[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61107946A - Hydrotreating catalyst - Google Patents

Hydrotreating catalyst

Info

Publication number
JPS61107946A
JPS61107946A JP59229285A JP22928584A JPS61107946A JP S61107946 A JPS61107946 A JP S61107946A JP 59229285 A JP59229285 A JP 59229285A JP 22928584 A JP22928584 A JP 22928584A JP S61107946 A JPS61107946 A JP S61107946A
Authority
JP
Japan
Prior art keywords
catalyst
group
alumina
metals
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59229285A
Other languages
Japanese (ja)
Inventor
Satoshi Sakurada
桜田 智
Noriaki Tagaya
多賀谷 宣秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP59229285A priority Critical patent/JPS61107946A/en
Publication of JPS61107946A publication Critical patent/JPS61107946A/en
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance a desulfurization ratio and a denitrification ratio, by forming a hydrotreating catalyst by supporting metals belonging to the Groups VI, VIII of the Periodic Table by an alumina carrier containing a specific amount of silica and having fine pores with a specific particle size. CONSTITUTION:An alumina or alumina-containing carrier, which satisfies characteristic values such that the volume of fine pores with a pore size of 0-300Angstrom occupies 80% or more by volume of all fine pores of a catalyst and the average fine pore size of the pore size of 0-300Angstrom is 30-80Angstrom while the volume of fine pores with a pore size of 300-150,000Angstrom is 0.01-0.1ml/g and a specific area is 200-400m<2> and about 2-40wt% of silica is contained, is formed. One or more of a metal selected metals belonging to the Groups VI of the Periodic Table and one or more of a metal selected from metals belonging to the Group VIII are supported by this carrier to prepare a hydrotreating catalyst.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(−炭化水素油の水素化処理に使用される触媒に
関するものであり、特に担体に水素化活性成分を担持さ
せて構成される特定の細孔分布を有した水素化処理用触
媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalyst used in the hydrotreating of hydrocarbon oils, and in particular to a specific catalyst comprising a carrier supporting a hydrogenation active component. The present invention relates to a hydrotreating catalyst having a pore distribution.

従来の技術 本発明の説明において「水素化処理」とは、炭化水素油
と水素との接触による処理方法を称し。
BACKGROUND OF THE INVENTION In the description of the present invention, "hydrotreatment" refers to a treatment method by contacting hydrocarbon oil with hydrogen.

比較的反応条件の苛酷度の低い水素化精製、若干の分解
反応を伴う苛酷度の比較的高い水素化精製。
Hydrorefining with relatively less severe reaction conditions, and hydrorefining with relatively more severe reaction conditions that involve some decomposition reactions.

水添異性化。水素化脱アルキル化及びその他の水素の存
在下における炭化水素油の反応を包含するものである。
Hydrogen isomerization. It includes hydrodealkylation and other reactions of hydrocarbon oils in the presence of hydrogen.

例えば、常圧蒸留又は減圧蒸留の留出油及び残渣油の水
素化脱硫、水素化脱窒素、及び水素化分解を含み、又、
潤滑油留分の水素化精製1等を包含するものであるが1
本発明の触媒によれば、特に、常圧蒸留の留出油又は残
渣油及びこれらの混合油の水素化脱硫を実施するに際し
て有効であるため、以下、これを中心に本発明を説明す
る。
Examples include hydrodesulfurization, hydrodenitrogenation, and hydrocracking of distillate oils and residual oils of atmospheric distillation or vacuum distillation;
This includes hydrorefining of lubricating oil fractions, etc. 1
Since the catalyst of the present invention is particularly effective in hydrodesulfurizing distillate oil or residual oil of atmospheric distillation, and mixed oils thereof, the present invention will be mainly described below.

水素化活性成分を含有する触媒を使用する含硫炭化水素
油の水素化精製による脱硫方法は、公知となってすでに
久しいがアスファルト及び金属含有化合物を含有する重
質炭化水素油を工業的に脱硫することができる水素化脱
硫法は現今、無公害化プロセスとして、その確立と改良
が切望されている。
The desulfurization method by hydrorefining of sulfur-containing hydrocarbon oil using a catalyst containing a hydrogenation active component has been known for a long time, but it has been used industrially to desulfurize heavy hydrocarbon oil containing asphalt and metal-containing compounds. The establishment and improvement of the hydrodesulfurization method, which is capable of reducing pollution, is currently in great demand as a non-polluting process.

原油の常圧又は減圧における蒸留において残留物として
得られる重質物質を含有する重質炭化水素油は1発電設
備をはじめあらゆる産業設備における動力用及び加熱用
燃料として、又は大聖船舶用燃料として重要な役割を担
うものであるが、軽質留出油に比し、硫黄含有蒙が高く
、従つ毛加熱炉等における燃焼におい【、亜硫酸ガス及
び無水硫酸を生成し、排出ガスと共に大気に放散されて
Heavy hydrocarbon oil containing heavy substances obtained as a residue from the distillation of crude oil at normal pressure or reduced pressure is important as a fuel for power and heating in all kinds of industrial equipment, including power generation equipment, and as fuel for Daisei ships. However, compared to light distillate oil, it has a higher sulfur content, and when burned in a lock heating furnace, etc., it produces sulfur dioxide gas and sulfuric anhydride, which are released into the atmosphere along with exhaust gas. hand.

大気汚染を惹起して公害問題を誘発する。又、残渣油中
には、硫黄化合物と同様に窒素化合物をも含有し、これ
が燃焼により窒素酸化物(NOX(Xは主として1また
は2〕)を発生し、これ又光化学スモッグ等の大気汚染
の可能性を形成するものである。
It causes air pollution and causes pollution problems. In addition, residual oil contains nitrogen compounds as well as sulfur compounds, which generate nitrogen oxides (NOX (X is mainly 1 or 2)) when burned, which also causes air pollution such as photochemical smog. It shapes possibilities.

炭化水素油中の硫黄化合物及び窒素化合物は。Sulfur compounds and nitrogen compounds in hydrocarbon oil.

触媒の存在下における水素化反応により、各々。each by a hydrogenation reaction in the presence of a catalyst.

硫化水素及びアンモニア等として炭化水素油から分if
ることかできる。
If separated from hydrocarbon oil as hydrogen sulfide and ammonia, etc.
I can do that.

しかしながら1重質炭化水素油、就中、残渣油には、触
媒汚染物質1例えば、バナジウム及び鉄その他の金属の
有機化合物が含有されており触媒の活性を急速に劣化し
、又、その再生を阻害する。
However, heavy hydrocarbon oils, especially residual oils, contain catalyst contaminants, such as vanadium and organic compounds of iron and other metals, which rapidly degrade the activity of the catalyst and prevent its regeneration. inhibit.

更に残渣油には、アスファルトン、又はアスファルト等
の多環芳香族類の高分子化合物が存在し。
Furthermore, the residual oil contains asphaltone or a polycyclic aromatic polymer compound such as asphalt.

これが、水素化脱硫及び水素化脱窒素において・触媒表
面に付着して炭素質沈着物の生成を惹起し触媒の細孔を
閉塞して活性を劣化させるなど1重質炭化水素油の水素
化精製を実施するには、極めて困難な技術的課藺に遭遇
する。
In hydrodesulfurization and hydrodenitrogenation, this substance adheres to the catalyst surface and causes the formation of carbonaceous deposits, clogging the pores of the catalyst and deteriorating its activity. To implement this, extremely difficult technical challenges are encountered.

従来、残渣油の水素化脱硫に使用される触媒について種
々の検討がなされている。例えば、アスファルト及び金
属含有化合物を含有する炭化水素油の水素化脱硫及び水
素化脱窒素を行なうためには、使用する水素化処理用触
媒の細孔分布が活性及び活性維持能に大きく影響を与え
ることを予想して、原料油中のアスファルト及び金属含
有化合物の浸入を防止するために細孔半径80A以上の
細孔容積を全細孔容積の10%界下界下えた細孔分布を
有する触媒を使用する方法(%公昭45−38142号
公報)又は前記同残渣油の水素化脱硫において半径12
0A以下の細孔の容積が1OA間隔で比較的均一に分布
した触媒を使用する方法(特公昭45−38143号公
報)等が知られている。又、約5O−10OAの範囲の
孔径χ有する粒子の細孔容積ン全容積の少なくとも50
チとし、0−5OAの範囲の孔径を有する細孔容積を最
大25チとする原油又は接頭原油の水素化脱硫触媒も開
示されている(特開昭47−10356号公報)。
Conventionally, various studies have been made on catalysts used for hydrodesulfurization of residual oil. For example, in order to perform hydrodesulfurization and hydrodenitrogenation of hydrocarbon oils containing asphalt and metal-containing compounds, the pore distribution of the hydrotreating catalyst used greatly affects its activity and ability to maintain activity. In anticipation of this, in order to prevent the infiltration of asphalt and metal-containing compounds in the feedstock oil, we used a catalyst with a pore distribution in which the pore volume with a pore radius of 80 A or more was reduced by 10% of the total pore volume. The method used (% Publication No. 45-38142) or in the hydrodesulfurization of the same residual oil with a radius of 12
A method using a catalyst in which the volume of pores of 0A or less is distributed relatively uniformly at intervals of 1OA (Japanese Patent Publication No. 38143/1983) is known. Also, at least 50 of the total pore volume of the particles having a pore size χ in the range of about 5O-10OA
A hydrodesulfurization catalyst for crude oil or prefixed crude oil having a pore volume of up to 25 mm and a pore size in the range of 0-5 OA has also been disclosed (Japanese Patent Laid-Open Publication No. 10356/1983).

