[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS61104075A - Device for controlling ionizing vaporization velocity - Google Patents

Device for controlling ionizing vaporization velocity

Info

Publication number
JPS61104075A
JPS61104075A JP22130284A JP22130284A JPS61104075A JP S61104075 A JPS61104075 A JP S61104075A JP 22130284 A JP22130284 A JP 22130284A JP 22130284 A JP22130284 A JP 22130284A JP S61104075 A JPS61104075 A JP S61104075A
Authority
JP
Japan
Prior art keywords
particles
vaporization
evaporation
electrode
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22130284A
Other languages
Japanese (ja)
Inventor
Hironobu Sato
弘信 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22130284A priority Critical patent/JPS61104075A/en
Publication of JPS61104075A publication Critical patent/JPS61104075A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled device capable of supplying a requisite amt. of particles to the surface to be vapor-deposited by ionizing vaporized particles from a vaporization source for making a vapor-deposited thin film with a flow of thermoelectrons, controlling the vaporization velocity by using a part of the ion current, and keeping the vaporization velocity constant. CONSTITUTION:A vaporization substance 4 in a vaporization source 5 is heated by an electron gun 6 and a control electric power source 15 in a bell jar 1 which is made vacuous by an evacuation system 2, and vaporized at a constant velocity. The whole vaporized particles are ionized in a specified ratio and uniformly with a flow of thermoelectrons from the filament 7 of a thermoelectron emitting electrode provided at a position where the particles pass, and vapor-deposited on a sample 3 by opening a shutter 8. In the vacuum vapor- deposition thin film forming device, the ions in the vicinity of electrode 7 is made into an ion current by the electrode 7, the current is detected by an ammeter 12, and the amt. of vaporization substance 4 to be vaporized is automatically controlled by the control electric power source 15.

Description

【発明の詳細な説明】 本発明は真空中で試料の表面Iこ薄膜をコーテングする
装Eにおいて蒸発する速度を一定にし膜の厚さを蒸着の
時間の長厩で決める方法として蒸発粒子をイオン化し、
そのイオンを流を用いて蒸発速度を一定にする装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for coating the surface of a sample with a thin film in vacuum by ionizing evaporated particles as a method of keeping the evaporation rate constant and determining the thickness of the film by increasing the deposition time. death,
This invention relates to a device that uses a flow of ions to maintain a constant evaporation rate.

従来の薄膜の厚さを制御する方法トヱ蒸着された膜から
厚さを決める方法と蒸発源の蒸発速度を一定にして蒸着
の時間によって膜の厚さを決める方法がある。前者は水
晶膜厚計、光干渉膜厚計など一般に使用されているが膜
厚として得られる電気信号は蒸着原子又は分子そのもの
ではなく、計器の検出器からの周波数又は光によって換
算された膜厚である。この方法は原子6分子そのものの
制御ではなく薄膜が生成される時の状態の判別はできな
い。又検出器は交換をする必要がある欠点を有している
う近年薄膜は薄膜ができる過程が結晶の成長やすべての
性能に大きな影響を持つことが知られ、そのためには後
者による方法で薄膜を製作することが要求されている。
Conventional methods for controlling the thickness of a thin film include a method of determining the thickness from the deposited film and a method of determining the thickness of the film based on the deposition time while keeping the evaporation rate of the evaporation source constant. The former is commonly used, such as a crystal film thickness meter or an optical interference film thickness meter, but the electrical signal obtained as the film thickness is not the evaporated atoms or molecules themselves, but the film thickness converted by the frequency or light from the instrument's detector. It is. This method does not control the six atoms themselves and cannot determine the state when a thin film is formed. In addition, the detector has the disadvantage of requiring replacement.In recent years, it has been known that the process of thin film formation has a large effect on crystal growth and all performance, so the latter method is recommended. is required to be produced.

後者の方法にはベニフグ放電を用いたスパッター法と真
空蒸発中に発生するイオン電流を用いて測定する方法が
ある。スパッター法は強力な磁場の中でスパッターをさ
せるので高価で中性の粒子だけの蒸着となる。
The latter method includes a sputtering method using a Benifugu discharge and a method of measuring using an ion current generated during vacuum evaporation. The sputtering method involves sputtering in a strong magnetic field, resulting in the deposition of only expensive, neutral particles.

又蒸発中に発生するイオン電流を用いる方法は発生する
イオン電流が1a″6〜1(r’ 7ンペアと非常に小
さいために真空中で発生する放電などの障害のために蒸
発速度の自動制御法は実用化することが不可能である。
In addition, in the method of using the ion current generated during evaporation, the ion current generated is very small at 1a''6 to 1 (r'7 ampere), so it is difficult to automatically control the evaporation rate due to problems such as discharge that occur in a vacuum. The law is impossible to put into practice.

