JPS61104560A - Microwave electric-discharge light source - Google Patents
Microwave electric-discharge light sourceInfo
- Publication number
- JPS61104560A JPS61104560A JP22470384A JP22470384A JPS61104560A JP S61104560 A JPS61104560 A JP S61104560A JP 22470384 A JP22470384 A JP 22470384A JP 22470384 A JP22470384 A JP 22470384A JP S61104560 A JPS61104560 A JP S61104560A
- Authority
- JP
- Japan
- Prior art keywords
- cavity resonator
- microwave
- electrodeless lamp
- microwaves
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/044—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明はマイクロ波放電を利用した光源装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a light source device using microwave discharge.
最近、マイクロ波放電を利用した無電極光源が、その長
寿命性の点で注目されており、例えばUV砂硬化形ンク
の乾燥用光源として用いる試みがなされている。Electrodeless light sources that utilize microwave discharge have recently attracted attention for their long lifespan, and attempts have been made to use them, for example, as light sources for drying UV sand-curing inks.
ところで、この種の無電極光源としては、従来例えば第
2図に示した如き構成のものが知られている。Incidentally, as this type of electrodeless light source, one having a configuration as shown in FIG. 2, for example, is conventionally known.
すなわち、箱状の装置本体1内には、一端に光取り出し
用の開口部2を有した中空状のマイクロ波空洞共振器3
とマグネトロン4が配置されており、この空洞共振器3
内にはマグネトロン4のマイクロ波出力部5から放射さ
れたマイクロ波が、導波管6および空洞共振器3の周面
に開設した給電ロアを通じて導かれるようになっている
。そして、このマイクロ波空洞共振器3内に、例えば石
英バルブ内に放電媒体を封入してなる無電極ランプ8が
設置されており、この無電極ランプ8にマイクロ波を印
加す波を印加すると、内部の放電媒体に放電が生じて、
例えば200nm以下の紫外線が発生され、この紫外線
は開口部2を通じて外方に放射されるようになっている
。That is, inside the box-shaped device main body 1, there is a hollow microwave cavity resonator 3 having an opening 2 at one end for extracting light.
and a magnetron 4 are arranged, and this cavity resonator 3
Inside, microwaves emitted from the microwave output section 5 of the magnetron 4 are guided through a waveguide 6 and a feeding lower provided on the circumferential surface of the cavity resonator 3. In this microwave cavity resonator 3, for example, an electrodeless lamp 8 made of a quartz bulb sealed with a discharge medium is installed, and when microwave waves are applied to this electrodeless lamp 8, A discharge occurs in the internal discharge medium,
For example, ultraviolet light of 200 nm or less is generated, and this ultraviolet light is radiated outward through the opening 2.
ところで、マイクロ波を上述の如き導波管6を介して空
洞共振器3に導く場合、マイクロ波出力部5から放出さ
れたマイクロ波は、導波管6内を通過する過程で徐々に
減衰されてしまうとともに、このマイクロ波の一部は第
1図中想像線で示したように、給電ロアを通過する際に
反射されてしまい、その分、無電極ランプ8に印加され
るマイクロ波の強度が低下し、したがって、無電極ラン
プ8の発光強度も低下するという欠点があった。By the way, when guiding microwaves to the cavity resonator 3 through the waveguide 6 as described above, the microwaves emitted from the microwave output section 5 are gradually attenuated in the process of passing through the waveguide 6. At the same time, as shown by the imaginary line in FIG. There was a drawback that the light emission intensity of the electrodeless lamp 8 was also reduced.
また、反射されたマイクロ波の一部は、多重反射を繰り
返しながらその給電ロアを通じて無電極′ランプ8に印
加されるが、そのマイクロ波のモードは、反射すること
なくマイクロ波出力部5から直接無電極ランプ8に印加
されるマイクロ波の正規モードと異なるため、この反射
による多重モードが存在する分、無電極ランプ8に発光
むらが生じていた。In addition, a part of the reflected microwave is applied to the electrodeless lamp 8 through the feeding lower part while repeating multiple reflections, but the mode of the microwave is directly from the microwave output section 5 without being reflected. Since this mode is different from the normal mode of the microwave applied to the electrodeless lamp 8, the presence of multiple modes due to this reflection causes uneven light emission in the electrodeless lamp 8.