発明が解決しようとする問題点 本発明者等も、触媒の細孔分布が与える触媒性能への影
響が重要であることt認識し数多の研究を行なった。斯
る研究過程において本発明者等は。
Problems to be Solved by the Invention The inventors of the present invention also recognized that the pore distribution of a catalyst has an important effect on catalyst performance, and conducted numerous studies. In the course of this research, the present inventors.

上記の如きアスファルトを含有する残渣油は勿論のこと
常圧蒸留又は減圧蒸留の留出油の水素化脱硫を実施する
に際して優れた触媒性能(活性及び活性維持能を得るに
は水素化活性金属を担持させた触媒の細孔分布を特定の
範囲内に限定することが極めて重要であることを見出し
た。
When carrying out hydrodesulfurization of not only residual oils containing asphalt as mentioned above but also distillate oils from atmospheric distillation or vacuum distillation, it is necessary to use hydrogenation-active metals to obtain excellent catalyst performance (activity and ability to maintain activity). It has been found that it is extremely important to limit the pore distribution of the supported catalyst within a specific range.

上記したような従来の水素化脱硫方法においては、使用
する触媒の細孔半径300八以上のいわゆるマクロポア
−の細孔分布については十分検討されておらず、その触
媒性能に与える影響は無視されている。すなわち、従来
開示された技術は。
In the conventional hydrodesulfurization method as described above, the pore distribution of so-called macropores with a pore radius of 300 mm or more in the catalyst used has not been sufficiently studied, and its influence on catalyst performance has been ignored. There is. That is, the conventionally disclosed technology is as follows.

いわゆるミクロボアに重点が置かれているが、マクロポ
アのみでは常圧蒸留残渣油、減圧蒸留軽油及び減圧蒸留
残渣油等の如き多量の硫黄分、窒素分、金属分、アスフ
ァルトおよびその他の不純物を含有する炭化水素油の水
素化精製の活性および活性維持能を向上させることがで
きない。
The focus is on so-called micropores, but macropores alone contain large amounts of sulfur, nitrogen, metals, asphalt, and other impurities, such as atmospheric distillation residue oil, vacuum distillation gas oil, vacuum distillation residue oil, etc. It is not possible to improve the activity and ability to maintain activity in hydrorefining hydrocarbon oil.

問題点を解決するための手段 不発明者等は、触媒のミクロボアー及びマクロポアーの
内領域にわたる細孔分布が脱硫及び脱窒素に多大の影響
を与えることを見出した。即ち。
SUMMARY OF THE INVENTION The inventors have discovered that the pore distribution over the inner regions of the micropores and macropores of the catalyst has a profound effect on desulfurization and denitrification. That is.

窒素吸着法により測定したO〜300Aの範囲の直径を
有する細孔の容積が触媒の全細孔容積の80%以上、好
ましくは90%以上であり、且つ直径0〜300Aの範
囲内における平均細孔直径が30〜80A、好ましくは
40〜70Aであり。
The volume of pores with a diameter in the range of 0 to 300 A measured by nitrogen adsorption method is 80% or more, preferably 90% or more of the total pore volume of the catalyst, and the average pore volume in the diameter range of 0 to 300 A is The pore diameter is 30-80A, preferably 40-70A.

更に水銀圧入法により測定した細孔直径300〜150
,000Åの範囲内の細孔容積が0.01〜0.1ml
 / g−好ましくは0.02〜0.08 m// g
であって、比表面積が200〜400 rn”/g、好
ましくは250〜35o m”、 /gである触媒が極
めて顕著な脱硫効果を発揮することを見出した。つまり
水素化精製用触媒の存在下における水素との接触におい
て重質炭化水素油、特に、残渣油に含有されるアスファ
ルト及びレジン分が触媒の細孔に侵入し、触媒の活性劣
化の原因となることを防止するだめには、マクロポアー
の細孔容積?低減させることが必要である。
Furthermore, the pore diameter measured by mercury intrusion method is 300 to 150.
,000 Å with a pore volume of 0.01 to 0.1 ml
/ g - preferably 0.02-0.08 m// g
It has been found that a catalyst having a specific surface area of 200 to 400 m"/g, preferably 250 to 35 m"/g, exhibits a very remarkable desulfurization effect. In other words, upon contact with hydrogen in the presence of a hydrorefining catalyst, heavy hydrocarbon oil, especially asphalt and resin contained in residual oil, enter the pores of the catalyst, causing deterioration of catalyst activity. What is the pore volume of macropores to prevent this? It is necessary to reduce the

細孔容積分布は触媒の活性及びとりわけ活性維持能向上
に重要な影響を及ば丁ことか種々の検討結果より明らか
となった。即ち、O〜300A直径における細孔容積が
全細孔容積の80%以上。
It has become clear from various studies that the pore volume distribution has an important influence on the activity of the catalyst and especially on improving the ability to maintain the activity. That is, the pore volume at a diameter of 0 to 300 A is 80% or more of the total pore volume.

好ましくは90%以上を占める触媒はアスファルトンや
有機金属化合物との接触による炭素質付着や金属付着に
よる細孔閉塞を生じず、すぐれた活性維持能を有する。
The catalyst, which preferably accounts for 90% or more, does not cause pore clogging due to carbonaceous adhesion or metal adhesion due to contact with asphaltone or an organometallic compound, and has an excellent ability to maintain activity.

300〜150,0OOAの範囲の細孔を0.01〜0
.1mA / g 、好ましくは0.02〜0.08 
m// glc制御することは、同様に巨大分子による
二次細孔閉塞を防止する上で極めて有効である。
0.01 to 0 pores in the range of 300 to 150,0 OOA
.. 1mA/g, preferably 0.02-0.08
Controlling m//glc is also extremely effective in preventing secondary pore clogging by macromolecules.

父、シリカの含有栄が2〜40重量%である担体は固体
酸性及び固体酸性度分布においてすぐれ。
A carrier containing 2 to 40% by weight of silica has excellent solid acidity and solid acidity distribution.

炭素−硫黄及び炭素−窒素結合切断に活性を有する。と
りわけそのすぐれた固体酸性度は炭素−窒素結合開裂に
対し丁ぐれた適性を有し他の組底に基づく種々の触媒よ
りも予想外に丁ぐれた結果な示す。当然炭素−硫黄結合
開裂についても金属水素化成分を添加することにより丁
ぐれた活性を有するので、その結果としてすぐれた脱硫
及び脱窒素活性の選択性を有する。
It has activity in cutting carbon-sulfur and carbon-nitrogen bonds. In particular, its excellent solid acidity makes it more suitable for carbon-nitrogen bond cleavage, resulting in unexpectedly better results than other bottom-based catalysts. Naturally, the carbon-sulfur bond cleavage activity is also improved by adding a metal hydrogenation component, and as a result, it has excellent selectivity in desulfurization and denitrification activities.

更にシリカアルミナ担体は、シリ、力及びアルミナを分
散させることが活性金属成分をも効果的に分散させるこ
とができることが分った。すなわち。
Furthermore, it has been found that the silica-alumina support can effectively disperse silica, alumina, and active metal components as well. Namely.

アルミニウム元素に生ずる固体酸性点と金属成分との相
互作用による分散担持や、一種のイオン交換は1反応に
よる担持も一般的な沈漬担持に加えて可能となる。この
分散担持は、第1族とアルミナのイオン結合の後に第■
族を担荷するという手法に対しても有効である。
In addition to the general immersion support, dispersion support due to the interaction between the solid acidic points generated in the aluminum element and the metal component, and a type of ion exchange through a single reaction are also possible. This dispersed support is formed by ionic bonding between group 1 and alumina.
It is also effective for the method of carrying family members.

