c.
The sample is placed in a cylindrical container c from a height within 50 mm from one end of the container until it slightly overflows, and the sample is expressed as the weight when cut into 100 cc pieces.
上記の球状顆粒(D)はさきに述べ範囲内の組成からな
る粉末を粒径0.1〜2.0nuaが90%以上、粒径
0.1mm未満が5.0重量%以下、粒径2.Omm〜
3.Onvが5.0重量%以下に造粒したものであり、
ここに粒径0.1mm以下は全く無いことが理想的であ
るが、5.0mm以下であれば実用上の粉塵は問題とな
らない。そして粒径3II11以上は未溶解状態のまま
溶鋼メンスカスから捲き込まれる恐れが生じるためカン
トすることとして粒径2.0〜3 、0IIImについ
ても全く無いことが理想的であめが、5.0mm%以下
ならば保温性悪化を起こさない。The above-mentioned spherical granules (D) are powders having a composition within the aforementioned range, with a particle size of 0.1 to 2.0 nua in 90% or more, a particle size of less than 0.1 mm in 5.0% by weight or less, and a particle size of 2. .. Omm~
3. Onv is granulated to 5.0% by weight or less,
Ideally, there should be no particles with a particle size of 0.1 mm or less, but if the particle size is 5.0 mm or less, dust will not be a problem in practical use. Particles with a particle size of 3II11 or more may be drawn in from the molten steel menscus in an unmelted state, so ideally there should be no particles with a particle size of 2.0 to 3, and 0IIIm at all. If it is below, heat retention will not deteriorate.
粒径0.1mn+〜2.Omm’は十分な保温性を得る
ためには90重量%以上が必要であり、しかもこの粒度
範囲内で正視分布に近い粒度分布を有することが望まし
い。Particle size 0.1mm+~2. Omm' needs to be at least 90% by weight in order to obtain sufficient heat retention, and within this particle size range it is desirable to have a particle size distribution close to the emmetropic distribution.
以上の如くこの発明に従う保温性の良い顆粒状フラック
スは、正視分布に近い粒度分布を有することによって充
填密度が改善され保温性の改善に役立つが鋳造用フラッ
クスという特別用途からできるだけ細粒が望ましい。As described above, the granular flux with good heat retention according to the present invention has a particle size distribution close to the emmetropic distribution, which improves the packing density and helps improve heat retention, but it is desirable to have as fine particles as possible from the special purpose of casting flux.
かような観点から各種造粒方法を考察すると、転勤造粒
、流動層造粒、攪拌造粒などの球状顆粒を得ることので
きる造粒方法を工夫して適用することができる。When various granulation methods are considered from this point of view, it is possible to devise and apply granulation methods that can obtain spherical granules, such as transfer granulation, fluidized bed granulation, and agitation granulation.
この発明の特徴は極めて安価に保温性に優れた球状顆粒
にあり例えば、急速加熱発泡法によるような中空状顆粒
に比べより安価で、かつ同等ないしはそれ以上の効果を
あげることができる。The feature of this invention is the spherical granules that are extremely inexpensive and have excellent heat retention properties, and are cheaper than, for example, hollow granules produced by rapid heating and foaming, and can provide the same or better effects.
(実施例) 次にこの発明の実施例を示す。(Example) Next, examples of this invention will be shown.
表1は次の成分を有する鋳造用フラックスをスラブ高速
鋳造に使用した時の作業状況を示している。Table 1 shows the working conditions when a casting flux having the following components was used for high-speed slab casting.
フラックス配合
A e zo:l : 6.4%、CaFt:3.5%
、 Na、 O: 4.5%MgO: 1.5%、Ba
O: 5.4%、C:3.5%で残りはCab/ 5i
(h : 1.05の比率のCaOとSiO2よりなる
組成。Flux composition A e zo: l: 6.4%, CaFt: 3.5%
, Na, O: 4.5% MgO: 1.5%, Ba
O: 5.4%, C: 3.5%, the rest is Cab/5i
(h: Composition consisting of CaO and SiO2 in a ratio of 1.05.
ここで従来例として粉末及び従来方法による柱状顆粒、
比較例としてこの発明と同じ球状顆粒なるも粒形分布の
異なる顆粒のテストした結果も示すが、なお比較例はテ
スト回数が少ないためブレークアウトについて評価でき
なかった。Here, as conventional examples, powder and columnar granules produced by a conventional method,
As a comparative example, the results of testing the same spherical granules as the present invention and granules having a different particle shape distribution are also shown, but the comparative example could not be evaluated for breakout due to the small number of tests.
(発明の効果)
この発明の球状顆粒は溶解スラブ層厚を十分確保し、か
つ、鋳片表面欠陥およびブレークアウト発生の問題の全
く無いことが実施例により明らかであって、この発明の
球状顆粒は高速鋳造操業を安定して行い、かつ表面欠陥
の少ない鋳片を得る上で非常に有効である。(Effects of the Invention) It is clear from Examples that the spherical granules of the present invention ensure a sufficient thickness of the molten slab layer and are completely free from problems of slab surface defects and breakouts. is very effective in stably performing high-speed casting operations and obtaining slabs with few surface defects.