本発明はこのような事情にもとづいてなされたもので、
マイクロ波の減衰およびモードの乱れが少なくなり、そ
の分、無電極ランプの発光強度の低下および発光むらを
小さく抑えることができるマイクロ波放電光源装置の提
供を目的とする。The present invention was made based on these circumstances, and
The purpose of the present invention is to provide a microwave discharge light source device which can reduce microwave attenuation and mode disturbance, and can correspondingly suppress a decrease in emission intensity and uneven emission of an electrodeless lamp.
すなわち、本発明は上記目的を達成するため、無電極ラ
ンプを収容したマイクロ波空洞共振器内に、マグネトロ
ンのマイクロ波の出力端であるアンテナを直接臨在させ
て設けたことを特徴とする。That is, in order to achieve the above object, the present invention is characterized in that an antenna, which is the output end of the microwave of a magnetron, is provided directly within a microwave cavity resonator housing an electrodeless lamp.
以下本発明の一実施例を、第1図にもとづいて説明する
。An embodiment of the present invention will be described below based on FIG.
図中11はマイクロ波を発生させるマグネトロンであり
、このマグネトロン11を収容したケース12内には、
冷却用のファン13が設けられている。なお、符号14
はファン駆動用のモータ、15はマグネトロン11の電
源である。In the figure, 11 is a magnetron that generates microwaves, and inside the case 12 that houses this magnetron 11,
A cooling fan 13 is provided. In addition, the code 14
15 is a motor for driving the fan, and 15 is a power source for the magnetron 11.
マグネトロン11はマイクロ波を放射状に発射するアン
テナ16を備え、このアンテナ16はケース12の一端
開口部12aを通じて外方に導出されているとともに、
その外周囲はスパッターを防止するため、透光性および
透磁性を有する石英ガラス製のカバー17によって覆わ
れている。The magnetron 11 is equipped with an antenna 16 that emits microwaves radially, and this antenna 16 is led out through an opening 12a at one end of the case 12.
Its outer periphery is covered with a cover 17 made of quartz glass that is transparent and magnetically permeable to prevent spatter.
ケース12の一端開口部12aには、金属製のマイクロ
波空洞共振器18(以下空洞共振器と称す)が連設され
ている。本実施例の空洞共振器18は、周壁が回転放物
面状をなし、その頂点である頂部18aとは反対側の一
端部に、光取り出し用の開口部19を有するとともに、
この空洞共振器18の内面は例えばアルミニウムを蒸着
させることにより、光反射面20に仕上げられている。A metal microwave cavity resonator 18 (hereinafter referred to as cavity resonator) is connected to one end opening 12 a of the case 12 . The cavity resonator 18 of this embodiment has a peripheral wall shaped like a paraboloid of revolution, and has an opening 19 for extracting light at one end opposite to the apex 18a.
The inner surface of this cavity resonator 18 is finished into a light reflecting surface 20 by, for example, vapor-depositing aluminum.
そして、このような空洞共振器18は、その頂部18a
をケース12の一端開口部12aにガスケット21を介
して重ね合わせることによりケース12に直結されてお
り、この際、マグネトロン11のアンテナ16が、空洞
共振器18の頂部18aに開設した通孔22を通じて空
洞共振器18内に直接臨在されている。Such a cavity resonator 18 has a top portion 18a.
is directly connected to the case 12 by overlapping it with the opening 12a at one end of the case 12 via the gasket 21, and at this time, the antenna 16 of the magnetron 11 is connected through the through hole 22 formed in the top 18a of the cavity resonator 18. It is located directly within the cavity resonator 18.
また、空洞共振器18内の焦点位置には、無電極ランプ
23が収容配置されている。この無電極ランプ23は球
形状をなした石英ガラス製の発光管24を有し、この発
光管24内には例えば放電媒体としての水銀が、分圧で
5X10’Torr(動作時圧 3カ)程度封入
されているとともに、起動用希ガスとして窒素ガスが数
〜十数Horr稈度封入されている。そして、この無電
極ランプ23は支持具25゜25を介して空洞共振器1
8内の焦点位置に支持されている。Further, an electrodeless lamp 23 is housed at a focal point within the cavity resonator 18 . This electrodeless lamp 23 has a spherical arc tube 24 made of quartz glass, and inside the arc tube 24, for example, mercury as a discharge medium is contained at a partial pressure of 5 x 10' Torr (operating pressure: 3 Torr). Nitrogen gas is also filled as a starting rare gas to a depth of several to ten Horrors. Then, this electrodeless lamp 23 is connected to the cavity resonator 1 via a support 25° 25.
It is supported at the focal position within 8.