本発明は1以上のように触媒のミクロボアー及びマクロ
ポア−の内領域にわたる細孔分布が脱硫及び脱窒素に与
える効果並びに担体に於けるシリカの効果を明らかにし
て完成したものである。
The present invention was completed by elucidating the effect of the pore distribution over the inner regions of the micropores and macropores of the catalyst on desulfurization and denitrification as well as the effect of silica in the support.

本発明を要約すると1本発明は、シリカを約2〜40重
量子含有するアルミナ又はアルミナ含有担体上に1元素
周期表第VIB族金属の群から選択される一種又は二種
以上の金属と1元素周期表第■族金属の群から選択され
る一種又は二種以上の、金族とを担持させて成る水素化
処理用触媒であって。
To summarize the present invention: 1. The present invention provides a method for dispersing silica on an alumina or alumina-containing support containing about 2 to 40 weight molecules of silica and one or more metals selected from the group of Group VIB metals of the periodic table. A catalyst for hydrotreating comprising one or more metals selected from the group of metals of Group 1 of the Periodic Table of Elements.

■ O〜300Aの範囲の直径を有する細孔の容積が触
媒の全細孔容積の80%以上、好ましくは90チ以上。
(2) The volume of pores having a diameter in the range of 0 to 300 A is at least 80% of the total pore volume of the catalyst, preferably at least 90 A.

■ 直径O〜300Aの範囲内における平均細孔■ 直
径300〜150,000Åの範囲内における細孔容積
が0.01〜0.1 ml17g、好ましくは0゜02
〜0.08 mA/ g。
■ Average pores within a diameter range of 0 to 300 A ■ Pore volume within a diameter range of 300 to 150,000 Å is 0.01 to 0.1 ml 17 g, preferably 0°02
~0.08 mA/g.

■ 比表面積が200〜400rn”/g、好ましくは
250〜350 m” / g 。
(2) Specific surface area of 200 to 400 rn"/g, preferably 250 to 350 m"/g.

である水素化処理用触媒を提供するものである。The present invention provides a hydrotreating catalyst.

次に、担体について更に詳しく説明すると、アルミナ、
シリカ、アルミナ−シリカ及びマグネシア等の如き固体
酸は、炭化水素油の脱硫反応及び脱窒素反応に達する触
媒成分であることはすでに公知であるが、水素化精製に
おいては、所望の固体酸性度を保持させることが肝要で
あり、この目的のためにはシリカ含有量により酸性制御
をなし得る。本発明者等は、前述のように担体中シリカ
含有量による酸性制御に基づく分解活性の調整と共に触
媒の細孔構造を決定することにより、炭化水素油の水素
化反応の接触能及び選択性を調整でき石ことを認めてい
る。この種の選択性は、炭化水素油の脱硫及び脱窒素に
おいて水素消費量を節約し、かつ1分解反応に伴なう炭
素分の生成による触媒活性の低下を防止する効果を有す
るものであり、極めて重要な役割を演する。
Next, to explain the carrier in more detail, alumina,
It is already known that solid acids such as silica, alumina-silica, and magnesia are catalyst components that reach the desulfurization and denitrification reactions of hydrocarbon oil. It is important to maintain the retention, and for this purpose acidity control can be achieved by controlling the silica content. The present inventors have determined the catalytic ability and selectivity of the hydrogenation reaction of hydrocarbon oil by adjusting the cracking activity based on acidic control based on the silica content in the carrier and determining the pore structure of the catalyst as described above. I admit that I can't adjust the stone. This type of selectivity has the effect of saving hydrogen consumption in desulfurization and denitrification of hydrocarbon oils, and preventing a decrease in catalyst activity due to the production of carbon components associated with 1-cracking reactions. play a very important role.

従って、水素化脱硫反応又は水素化脱硫反応においては
、前述の如く、過度の分解反応に伴5を 水素消費量の増大又はコークの生成等4制御するために
はアルミナ含有担体中のシリカの含有量を約2〜40重
量%、好ましくは約5〜20重量%。
Therefore, in the hydrodesulfurization reaction or hydrodesulfurization reaction, as mentioned above, in order to control the increase in hydrogen consumption or the formation of coke due to excessive decomposition reaction, it is necessary to include silica in the alumina-containing carrier. The amount is about 2-40% by weight, preferably about 5-20% by weight.

更に好ましくは10〜16重皆チの範囲とな丁べきであ
る。
More preferably, the total number should be in the range of 10 to 16 times.

本発明の触媒に使用する担体は、上述のようにシリカを
約2〜40重量%含有するアルミナ又はアルミナ含有物
質である。アルミナ含有物質としではアルミナに他の担
体物質を配合させて得られる組成物であり1例えば、マ
グネシア、酸化カルシウム、ジルコニア、チタニア、ボ
リア、ハフニア及び結晶性ゼオライト等の一種又は二種
以上をアルミナに配合することができる。前記シリカは
The support used in the catalyst of the present invention is alumina or an alumina-containing material containing about 2 to 40% by weight of silica, as described above. The alumina-containing material is a composition obtained by blending alumina with other carrier materials. For example, one or more of magnesia, calcium oxide, zirconia, titania, boria, hafnia, crystalline zeolite, etc. are added to alumina. Can be blended. The silica is.

前述の如く、触媒の固体酸性度の制御には好適であるた
め、担体中約2〜40重量%、好ましくは。
As mentioned above, it is suitable for controlling the solid acidity of the catalyst, so it is preferably about 2 to 40% by weight in the carrier.

約5〜20重量−の範囲で使用する。更に好ましいシリ
カ含有量は約10〜16重量%の範囲にあることである
。シリカは、触媒に強酸点を賦与し。
It is used in a range of about 5 to 20 weight. A more preferred silica content is in the range of about 10-16% by weight. Silica provides strong acid sites to the catalyst.

触媒の分解活性を増大させるが、一方1例えば。While increasing the cracking activity of the catalyst, 1 e.g.

マグネシアは、アルミナ−シリカ等が有する強酸点を減
小させ、同時に弱酸点を増加させて触媒の選択性を向上
させる作用を有する。前記マグネシア、酸化カルシウム
、ジルコニア、チタニア、ボリア。
Magnesia has the effect of reducing the strong acid sites of alumina-silica and the like, and at the same time increasing the weak acid sites, thereby improving the selectivity of the catalyst. The above magnesia, calcium oxide, zirconia, titania, boria.

ハフニア及び結晶性ゼオライト等の耐火性無機酸化物の
配合量は、アルミナ−シリカに対して約1〜10重ft
1%の範囲が適当である。
The amount of refractory inorganic oxides such as hafnia and crystalline zeolite is approximately 1 to 10 weight ft based on the alumina-silica.
A range of 1% is appropriate.

アルミナとしては、r−アルミナ、χ−アルミナ又はη
−アルミナのいずれか又はそれらの混合体が好適である
が1本発明において開示する細孔分布および特性値を与
えるものであれば、好ましく使用することができる。
As alumina, r-alumina, χ-alumina or η
- Alumina or mixtures thereof are suitable, but any one that provides the pore distribution and properties disclosed in the present invention may be preferably used.

アルミナ−シリカの製造法としては、アルミナ及びシリ
カのゲルを各々あらかじめ製造しておき両者を混合する
方法、シリカゲルをアルミニウム化合物の溶液に浸漬し
た後に、塩基性物質を適当量添加し、アルミナゲルなシ
リカゲル上に沈着させる方法、又は水溶性アルミニウム
化合物と水溶性珪素化合物との均一混合溶液に塩基性物
質を添加し1両者を共沈させる方法等を採用することが
できる。
Alumina-silica can be produced by producing alumina and silica gels in advance and mixing them together, or by immersing silica gel in an aluminum compound solution, adding an appropriate amount of a basic substance, and then producing alumina gel. A method of depositing on silica gel, a method of adding a basic substance to a uniform mixed solution of a water-soluble aluminum compound and a water-soluble silicon compound, and co-precipitating both can be adopted.

本発明において使用する水素化処理用触媒として必要な
細孔分布及び特性値のものを得るためにはアルミナ及び
シリカの水和物の沈澱および熟成において、温度は60
〜90℃で、0.5〜3時間の条件が必要である。
In order to obtain the pore distribution and characteristic values necessary for the hydrotreating catalyst used in the present invention, the temperature in the precipitation and aging of alumina and silica hydrates is 60°C.
Conditions of 0.5 to 3 hours at ~90°C are required.

細孔外・布および特性値を有する触媒を得るための特定
の原料物質として水溶性化合物1例えば。
For example, water-soluble compounds 1 as specific raw materials to obtain catalysts with extra-pore fabrics and characteristic values.