第1図は形態の異なる4種の試料について保温評価指数
と嵩比重の測定例を示すグラフ、第2図は保温評価指数
の比較に用いたフラックス溶解用加熱試験装置の断面図
、
第3図は温度差の測定例を示すグラフであり、第4図は
球状および柱状各顆粒の充填状況を示す顕微鏡スケッチ
図である。
第1図
第2図Figure 1 is a graph showing measurement examples of heat retention evaluation index and bulk specific gravity for four types of samples with different shapes, Figure 2 is a cross-sectional view of the heating test device for flux melting used to compare heat retention evaluation index, Figure 3 is a graph showing an example of temperature difference measurement, and FIG. 4 is a microscopic sketch diagram showing the filling status of spherical and columnar granules. Figure 1 Figure 2
Claims (1)
て炭素粉末を0.2〜7wt% 含むほか、残部がCaO/SiO_2比の値で0.65
〜1.5の割合いとなる、CaOおよびSiO_2を含
有する組成より成り、粒径3.0mm以下に造粒した粒
子であって、 粒径0.1〜20mm:90wt%以上 粒径0.1mm:5wt%以下 粒径2.0〜3.0mm:5wt%以下 の粒度分布に成ることを特徴とする保温性の良い鋳造用
球形顕粒状フラックス。[Claims] 1. 2 to 20 wt% of Al_2O_3, 3 to 30 wt% of alkali and alkaline earth metal fluorides, 2 to 30 wt% of alkali and alkaline earth metal oxides, excluding CaO. % and contains carbon powder of 0.2 to 7 wt%, and the balance is 0.65 in terms of CaO/SiO_2 ratio.
Particles consisting of a composition containing CaO and SiO_2 with a ratio of ~1.5 and granulated to a particle size of 3.0 mm or less, particle size 0.1 to 20 mm: 90 wt% or more particle size 0.1 mm : 5 wt% or less Particle size: 2.0 to 3.0 mm A spherical fine-grained flux for casting with good heat retention properties, characterized by having a particle size distribution of 5 wt% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22960984A JPS61108463A (en) | 1984-10-31 | 1984-10-31 | Casting use spherical granular flux having good heat retaining property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22960984A JPS61108463A (en) | 1984-10-31 | 1984-10-31 | Casting use spherical granular flux having good heat retaining property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61108463A true JPS61108463A (en) | 1986-05-27 |
Family
ID=16894854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22960984A Pending JPS61108463A (en) | 1984-10-31 | 1984-10-31 | Casting use spherical granular flux having good heat retaining property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61108463A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4025033A1 (en) * | 1989-08-07 | 1991-02-14 | Aisin Seiki | CHILD PROTECTION MECHANISM IN A DOOR LOCKING DEVICE |
-
1984
- 1984-10-31 JP JP22960984A patent/JPS61108463A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4025033A1 (en) * | 1989-08-07 | 1991-02-14 | Aisin Seiki | CHILD PROTECTION MECHANISM IN A DOOR LOCKING DEVICE |
US5125701A (en) * | 1989-08-07 | 1992-06-30 | Aisin Seiki Kabushiki Kaisha | Child protecting mechanism in door lock apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4650452B2 (en) | Steel continuous casting method | |
JP4881203B2 (en) | Powder for continuous casting | |
JPS6357141B2 (en) | ||
JP3141187B2 (en) | Powder for continuous casting of steel | |
JPS61108463A (en) | Casting use spherical granular flux having good heat retaining property | |
CN102009144A (en) | Function protection material for special continuous casting mould of high-speed heavy rail steel with bloom | |
JP2003053497A (en) | Flux for continuous casting | |
JPH0440103B2 (en) | ||
JP2000071051A (en) | Powder for continuous casting of steel | |
JP7239810B2 (en) | Continuous casting method for mold powder and high Mn steel | |
JP2004098092A (en) | Method for continuously casting molten hyper-peritectic medium carbon steel | |
WO1995005911A1 (en) | Mould fluxes and their use in the continuous casting of steel | |
JP2994718B2 (en) | Flux for continuous casting | |
JP3869597B2 (en) | Mold flux for continuous casting | |
JP2004001017A (en) | Mold powder for continuous casting of steel | |
JP3717049B2 (en) | Mold powder for continuous casting of steel and continuous casting method of steel | |
JP3519992B2 (en) | Continuous casting flux | |
JP3300274B2 (en) | Mold powder for continuous casting of steel | |
JP2000051998A (en) | Method for continuously casting lead-containing steel | |
JP6825407B2 (en) | Continuous casting method of mold powder and molten metal for continuous casting | |
JP3684418B2 (en) | Sliding nozzle filling and ladle steel receiving method using the same | |
JPH04138858A (en) | Flux for continuous casting | |
JPS61150752A (en) | Mold additive for continuous casting of steel | |
JPS5910862B2 (en) | Mold additive for continuous casting | |
JP3296376B2 (en) | Mold additive |