なお、空洞共振器18の開口部19には、光の通過は許
容するが、マイクロ波の漏洩を防止する金属製の網体2
6が張られている。この場合、マイクロ波の遮蔽作用は
、網体26の各網目の大きさおよび網目の占める開口割
合によって決定され、本発明者の行なった実験によると
、網体26の厚みにもよるが、網目の平均的開口面積が
0.2cMより小さく、かつ網目の開口面積の占める割
合が60%未満であれば、マイクロ波の通過が略阻止さ
れることが確認されている。Note that the opening 19 of the cavity resonator 18 is provided with a metal mesh 2 that allows light to pass through but prevents microwave leakage.
6 is posted. In this case, the microwave shielding effect is determined by the size of each mesh of the mesh body 26 and the aperture ratio occupied by the mesh, and according to experiments conducted by the present inventors, although it depends on the thickness of the mesh body 26, It has been confirmed that when the average opening area of the mesh is smaller than 0.2 cM and the ratio of the opening area of the mesh is less than 60%, passage of microwaves is substantially blocked.
次に、上記構成の作用について説明する。Next, the operation of the above configuration will be explained.
まず、マグネトロン11を動作させ、そのアンテナ16
からマイクロ波を発射させる。この際、アンテナ16は
無電極ランプ23が収容された空洞共振器18内に臨在
されているので、アンテナ16から放射状に発射された
マイクロ波は、空洞共振器18内に直接入射され、無電
極ランプ23に印加される。この結果、無電極ランプ2
3の発光管24内には放電(プラズマ)が励起され、こ
の放電により生じた紫外線が空洞共振器18内に放射さ
れる。そして、この紫外線の一部は直接開口部19の網
体26を通過して外方に照射されるとともに、残りは光
反射面20で反射された後、上記網体26を通過して外
方に照射される。この際、無電極ランプ23は空洞共振
器18の焦点位置に設置されているので、光反射面20
で反則された光は確実に開口部19側に導かれ、光の取
り出しが効率良く行なわれる。First, the magnetron 11 is operated, and its antenna 16 is
emit microwaves from. At this time, since the antenna 16 is present in the cavity resonator 18 in which the electrodeless lamp 23 is housed, the microwaves emitted radially from the antenna 16 are directly incident into the cavity resonator 18, and the electrodeless lamp 23 is placed inside the cavity resonator 18. applied to the lamp 23. As a result, the electrodeless lamp 2
A discharge (plasma) is excited in the arc tube 24 of No. 3, and ultraviolet rays generated by this discharge are radiated into the cavity resonator 18. A part of the ultraviolet rays directly passes through the net 26 of the opening 19 and is irradiated outward, while the rest is reflected by the light reflecting surface 20 and then passes through the net 26 and irradiates outward. is irradiated. At this time, since the electrodeless lamp 23 is installed at the focal point of the cavity resonator 18, the light reflecting surface 23
The reflected light is reliably guided to the opening 19 side, and the light can be extracted efficiently.
このような本発明の一実施例によれば、アンテナ16を
空洞共振器18内に臨在させ、マイクロ波を導波管等を
一切通さずに空洞共振器18内に入射させるようにした
ので、このマイクロ波の減衰や反射が解消される。した
がって、その分、無電極ランプ23の発光強度の低下や
発光むらを小さく抑えることができる。According to such an embodiment of the present invention, the antenna 16 is located inside the cavity resonator 18, and the microwave is made to enter the cavity resonator 18 without passing through any waveguide or the like. Attenuation and reflection of this microwave are eliminated. Therefore, a decrease in the luminous intensity and uneven luminescence of the electrodeless lamp 23 can be suppressed accordingly.
特に本実施例の場合は、アンテナ16を回転放物面状を
なした空洞共振器18の頂部18aに設けたので、この
空洞共振器18内でのマイクロ波の強度分布は、第1図
中想像線で示したように、空洞共振器18の焦点位置で
以て最大となるとともに、このマイクロ波を雑音の少な
い、いわゆるシングルモードにより近ずけることが可能
となる。したがって、本実施例のようにその焦点位置に
無電極ランプ23を設置すれば、この無電極ランプ23
に対し外周囲から略均等にマイクロ波を導くことができ
、より一層発光むらを改善することができる。In particular, in the case of this embodiment, since the antenna 16 is provided at the top 18a of the cavity resonator 18 having a paraboloid of revolution shape, the intensity distribution of the microwave within the cavity resonator 18 is as shown in FIG. As shown by the imaginary line, it becomes maximum at the focal point of the cavity resonator 18, and it becomes possible to make this microwave closer to a so-called single mode with less noise. Therefore, if the electrodeless lamp 23 is installed at the focal position as in this embodiment, the electrodeless lamp 23
On the other hand, microwaves can be guided almost uniformly from the outer periphery, and uneven light emission can be further improved.