水溶性酸性アルミニウム化合物又は水溶性アルカリ性ア
ルミニウム化合物、具体的には、アルミニウムの硫酸塩
、塩化物、硝酸塩、アルカリ金属アルミン酸塩及びアル
ミニウムアルコキシドその他の無機塩又は有機塩を使用
することができる。水浴性ケイ素化合物としては、アル
カリ金属ケイ酸塩(NIL!0 : 5iOt= 1:
 2−1 :4  が好ましいaLテトラアルコキシシ
ラン、オルンケイ酸エステル等のケイ素含有化合物が適
当である。これらのアルミニウム及びケイ素の化合物は
、水溶液として使用することができ、水溶液の濃度は、
特に限定するものではなく、適宜決定して差し支えがな
いが、アルミニウム化合物溶液の濃度は、約0.1−4
.0モルの範囲で採用することができる。
Water-soluble acidic aluminum compounds or water-soluble alkaline aluminum compounds, specifically aluminum sulfates, chlorides, nitrates, alkali metal aluminates, aluminum alkoxides, and other inorganic or organic salts can be used. As the water bathable silicon compound, alkali metal silicate (NIL!0: 5iOt=1:
Silicon-containing compounds such as aL tetraalkoxysilane and orun silicate ester with a preferable ratio of 2-1:4 are suitable. These aluminum and silicon compounds can be used as an aqueous solution, and the concentration of the aqueous solution is
Although not particularly limited and may be determined as appropriate, the concentration of the aluminum compound solution is approximately 0.1-4.
.. It can be employed within the range of 0 mol.

本発明の水素化処理用触媒に好適なアルミナシリカ担体
の製造法の一態様を例示すれば次の如くである。
An example of an embodiment of the method for producing an alumina-silica carrier suitable for the hydrotreating catalyst of the present invention is as follows.

約50〜98℃の温水に酸性アルミニウム水溶液及び水
酸化アルカリを加え、pHを約6.0〜11.0.好ま
しくは約8.0〜10.0の範囲に調整し、約50〜9
8℃の温度にして少なくとも1時間保持する。これにケ
イ酸アルカリの水溶液を加え、必要に応じて、鉱酸溶液
を加え、pHを約8、0〜10.0の範囲に調整し、約
50〜98℃の温度にて少な(とも2時間保持する。こ
の処理が終了した後、沈澱を濾別し、炭酸アンモニウム
溶液及び水で洗浄して不純物イオンを除去し、乾燥及び
燃成等の処理を行ない担体に仕上げる。
Acidic aluminum aqueous solution and alkali hydroxide are added to warm water at about 50 to 98°C to adjust the pH to about 6.0 to 11.0. Preferably adjusted to a range of about 8.0 to 10.0, about 50 to 9
Bring to a temperature of 8°C and hold for at least 1 hour. Add an aqueous solution of alkali silicate to this, and if necessary, add a mineral acid solution to adjust the pH to about 8.0 to 10.0. After this treatment is completed, the precipitate is filtered, washed with an ammonium carbonate solution and water to remove impurity ions, and subjected to treatments such as drying and combustion to form a carrier.

乾燥は、酸素の存在下又は非存在下において。Drying in the presence or absence of oxygen.

常温−約200℃に加熱し、焼成は、酸素の存在下にお
いて、約200〜800℃の範囲に加熱することにより
行なう。
It is heated to room temperature - about 200°C, and firing is carried out by heating in the range of about 200 to 800°C in the presence of oxygen.

担体上に担持させる水素化活性金属成分としては1元素
周期律表第■族金属及び第糧族金属の群から選択される
一種又は二種以上の金属を選択する。すなわち、第■族
のクロム、モリブデン及びタングステン、第■族の鉄、
コバルト、ニッケル。
As the hydrogenation-active metal component to be supported on the carrier, one or more metals selected from the group of group Ⅰ metals and group 1 metals of the periodic table are selected. Namely, chromium, molybdenum and tungsten of group II, iron of group II,
cobalt, nickel.

パラジウム、白金、オスミウム、イリジウム、ルテニウ
ム及びロジウム等から一種又は二種以上を選択して使用
する。炭化水素油の水素化脱硫のためには、特に、第■
族金族と画壇族金属との組合せ1例えば、モリブデン−
コバルト、モリブデン−ニッケル、タングステン−ニッ
ケル、モリブデ7− :f ハルト−ニッケル又はタン
グステン−コバルト−ニッケル等の組合せを好ましく使
用することができる。これらの活性金属成分に元素周期
律表第■族金属1例えばマンガン、及び第■族金属。
One or more selected from palladium, platinum, osmium, iridium, ruthenium, rhodium, etc. are used. For hydrodesulfurization of hydrocarbon oil, especially
Combinations of group metals and art group metals 1 For example, molybdenum-
Combinations such as cobalt, molybdenum-nickel, tungsten-nickel, molybdenum nickel, molybdenum-nickel, or tungsten-cobalt-nickel can be preferably used. These active metal components include metals from Group 1 of the Periodic Table of the Elements, such as manganese, and metals from Group 1.

例tば、錫、ゲルマニウム等を添加して使用することも
できる。
For example, tin, germanium, etc. can be added.

これら水素化活性金属成分は、酸化物及び/又は硫化物
として担持させることが好適である。
These hydrogenation active metal components are preferably supported as oxides and/or sulfides.

担持方法としては、担体を前記金属の可溶性塩の溶液に
浸漬し、金属成分を担体中に導入する含浸法又は担体の
製造の際、同時に沈澱させる共沈法等を採用することが
でき、その他如何なる方法を使用しても差し支えがない
が、操作面及び触媒の物性を保障するには、含浸法によ
ることが好ましい。含浸操作としては、担体な常温又は
常温以上で含浸溶液に浸漬して所望成分が十分担体中に
含浸する条件に保持する。含浸溶液の量及び温度は、所
望量の金属が担持されるように適宜調整することかでき
る。担持量の如何により、含浸溶液に浸漬する担体のt
を決定する。
As the supporting method, an impregnation method in which the carrier is immersed in a solution of a soluble salt of the metal and the metal component is introduced into the carrier, a coprecipitation method in which the metal component is simultaneously precipitated during the production of the carrier, etc. can be adopted. Although any method may be used, it is preferable to use an impregnation method in order to ensure operational aspects and physical properties of the catalyst. In the impregnation operation, the carrier is immersed in an impregnating solution at room temperature or above room temperature, and the carrier is maintained under conditions such that the desired components are sufficiently impregnated into the carrier. The amount and temperature of the impregnating solution can be adjusted as appropriate to support the desired amount of metal. The t of the carrier immersed in the impregnating solution depends on the amount of support.
Determine.

金属成分の担持量としては、酸化物として前記第ν量族
金属については触媒基準で約1〜10重量−の範囲、第
■族金属は、約5〜30重量%の範囲でよい。
The supported amount of the metal component may be in the range of about 1 to 10% by weight for the νth mass group metal as an oxide, based on the catalyst, and in the range of about 5 to 30% by weight for the group I metal.

担持金属は、その種類により一液含浸法又は二液含浸法
等のいずれの方法を採用してもよい。すなわち、二種以
上の金属成分を担持するには、二種以上の金属成分を混
合し、その混合溶液から同時に含浸〔−液含浸法〕する
か又は二種以上の金属成分の溶液を別々に調製し、逐次
含浸していく(二液含浸法)こともできるわけであり1
本発明においてはこれら方法を何ら限定するものではな
%、N。
Depending on the type of supported metal, either one-component impregnation method or two-component impregnation method may be employed. In other words, in order to support two or more types of metal components, two or more types of metal components are mixed and impregnated simultaneously from the mixed solution [-liquid impregnation method], or solutions of two or more types of metal components are separately applied. It is also possible to prepare and impregnate sequentially (two-component impregnation method).
The present invention does not limit these methods in any way.

しかしながら1本発明に従った触媒は、担体として上述
したようなシリカアルミナ又はシリカアルミナ含有物を
使用し、該担体上に先ず元素周期表第Vffi族金属の
群から選択される一種又は二種以上の金属を担持させ(
第1ステツプ)1次で元素周期表第VIB族金属の群か
ら選択される一種又は二種以上の金属を担持させる(第
2ステツプ)方法が好ましい。更に詳しく説明すると、
該方法によると、担体上に第1ステツプにて担持させる
水素化活性金属成分は1元素周期表第橿族金属の群から
選択される一種又は二種以上の金属である。即ち、第1
族の鉄、コバルト、ニッケル、パラジウム、白金、オス
ミウム、イリジウム、ルテニウム及びロジウム等から一
種又は二種以上が選択して使用される。好ましくは、コ
バルト及びニッケルが単独で又は両者を組合せて使用さ
れるであろう。
However, one of the catalysts according to the present invention uses silica alumina or a silica alumina-containing material as described above as a support, and on the support is first applied one or more metals selected from the group Vffi group metals of the periodic table of the elements. of metal (
First step) A preferred method is to support one or more metals selected from the group VIB group metals of the periodic table of elements (second step). To explain in more detail,
According to this method, the hydrogenation-active metal component supported on the carrier in the first step is one or more metals selected from the group of metals of the Group 1 of the Periodic Table of Elements. That is, the first
One or more selected from the group iron, cobalt, nickel, palladium, platinum, osmium, iridium, ruthenium, rhodium, etc. are used. Preferably cobalt and nickel will be used alone or in combination.

第2ステツプにて担体に担持させる水素化活性金属成分
は1元素周期表第VIB族金属の群から選択される一種
又は二種以上の金属である。即ち。
The hydrogenation active metal component supported on the carrier in the second step is one or more metals selected from the group VIB group metals of the periodic table. That is.

第VIB族のクロム、モリブデン及びタングステンから
一種又は二種以上が選択して使用される。好ましくはモ
リブデン及びタングステンが単独で又は両者を組合せて
使用されるであろり。又所望に応じ、第三の金属を添加
することも可能であろう。
One or more selected from Group VIB chromium, molybdenum, and tungsten are used. Preferably molybdenum and tungsten may be used alone or in combination. It would also be possible to add a third metal if desired.

上記第1族及び第VIB族の水素化活性金属成分は、酸
化物及び/又は硫化物として担持させることが好適であ
り、該第1及び第2ステツプによる担持方法では活性金
属成分の担持量は、酸化物として触媒基準で、第VII
族金属は1〜lO重量%。
The hydrogenation active metal components of Group 1 and Group VIB are preferably supported as oxides and/or sulfides, and in the supporting method using the first and second steps, the amount of active metal components supported is , on a catalyst basis as an oxide, Part VII
Group metals from 1 to 10% by weight.

好ましくは1.5〜8重量%、より好ましくは2〜5重
量%であり、第■B族金属は5〜30ilt%。
Preferably it is 1.5 to 8% by weight, more preferably 2 to 5% by weight, and the Group ①B metal is 5 to 30% by weight.

好ましくは8〜25重量%、より好ましくは15〜20
重量qbである。第1族金属を1重量チ以下担持させた
のでは十分な触媒が得られず、又10重i%以上では担
体と結合しない遊離の金属成分が増加する。第1族金属
の遊離成分が増加すると。
Preferably 8-25% by weight, more preferably 15-20%
The weight is qb. If less than 1% by weight of the Group 1 metal is supported, a sufficient catalyst cannot be obtained, and if it is more than 10% by weight, the amount of free metal components that are not bonded to the support increases. When the free component of Group 1 metal increases.

次で第VIB族金属を担持させる場合に不活性の複合酸
化物が生成し、第VIB族金属の分散性を低下せしめ、
触媒活性を低下させる。一方、第VIB族金属が5重量
qb以下では活性が得られず、30重量−以上では分散
−が低下すると同時に第VI族金属の助触媒効果が発揮
されない。
When a Group VIB metal is supported in the next step, an inert composite oxide is generated, reducing the dispersibility of the Group VIB metal,
Decrease catalyst activity. On the other hand, if the amount of Group VIB metal is less than 5 qb, no activity will be obtained, and if it is more than 30 qb, the dispersion will decrease and at the same time the promoter effect of the Group VIB metal will not be exhibited.

上記方法において、第1及び第2ステツプにおける活性
金属成分の担体への担持方法としては。
In the above method, the method for supporting the active metal component on the carrier in the first and second steps is as follows.

担体な前記金属の可溶性塩の水溶液に浸漬し、金属成分
な担体中に導入する含浸法を採用することができる。含
浸操作としては、担体な常温又は常温以上で含浸溶液に
浸漬して所望成分が十分担体中に含浸する条件に保持す
る。含浸溶液の量及び温度は、所望量の金属が担持され
るように適宜調整することができる。担持量の如何によ
り、含浸溶液に浸漬する担体の量が決定される。
An impregnation method can be employed in which the carrier is immersed in an aqueous solution of a soluble salt of the metal to introduce the metal component into the carrier. In the impregnation operation, the carrier is immersed in an impregnating solution at room temperature or above room temperature, and the carrier is maintained under conditions such that the desired components are sufficiently impregnated into the carrier. The amount and temperature of the impregnating solution can be adjusted as appropriate to support the desired amount of metal. The amount of support to be immersed in the impregnating solution is determined depending on the amount of support.

触媒の形状は1円筒状1粒状又は錠剤状その他如何なる
ものでもよく、このような形状は、押出成形、造粒成形
等の成形法により得られる。成形物の直径は0.5〜3
.0朋の範囲が好ましい。
The shape of the catalyst may be cylindrical, granular, tablet, or any other shape, and such a shape can be obtained by a molding method such as extrusion molding or granulation molding. The diameter of the molded product is 0.5-3
.. A range of 0 is preferred.

水素化活性金属成分を含浸した担体は、含浸溶液を分離
した後、水洗、乾燥及び焼成を行なう。
The carrier impregnated with the hydrogenation-active metal component is washed with water, dried and calcined after the impregnation solution is separated.

乾燥及び焼成の条件は、前記担体の場合の条件と同一で
よい1重質炭化水素油の水素化脱硫において、触媒は、
使用に先立ち、予備硫化を行なうことが好ましい。その
方法については、後に記載する。
The drying and calcination conditions may be the same as those for the carrier.In the hydrodesulfurization of single heavy hydrocarbon oil, the catalyst is
It is preferable to carry out presulfurization prior to use. The method will be described later.

このようにして、製造される触媒は、前述の如く、シリ
カを約2〜40重量%含有するアルミナ又はアルミナ含
有担体上に1元素周期表第■族金属の群から選択される
一種又は二′棟以上の金属と。
In this way, the catalyst produced is prepared on an alumina or alumina-containing support containing about 2 to 40% by weight of silica, and one or two elements selected from the group of metals of group 1 of the periodic table. With metal over the ridge.

元素周期表第vll全金族群から選択される一種又は二
種以上の金属とを担持させて成る水素化処理用触媒であ
って、更に ■ 0〜300Aの範囲の直径を有する細孔の容積が触
媒の全細孔容積の80チ以上。
A hydrotreating catalyst comprising one or more metals selected from all metal groups in Vll of the Periodic Table of the Elements, further comprising: The total pore volume of the catalyst is 80 inches or more.

■ 直径O〜300Aの範凹内における平均細孔直径が
30〜80A。
(2) The average pore diameter within the concavity with a diameter of 0 to 300 A is 30 to 80 A.

■ 直径300〜150.0OL) Aの範囲における
細孔容積が0.01〜0.1m//g。
(Diameter: 300-150.0 OL) Pore volume in range A is 0.01-0.1 m//g.

■ 比表面積が200〜400m” 71g。■ Specific surface area is 200-400m” 71g.

であることを特徴とし、全細孔容積;0.5〜1.0m
jl/g、カサ密度;約0.5〜1.0 g/n1.側
面破壊強度:約0.8〜3− Oklil / mtx
である炭化水素油の良好な水素化精製用触媒を実現する
Total pore volume; 0.5 to 1.0 m
jl/g, bulk density; approximately 0.5 to 1.0 g/n1. Side breaking strength: approx. 0.8-3- Oklil/mtx
To realize a catalyst for hydrorefining hydrocarbon oil which is suitable for hydrocarbon oil.

触媒の細孔容積の測定法として使用した窒素吸着法及び
水銀圧入法は、P、H,エメット他著「キャタリシス」
第1巻、第123頁(ラインホールド・パブリジング・
カンパニー発行) (1959年) P*Ha gmm
stt、et a&’catalysis ’+ 1 
+123(1959)(Reinhold Publi
shing Co−) 、及び触媒工学講座、第4巻、
第69頁〜第78頁(地人書館発行)(昭和39年)に
記載の方法による。
The nitrogen adsorption method and mercury intrusion method used to measure the pore volume of catalysts are described in "Catalysis" by P. H. Emmett et al.
Volume 1, page 123 (Reinhold Publishing)
Company Publishing) (1959) P*Ha gmm
stt, et a &'catalysis' + 1
+123 (1959) (Reinhold Public
shing Co-) and Catalyst Engineering Course, Volume 4,
According to the method described on pages 69 to 78 (published by Chijinshokan) (1962).

水銀圧入法においては触媒に対する水銀の接触角Y14
0’、fi面張力を480ダイン/cIILとし。
In the mercury intrusion method, the contact angle of mercury to the catalyst Y14
0', fi surface tension is 480 dynes/cIIL.