なお、本発明において、無電極ランプは球形状に限らず
、棒状であっても良く、また、空洞共振器も細長い樋状
に形成しても良い。In the present invention, the electrodeless lamp is not limited to a spherical shape, but may be rod-shaped, and the cavity resonator may also be formed in the shape of an elongated gutter.
さらに、無電極ランプ内に封入する放電媒体も水銀に限
らず、得ようとする光に応じて例えば水素、クリプトン
あるいはキセノンガス又はこれらの混合ガスに変えても
良い。Further, the discharge medium sealed in the electrodeless lamp is not limited to mercury, but may be changed to, for example, hydrogen, krypton, or xenon gas, or a mixed gas thereof depending on the light to be obtained.
また、上記実施例では空洞共振器の開口部にマイクロ波
の漏洩を防止する網体を被着したが、この光源装置を組
込んで使用する機器側にマイクロ波の漏洩防止機能があ
る場合には、この網体を省略しても良い。In addition, in the above embodiment, the opening of the cavity resonator is coated with a mesh that prevents microwave leakage, but if the equipment that incorporates this light source device and uses it has a microwave leakage prevention function. , this mesh may be omitted.
以上詳述した本発明によれば、アンテナから発射された
マイクロ波は、直ちに無電極ランプを収容したマイクロ
波空洞共振器内に入射されるので、マイクロ波の減衰や
反射が解消される。したがって、無電極ランプの発光強
度の低下が小さく抑えられるとともに、無電極ランプに
印加されるマイクロ波のモードは、アンテナから発射さ
れた時のものとほとんど変わりがなく、このマイクロ波
の乱れが少なく抑えられるから、発光むらを小さく抑え
ることができる利点がある。According to the present invention described in detail above, the microwave emitted from the antenna is immediately incident on the microwave cavity resonator housing the electrodeless lamp, so that attenuation and reflection of the microwave are eliminated. Therefore, the decrease in the emission intensity of the electrodeless lamp is suppressed to a small level, and the mode of the microwave applied to the electrodeless lamp is almost the same as that when emitted from the antenna, and the disturbance of this microwave is reduced. This has the advantage that uneven light emission can be suppressed to a small level.
第1図は本発明の一実施例を示す断面図、第2図は従来
のマイクロ波放電光源装置の概略構成図である。
11・・・マグネトロン、16・・・アンテナ、18・
・・マイクロ波空洞共振器、19・・・開口部、23・
・・無電極ランプ。FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a conventional microwave discharge light source device. 11... Magnetron, 16... Antenna, 18.
...Microwave cavity resonator, 19...opening, 23.
・Electrodeless lamp.
Claims (3)
イクロ波が入射されるとともに、一端に光取り出し用の
開口部を有したマイクロ波空洞共振器と、このマイクロ
波空洞共振器内に収容配置され、上記マイクロ波によっ
て放電される放電媒体を封入した無電極ランプとを具備
し、 上記マイクロ波空洞共振器内に、マグネトロンのマイク
ロ波の出力端であるアンテナを直接臨在させて設けたこ
とを特徴とするマイクロ波放電光源装置。(1) A magnetron that generates microwaves, a microwave cavity resonator into which the microwaves are incident and which has an opening for extracting light at one end, and a microwave cavity resonator housed within the microwave cavity, and an electrodeless lamp enclosing a discharge medium that is discharged by the microwave, and an antenna, which is an output end of the microwave of the magnetron, is provided directly within the microwave cavity. Microwave discharge light source device.
、その頂点に上記アンテナが位置されているとともに、
この頂点と対向して開口部が位置し、上記無電極ランプ
は上記マイクロ波空洞共振器の回転放物面の焦点位置に
配置されていることを特徴とする特許請求の範囲第(1
)項記載のマイクロ波放電光源装置。(2) The microwave cavity resonator has the shape of a paraboloid of revolution, and the antenna is located at the apex thereof, and
Claim 1, characterized in that an opening is located opposite to this apex, and the electrodeless lamp is located at the focal point of the paraboloid of rotation of the microwave cavity resonator.
) The microwave discharge light source device described in item ).