すべての細孔は円筒形であると仮定した。All pores were assumed to be cylindrical.

望素吸着法に対しては多分子層吸着に基づ(補正の方法
が種々提案されており、その中でもBJH法(E、P、
 Barrett、 L、G、Jo7ner and 
P−P。
Various correction methods have been proposed for the desired adsorption method (based on multimolecular layer adsorption, among which the BJH method (E, P,
Barrett, L.G., Jo7ner and
P-P.

Ha16Hda 、JsAmsr、、Chew 、5o
cz ’73e373 (1951)〕及びCI法(R
e W、 Cranston and F、 A、 I
nk16y1’Advances in Cataly
sis 、 ’ IX 、 143(1957)(Ne
w Yark Academic Press ) ]
が一般に用いられている。
Ha16Hda, JsAmsr,, Chew, 5o
cz '73e373 (1951)] and the CI method (R
e W, Cranston and F, A, I
nk16y1'Advances in Cataly
sis, 'IX, 143 (1957) (Ne
w Yark Academic Press )]
is commonly used.

本発明における細孔容ntK係るデータは吸着等温線の
吸着側を使用し、DB法(p 、Dollimorea
nd G、 R,Heal、 J、 Appl、、Ch
em、、 14.109 (1964))によって計算
したものである。
Data related to pore volume ntK in the present invention is obtained by using the adsorption side of the adsorption isotherm, and using the DB method (p, Dollimorea
nd G., R. Heal, J. Appl., Ch.
Em., 14.109 (1964)).

本発明に従った触媒の使用による炭化水素油の水素化脱
硫の方法について述べる。
A method for hydrodesulfurization of hydrocarbon oil by using a catalyst according to the present invention will be described.

重質炭化水素油として減圧蒸留軽油1重質分解油等を使
用することができる。減圧蒸留軽油は。
As the heavy hydrocarbon oil, vacuum distilled gas oil 1 heavy cracked oil, etc. can be used. Vacuum distilled light oil.

常圧M留残渣油を減圧蒸留して得られる約250℃〜5
60℃の範囲の一点を有する留分な含有する留出油であ
り、硫黄分、窒素分及び金属分を相当量含有するもので
ある。例えば、中東原油減圧蒸留軽油の一例を挙げるな
らば、約2〜4重量%の硫黄分、約0.05〜0.2重
量%の輩素分を含有する。又、残留炭素分Y0.405
重1iits含有する。
Approximately 250 ° C ~ 5 obtained by vacuum distillation of normal pressure M distillation residue oil
It is a distillate oil containing a fraction having a temperature in the range of 60° C. and contains considerable amounts of sulfur, nitrogen and metals. For example, an example of vacuum distilled gas oil from Middle East crude oil contains about 2 to 4% by weight of sulfur and about 0.05 to 0.2% by weight of sulfur. Also, residual carbon content Y0.405
Contains 1 iits.

重質分解油は、残渣油を熱分解して得られる約200℃
以上の沸点を有する分解油であり1例えば、残渣油のコ
ーキングおよびビスブレーキング等から得られる軽油を
使用することができる。
Heavy cracked oil is obtained by thermally decomposing residual oil at approximately 200°C.
For example, light oil obtained from coking and visbreaking of residual oil can be used as a cracked oil having a boiling point above 1.

又、炭化水素油としては、硫黄分、窒素分、アスファル
ト及び金属含有化合物を含有し、笑質的に約480℃以
上に沸点を有するもので、原油の常圧又は減圧蒸留残渣
油を含有する−例えば、常圧において約480℃以上の
沸点を有する炭化水素成分が約30〜100重1ニーの
範囲の残渣油は。
Furthermore, hydrocarbon oils include those containing sulfur, nitrogen, asphalt, and metal-containing compounds, and have a boiling point of approximately 480°C or higher, and contain residual oil from normal pressure or vacuum distillation of crude oil. - For example, a residual oil having a hydrocarbon component having a boiling point of about 480 DEG C. or higher at normal pressure ranges from about 30 to 100 weights/kil.

通常、約1〜10重量%の硫黄分、約0.1〜1重皺チ
の窒素分、約10〜1,000 ppmの金属及び約1
重を−の残留炭素分(コンラドソン)を含有する。
Usually about 1 to 10% by weight sulfur, about 0.1 to 1% nitrogen, about 10 to 1,000 ppm metals, and about 1% by weight nitrogen.
Contains a heavy amount of residual carbon (Conradson).

前記水素化fI!IXの原料油としては、前記の如き常
圧蒸留残渣油、減圧蒸留残渣油、減圧蒸留軽油重質分解
油着しくは常圧蒸留軽油又はこれらの混合油を使用する
ことができる。
Said hydrogenation fI! As the raw material oil for IX, the above-mentioned atmospheric distillation residue oil, vacuum distillation residue oil, vacuum distillation gas oil heavy cracked oil, atmospheric distillation gas oil, or a mixture thereof can be used.

反応条件は、原料油の種類、脱硫率又は脱窒素率等の如
何により適宜選択することができる。すなわち1反応基
度;約350〜450℃1反応圧力〕約30〜200k
l?/i、水素含有ガスレイト;約50〜1,500/
//、及び液空間速度;約0、2〜2.0V/H/Vを
採用する。水素含有ガス中の水素濃度は、約60〜10
0チの範囲でよい。
The reaction conditions can be appropriately selected depending on the type of raw oil, desulfurization rate, denitrification rate, etc. That is, 1 reaction basicity; about 350 to 450°C, 1 reaction pressure] about 30 to 200 k
l? /i, hydrogen-containing gas rate; approximately 50 to 1,500/
//, and liquid space velocity; about 0.2 to 2.0 V/H/V is adopted. The hydrogen concentration in the hydrogen-containing gas is approximately 60 to 10
A range of 0 is fine.

本発明に従った触媒は、活性劣化が小さく、苛酷塵の低
い反応条件、特に、低反応圧においても高い脱硫率を達
成することができる。
The catalyst according to the present invention can achieve a high desulfurization rate even under reaction conditions with little activity deterioration and low harsh dust, especially at low reaction pressure.

水素化脱硫を行なうにあたり、触媒は、前述しえ たように固千床、流動床又は移動床のいずれの形式でも
使用することができるが、装置面又は操作上からは固定
床を採用することが好ましい。又。
In carrying out hydrodesulfurization, the catalyst can be used in any of the fixed bed, fluidized bed, or moving bed formats as described above, but it is preferable to use a fixed bed from the standpoint of equipment or operation. preferable. or.

二基以上の複数基の反応塔を結合して水素化脱硫を行な
い、高度の脱硫率を達成することもできる。
A high desulfurization rate can also be achieved by combining two or more reaction towers to perform hydrodesulfurization.

更に1本発明触媒は、脱硫・脱窒素反応を主体とする主
反応塔に前置の金属除去を目的とするカード・ドラムに
充填使用することもできる。
Furthermore, the catalyst of the present invention can also be used by filling a card drum for the purpose of removing metals before a main reaction tower mainly for desulfurization and denitrification reactions.

触媒は、使用に先立ち予備硫化を行なうことが好ましい
。予備硫化は1反′応塔のその場において行なうことが
できる。すなわち、焼成した触媒な金儲留出油と、温度
;約150−4000G、圧力(全圧)1約2O−10
0kl?/c4.液空間速度−約0.3−2.0 V/
H/V及び約50−1.500νlの水素含有ガスの存
在下において接触させ、硫化処理の終了後金儲留出油を
原料油に切替え原料油の脱硫に適当な運転条件に設定し
運転を開始する。硫化処理の方法としては1以上の如き
方法の他に、硫化水素その他の硫黄化合物を直接触媒と
接触させるか又は適当な留出油に添加してこれを触媒と
接触させることもできる。
Preferably, the catalyst is presulfided before use. Presulfurization can be carried out in situ in one reaction column. That is, calcined catalytic distillate oil, temperature: about 150-4000G, pressure (total pressure) about 12O-10
0kl? /c4. Liquid space velocity - approx. 0.3-2.0 V/
Contact in the presence of H/V and about 50-1.500 νl of hydrogen-containing gas, and after the sulfidation treatment is completed, the Kansai distillate is switched to feedstock oil, and the operating conditions are set appropriate for desulfurization of the feedstock oil, and operation is started. Start. In addition to the above methods, hydrogen sulfide or other sulfur compounds may be brought into direct contact with the catalyst, or may be added to a suitable distillate and brought into contact with the catalyst.

実施例 実施例1 純水3.6ノを70℃に加熱し硫酸アルミニウム溶液(
硫酸アルミニウム187.5 g、 M水180g)を
加えた後ケイ酸ナトリウム(JISB号水ガラス45g
、純水100g)とアルミン酸ナトリウム溶液(アルミ
ン酸ソーダ125g、純水400g )の混合溶液を滴
下し酒石酸をアルミナに対し5mモル添加した後pHを
約9.0に水酸化ナトリウム若しくは硝酸水溶液にて調
節し、そして約70℃にて2時間程度熟成する。
Examples Example 1 3.6 μm of pure water was heated to 70°C and aluminum sulfate solution (
After adding 187.5 g of aluminum sulfate and 180 g of M water, 45 g of sodium silicate (JISB water glass) was added.
, 100 g of pure water) and a sodium aluminate solution (125 g of sodium aluminate, 400 g of pure water) were added dropwise, and after adding 5 mmol of tartaric acid to the alumina, the pH was adjusted to about 9.0 with a sodium hydroxide or nitric acid aqueous solution. Then, the mixture is aged at about 70°C for about 2 hours.

生成したシリカアルミナゲルを濾過し、1%炭酸アンモ
ニウム溶液にて洗浄し濾液のナトリウム濃度1に5pp
m以下となるまで洗浄する。
The generated silica alumina gel was filtered and washed with a 1% ammonium carbonate solution to reduce the sodium concentration of the filtrate to 1 to 5 pp.
Wash until it becomes less than m.

得られたゲルは120℃にて乾燥した後、水及び結晶性
セルロースそして酢酸の如き重合助剤を入れ混練して押
し出し成型機により1.5fiΦのペレット状に成型し
た。
The resulting gel was dried at 120° C., then kneaded with water, crystalline cellulose, and a polymerization aid such as acetic acid, and molded into a pellet of 1.5 fiΦ using an extrusion molding machine.

ベレットは120℃・で乾燥後、600℃で3時間焼成
して担体とした。
The pellet was dried at 120° C. and then fired at 600° C. for 3 hours to obtain a carrier.

得られた担体はモリブデン酸アンモニウム塩中に浸漬し
、約15%のM@へを担持させた後、乾燥焼成した。そ
の後硝酸コバルト水溶液中に浸漬して約5.0%のCo
oを担持乾燥・焼成後触媒とした。
The obtained carrier was immersed in ammonium molybdate salt to support about 15% of M@, and then dried and calcined. After that, it was immersed in a cobalt nitrate aqueous solution to contain about 5.0% Co.
o was used as a supported catalyst after drying and calcination.

性状を表1に示した。The properties are shown in Table 1.

比較例 実施例1に於いてケイ酸ナトリウム水溶液及び酒石酸を
加えない他はすべて実施例1と同様にして触媒を調製し
た。性状は表1に示した。
Comparative Example A catalyst was prepared in the same manner as in Example 1 except that the sodium silicate aqueous solution and tartaric acid were not added. The properties are shown in Table 1.

実施例2 純水3.6ノを70°Cに加熱し、硫酸アルミニウム溶
液(硫酸アルミニウム187.5 g、 f4水180
g)Y加えた後、ケイ酸ナトリウム(JIS3号水ガラ
ス28g、純水100g)とアルミン酸ナトリウム溶液
(アルミン酸ソーダ125g、純水400g)の混合溶
液を滴下し、グルタミン酸を20mモル添加した後、p
Hχ9.0〜9.2に水酸化す) IJウム若しくは硝
酸にて調節する。そして約70℃にて約3時間保持した
Example 2 3.6 g of pure water was heated to 70°C, and an aluminum sulfate solution (187.5 g of aluminum sulfate, 180 g of f4 water
g) After adding Y, a mixed solution of sodium silicate (28 g of JIS No. 3 water glass, 100 g of pure water) and sodium aluminate solution (125 g of sodium aluminate, 400 g of pure water) was added dropwise, and 20 mmol of glutamic acid was added. , p
Hydroxylation to Hχ9.0-9.2) Adjust with IJum or nitric acid. The temperature was then maintained at about 70°C for about 3 hours.

このようにして得られたゲルこれ以降の工程は実施例1
と同様にして行ない触媒を得た。性状は表1に示す。
The gel thus obtained The subsequent steps are as follows: Example 1
A catalyst was obtained in the same manner as above. Properties are shown in Table 1.

実施例3 純水3.67を70℃に加熱しこれにアルミン酸ナトリ
ウム溶液(アルミン酸ナトリウム120g。
Example 3 3.6 g of pure water was heated to 70° C. and a sodium aluminate solution (120 g of sodium aluminate) was added to it.

純水200g)と硫酸アルミニウム溶液(硫酸アルミニ
ウム183g、純水400g、クエン酸2g)Y加えた
後、水酸化ナトリウムまたは硝酸にてp H1に8.8
−9.0に調節し約1時間保持した。
After adding Y (200 g of pure water) and an aluminum sulfate solution (183 g of aluminum sulfate, 400 g of pure water, 2 g of citric acid), adjust the pH to 8.8 with sodium hydroxide or nitric acid.
-9.0 and held for about 1 hour.

これにケイ酸ナトリウム(JISa号水ガラス56g、
純水150g)を加えpHを9.2に保持し、更に1嘲
間保持した。ゲルの洗浄・乾燥・焼成工程は実施例1と
同様にし担体を得た。
Add to this sodium silicate (JISa water glass 56g,
The pH was maintained at 9.2 by adding 150 g of pure water and maintained for an additional 1 hour. The gel washing, drying, and baking steps were the same as in Example 1 to obtain a carrier.

触媒化するための活性金属種の担持はモリブデン酸アン
モニウムと硝酸ニッケル溶液を混合した後。
After mixing ammonium molybdate and nickel nitrate solution, loading active metal species for catalyticization.

アンモニアを加えて混合アンモニウム錯塩を調製して一
段でNiOとして約5.0 、ii量チ、 Me Os
として約15重量%担持した。
Ammonia is added to prepare a mixed ammonium complex salt, and in one step, the amount of NiO is about 5.0, the amount of MeOs is about 5.0,
About 15% by weight was supported.

得られた触媒の物性を表1に示した。Table 1 shows the physical properties of the obtained catalyst.

表1 C@0  4.6  4.5    4.5NiO−−
5,2− M@O814,614,915,514,6Stow 
 10.5  6.6  18.9  0Altos 
    残量   残(t    残量    残量3
00−      0026     0.031  
      0.048     0ユ12150.0
00 半均細孔径 発明の効果 実施例1及び比較例の触媒を用いてケロシン留分の水素
化処理を行なった。反応条件は下記の通りである。
Table 1 C@0 4.6 4.5 4.5NiO--
5,2- M@O814,614,915,514,6Stow
10.5 6.6 18.9 0Altos
Remaining amount Remaining amount (t Remaining amount Remaining amount 3
00- 0026 0.031
0.048 0yu12150.0
00 Semi-uniform pore diameter Effect of the invention A kerosene fraction was hydrogenated using the catalysts of Example 1 and Comparative Example. The reaction conditions are as follows.

反応温度(’C)       260反応圧力(k+
?/crIl)42 触媒充填@(m/)       15フイード流量(
V/H/v )     2. OH2フィード比(S
CF/B)     1000触媒    実施例1 
 比較例 脱硫率(%)99°190 煙点 1   28.5  23.1 原料油のイオウ含有量 0.25Wtチ煙点     
 21.9+m 比重1574℃  0.8041 芳香族     26.0(vo1%)実施例2及び比
較例の触媒を用いて中東系原油の常圧軽油留分を原料油
にして以下の反応条件で水素化処理を行なった。
Reaction temperature ('C) 260 Reaction pressure (k+
? /crIl) 42 Catalyst filling @ (m/) 15 Feed flow rate (
V/H/v) 2. OH2 feed ratio (S
CF/B) 1000 catalyst Example 1
Comparative example Desulfurization rate (%) 99°190 Smoke point 1 28.5 23.1 Sulfur content of raw oil 0.25Wt Smoke point
21.9+m Specific gravity 1574°C 0.8041 Aromatic 26.0 (vo1%) Using the catalysts of Example 2 and Comparative Example, atmospheric pressure gas oil fraction of Middle Eastern crude oil was used as feedstock and hydrogenated under the following reaction conditions. processed.

反応条件 反応温度(’C)        300反応圧力(k
l?/d)       20フイード流量(V/H/
V )    t、。
Reaction conditions Reaction temperature ('C) 300 Reaction pressure (k
l? /d) 20 feed flow rate (V/H/
V) t,.