特許請求の範囲第(2)項記載のマイクロ波放電光源装
置。(3) The microwave discharge light source device according to claim (2), wherein the electrodeless lamp is spherical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22470384A JPS61104560A (en) | 1984-10-25 | 1984-10-25 | Microwave electric-discharge light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22470384A JPS61104560A (en) | 1984-10-25 | 1984-10-25 | Microwave electric-discharge light source |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61104560A true JPS61104560A (en) | 1986-05-22 |
Family
ID=16817917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22470384A Pending JPS61104560A (en) | 1984-10-25 | 1984-10-25 | Microwave electric-discharge light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61104560A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250906U (en) * | 1988-10-05 | 1990-04-10 | ||
KR100396770B1 (en) * | 2001-01-08 | 2003-09-03 | 엘지전자 주식회사 | The microwave lighting apparatus |
FR2888397A1 (en) * | 2005-07-08 | 2007-01-12 | Pascal Sortais | ELECTRONIC CYCLOTRONIC RESONANCE LUMINOUS APPARATUS |
JP2007205639A (en) * | 2006-02-01 | 2007-08-16 | Kazuhiro Nagata | Blast furnace and manufacture of pig iron using it |
WO2008113293A1 (en) * | 2007-03-16 | 2008-09-25 | Dongguan Ginfax Electronics Technology Limited Company | A coaxial electrodeless lamp |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5499368A (en) * | 1978-01-23 | 1979-08-06 | Oku Seisakusho Co Ltd | Ultraviolet ray generator |
JPS5923613A (en) * | 1982-07-29 | 1984-02-07 | Murata Mfg Co Ltd | Piezoelectric resonator |
-
1984
- 1984-10-25 JP JP22470384A patent/JPS61104560A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5499368A (en) * | 1978-01-23 | 1979-08-06 | Oku Seisakusho Co Ltd | Ultraviolet ray generator |
JPS5923613A (en) * | 1982-07-29 | 1984-02-07 | Murata Mfg Co Ltd | Piezoelectric resonator |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250906U (en) * | 1988-10-05 | 1990-04-10 | ||
KR100396770B1 (en) * | 2001-01-08 | 2003-09-03 | 엘지전자 주식회사 | The microwave lighting apparatus |
FR2888397A1 (en) * | 2005-07-08 | 2007-01-12 | Pascal Sortais | ELECTRONIC CYCLOTRONIC RESONANCE LUMINOUS APPARATUS |
JP2007205639A (en) * | 2006-02-01 | 2007-08-16 | Kazuhiro Nagata | Blast furnace and manufacture of pig iron using it |
WO2008113293A1 (en) * | 2007-03-16 | 2008-09-25 | Dongguan Ginfax Electronics Technology Limited Company | A coaxial electrodeless lamp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1070339B1 (en) | Microwave energised plasma light source | |
JPH036618B2 (en) | ||
US4859906A (en) | Deep UV lamp bulb with improved fill | |
JPS61104560A (en) | Microwave electric-discharge light source | |
JP2003159314A (en) | Uv sterilizing apparatus | |
JPS61185857A (en) | Electrodeless discharge lamp | |
US7397173B2 (en) | Lighting apparatus using microwave energy | |
US5493184A (en) | Electrodeless lamp with improved efficiency | |
GB2182486A (en) | Magnesium vapor discharge lamp | |
RU2226017C2 (en) | Electrode-free lighting system ( variants ) | |
JP6263788B2 (en) | Microwave electrodeless lamp and light irradiation device using the same | |
KR100339574B1 (en) | Light collection structure for electrodeless lamp | |
JPH0231458B2 (en) | ||
JPS61104559A (en) | Microwave electric-discharge light source | |
JPS6139449A (en) | Microwave discharge light source device | |
JP2007080705A (en) | Microwave discharge lamp and microwave discharge light source device equipped with the microwave discharge lamp | |
JP3402074B2 (en) | Electrodeless discharge lamp | |
JP2001319618A (en) | Ultrahigh-pressure mercury lamp and its manufacturing method | |
JPH05225960A (en) | Electrodeless low pressure rare gas type fluorescent lamp | |
US20070069650A1 (en) | Electrodeless lighting system having aluminum resonator | |
KR20010054599A (en) | Condensing device for electrodeless lamp | |
JPS5816458A (en) | High frequency discharge light source unit | |
JPH08287876A (en) | Electrodeless fluorescent lamp | |
JPH01243304A (en) | Electrodeless discharge lamp | |
JPS63313462A (en) | Electrodeless discharge lamp |