H1フィード比(SCF/B)    1000触媒充
填量          15 触媒     実施例2    比較例脱硫率    
95.0     84.0脱窒素率    83.1
     39.0原料油性状 比重 15/4℃  0.8501 イオウ含有t(vt係)  1.21 窒素含有t  (ppm)  72 上記比較テストにて理解されるように本発明に係る水素
化処理用触媒は、特定の細孔分布を有することによって
良好な脱硫率及び脱窒素率を有することができる。即ち
1本発明に係る触媒は優れた活性及び活性維持能を有し
、炭化水素油の水素化処理を有効に行ない得るという効
果を有している。
H1 feed ratio (SCF/B) 1000 Catalyst loading amount 15 Catalyst Example 2 Comparative example Desulfurization rate
95.0 84.0 Denitrification rate 83.1
39.0 Raw material oil properties specific gravity 15/4°C 0.8501 Sulfur content t (vt ratio) 1.21 Nitrogen content t (ppm) 72 As understood from the above comparative test, the hydrotreating catalyst according to the present invention can have a good desulfurization rate and denitrification rate by having a specific pore distribution. That is, the catalyst according to the present invention has excellent activity and activity maintenance ability, and has the effect of effectively hydrogenating hydrocarbon oil.

Claims (1)

【特許請求の範囲】 1)シリカを約2〜40重量%含有するアルミナ又はア
ルミナ含有担体上に、元素周期表第VI族金属の群から選
択される一種又は二種以上の金属と、元素周期表第VII
I族金属の群から選択される一種又は2種以上の金属と
を担持させて成る水素化処理用触媒であって、 (1)0〜300Åの範囲の直径を有する細孔の容積が
触媒の全細孔容積の80%以上、 (2)直径0〜300Åの範囲内における平均細孔直径
が30〜80Å、 (3)直径300〜150,000Åの範囲内における
細孔容積が0.01〜0.1ml/g、 (4)比表面積が200〜400m^2/g、であるこ
とを特徴とする水素化処理用触媒。 2)(1)0〜300Åの範囲の直径を有する細孔の容
積が触媒の全細孔容積の90%以上、 (2)直径0〜300Åの範囲内における平均細孔直径
が40〜70Å、 (3)直径300〜150,000Åの範囲内における
細孔容積が0.02〜0.08ml/g、 (4)比表面積が250〜350m^2/g、である特
許請求の範囲第1項記載の水素化処理用触媒。 3)担体はシリカを5〜20重量%含有して成る特許請
求の範囲第1項又は第2項記載の水素化処理用触媒。 4)担体はシリカを10〜16重量%含有して成る特許
請求の範囲第1項又は第2項記載の水素化処理用触媒。 5)元素周期表第VI族金属は酸化物として5〜30重量
%含有され、元素周期表第VIII族金属は酸化物として1
〜10重量%含有されて成る特許請求の範囲第3項又は
第4項記載の水素化処理用触媒。 6)元素周期表第VI族金属はモリブデンであり、元素周
期表第VIII族金族はニッケル及びコバルトから成る特許
請求の範囲第1項〜第5項のいずれかの項に記載の水素
化処理用触媒。
[Scope of Claims] 1) One or more metals selected from the group of Group VI metals of the Periodic Table of Elements, and one or more metals selected from the group of Group VI metals of the Periodic Table of Elements, on alumina or an alumina-containing support containing about 2 to 40% by weight of silica; Table VII
A hydrogenation catalyst comprising one or more metals selected from the group I metals supported, wherein (1) the volume of pores having a diameter in the range of 0 to 300 Å is 80% or more of the total pore volume; (2) the average pore diameter within the diameter range of 0 to 300 Å is 30 to 80 Å; (3) the pore volume within the diameter range of 300 to 150,000 Å is 0.01 to 0.1 ml/g; (4) a catalyst for hydrogenation treatment having a specific surface area of 200 to 400 m^2/g; 2) (1) The volume of pores having a diameter in the range of 0 to 300 Å is 90% or more of the total pore volume of the catalyst, (2) The average pore diameter within the diameter range of 0 to 300 Å is 40 to 70 Å, (3) The pore volume within the diameter range of 300 to 150,000 Å is 0.02 to 0.08 ml/g, and (4) The specific surface area is 250 to 350 m^2/g. The hydrotreating catalyst described above. 3) The hydrotreating catalyst according to claim 1 or 2, wherein the carrier contains 5 to 20% by weight of silica. 4) The hydrotreating catalyst according to claim 1 or 2, wherein the carrier contains 10 to 16% by weight of silica. 5) Group VI metals of the Periodic Table of Elements are contained in an amount of 5 to 30% by weight as oxides, and Group VIII metals of the Periodic Table of Elements are contained in an amount of 1% by weight as oxides.
The hydrotreating catalyst according to claim 3 or 4, which contains 10% by weight. 6) Hydrogenation treatment according to any one of claims 1 to 5, wherein the metal of group VI of the periodic table of elements is molybdenum, and the metal of group VIII of the periodic table of elements is nickel and cobalt. Catalyst for use.
JP59229285A 1984-10-31 1984-10-31 Hydrotreating catalyst Expired - Lifetime JPS61107946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229285A JPS61107946A (en) 1984-10-31 1984-10-31 Hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229285A JPS61107946A (en) 1984-10-31 1984-10-31 Hydrotreating catalyst

Publications (1)

Publication Number Publication Date
JPS61107946A true JPS61107946A (en) 1986-05-26

Family

ID=16889722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229285A Expired - Lifetime JPS61107946A (en) 1984-10-31 1984-10-31 Hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JPS61107946A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167292A (en) * 1989-11-27 1991-07-19 Kawasaki Steel Corp Method for reclaiming hydrodesulfurization catalyst
JPH03275142A (en) * 1990-03-23 1991-12-05 Cosmo Sogo Kenkyusho:Kk Catalyst composition for hydrodesulfurization of hydrocarbon oil, its production and hydrodesulfurization method using the same
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049183A (en) * 1973-08-31 1975-05-01
JPS52145410A (en) * 1976-05-12 1977-12-03 Exxon Research Engineering Co Hydrogenation desulfurization method of hydrocarbon supply material
JPS5335705A (en) * 1976-09-14 1978-04-03 Toa Nenryo Kogyo Kk Hydrogenation and purification of petroleum wax
JPS54139904A (en) * 1978-04-21 1979-10-30 American Cyanamid Co Hydrogen desulfurization for oven residual oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049183A (en) * 1973-08-31 1975-05-01
JPS52145410A (en) * 1976-05-12 1977-12-03 Exxon Research Engineering Co Hydrogenation desulfurization method of hydrocarbon supply material
JPS5335705A (en) * 1976-09-14 1978-04-03 Toa Nenryo Kogyo Kk Hydrogenation and purification of petroleum wax
JPS54139904A (en) * 1978-04-21 1979-10-30 American Cyanamid Co Hydrogen desulfurization for oven residual oil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167292A (en) * 1989-11-27 1991-07-19 Kawasaki Steel Corp Method for reclaiming hydrodesulfurization catalyst
JPH03275142A (en) * 1990-03-23 1991-12-05 Cosmo Sogo Kenkyusho:Kk Catalyst composition for hydrodesulfurization of hydrocarbon oil, its production and hydrodesulfurization method using the same
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction

Similar Documents

Publication Publication Date Title
EP0160475B1 (en) Hydrotreating catalyst and process of manufacture
US4008149A (en) Process of hydro-refining hydrocarbon oils
US4134856A (en) Catalyst for hydro-refining hydrocarbon oils
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
JP3504984B2 (en) Hydrodesulfurization demetallization catalyst for heavy hydrocarbon oil
US4152250A (en) Demetallation of hydrocarbons with catalysts supported on sepiolite
US5565091A (en) Catalyst composition manufacturing method and sulfur-containing hydrocarbon hydrodesulfurization method using the same catalyst composition
US5336394A (en) Process for hydrodesulfurizing a sulfur-containing hydrocarbon
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
EP0638361B1 (en) Catalyst composition manufacturing method and sulfur-containing hydrocarbon hydrodesulfurization method using the same catalyst composition
JP4230257B2 (en) Hydrocarbon oil hydrotreating process using silica-alumina hydrotreating catalyst
JPS61107946A (en) Hydrotreating catalyst
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JPH06127931A (en) Silica-alumina, its production and catalyst for hydrogenation
JP3802939B2 (en) Catalyst for hydrotreating
US3846284A (en) Hydroconversion process
JP4319812B2 (en) Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method
USRE31039E (en) Catalysts for demetallization treatment of hydrocarbons supported on sepiolite
US4880526A (en) Hydrotreating catalysts prepared from hydrogels
JP4245226B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JPH08224471A (en) Fire resisting inorganic oxide catalyst carrier and hydrogenation catalyst using the same
JPH0576758A (en) Catalyst for hydrogenation treatment
JPH0513706B2 (en)
US4820680A (en) Hydrotreating catalysts prepared from hydrogels
JP3782887B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term