本発明による蒸発源から蒸発する粒子に熱電子を照射さ
せてイオン化する方法は高真空中Sも数10アンペアの
イオン電流が得られる。又真空放電による障害も発生す
ることなく、このイオン電流の一部を用いると蒸発源の
蒸発粒子の蒸発速度を一定にする装置が簡単に製作でき
る特長を有するものである。
In the method of ionizing particles evaporated from an evaporation source by irradiating them with thermal electrons according to the present invention, an ion current of several tens of amperes can be obtained even in a high vacuum. Furthermore, there is no problem caused by vacuum discharge, and by using a portion of this ion current, it is possible to easily manufacture a device that can keep the evaporation rate of the evaporation particles of the evaporation source constant.

蒸着薄膜の製作に必要な条件11蒸着面の温度と表面の
状磨を制御することである。蒸着面の温度は高温の蒸発
粒子が無制限に飛び込んで来る状態では一定に制御する
ことができず、どうしても蒸発速度を一定として必要な
量だけ蒸着面に粒子を供給することが必要である。表面
の状態は不純物などが結晶を作る核となるために不純物
のない状態を作り必要に応じて異種金属を供給する。こ
め場合の金属間の結合は原子の熱振動状層よりもイオ/
の状態の方が結合エネルギーが高いのでイオノ結合をし
ている化合物又は合金の製造には粒子がイオ/になって
いる方が効果があると考えられる。
Condition 11 necessary for producing a vapor-deposited thin film is to control the temperature and surface polish of the vapor-deposited surface. The temperature of the evaporation surface cannot be controlled to be constant when high-temperature evaporated particles are flying in without limit, so it is necessary to keep the evaporation rate constant and supply the required amount of particles to the evaporation surface. Since impurities and the like serve as nuclei for forming crystals, the surface is free from impurities and a different metal is supplied as necessary. In this case, the bond between metals is more like an ion/metal than a thermally vibrating layer of atoms.
Since the bonding energy is higher in the state of , it is thought that it is more effective for the production of compounds or alloys having iono bonds to have particles in the io/ state.

本発明は、蒸発粒子を一定の比率で均一に、又は全部を
イオノにすることによってイオン電流と蒸発粒子の間に
一定の関係をもつ装置を作りそのイオン電流の1部を使
用して蒸発源の蒸発粒子の蒸発速度を一定にしたことで
ある。その用途は通常の真空蒸着装置から反応ガスの中
で行われるイオンブレーテ/グ法(PAT出願57−1
51892)や蒸着面の温度をより正確に制御すること
ができることにより蒸着面に単結晶を作る方法および複
数の蒸発粒子のイオンの比率を変えて化合物を作ること
。又電子の全を変えて化合物を作ること(FAT出願5
8−048359および58−063209)に使用す
るもので新しい機能をもつ材料の製作に不可欠のもので
ある。
The present invention creates a device that has a certain relationship between the ion current and the evaporation particles by uniformly ionizing the evaporation particles at a certain ratio or by ionizing all of the evaporation particles, and uses a part of the ion current to create an evaporation source. The evaporation rate of the evaporated particles was kept constant. Its use is based on the ion blating/deposition method (PAT Application No. 57-1
51892), a method of forming a single crystal on a vapor deposition surface by being able to more accurately control the temperature of the vapor deposition surface, and a method of forming a compound by changing the ratio of ions of a plurality of evaporated particles. Also, creating a compound by changing all of the electrons (FAT application 5)
8-048359 and 58-063209), and is essential for producing materials with new functions.

以下本発明の詳細を図によって説明する。The details of the present invention will be explained below with reference to the drawings.

第1−図は本発明の装置を略図的に説明したブロック図
を示したもので、1は真空容器、2は真空にするための
排気系、3は蒸着薄膜を作る試料、4は蒸発させる物質
、5は多種類の物質を蒸発させる複数の炉、6は電子銃
、7は蒸発粒子を均一又は全部をイオン化するための円
形構J6をした熱電子放射電極フィラメントを示すウ 
アイラメ/ドアはトランス16と介して制御電源17で
熱電子が一定となる構造となってt・る。第一図でli
電@17は精度の高い定電圧調整器が用いられる。蒸発
炉5がら蒸発した物?T4はイオン化するために電子を
放射している電極フィラメント7の中央部を通過する時
電子によってイオン化されイオンの大部分はそのま\蒸
着試料に到達する。又JJi7の近傍でできたイオ/は
、電極7に到達し、イオン?If流となり電流計12で
蒸発の笛を読む構造となっている。制御電源15は電流
計12の指示が所定の値になるように自動制御しである
ので蒸発物質4は蒸発速度一定となる。ツヤ7ター8を
即けば蒸発粒子4は試料3に蒸着される。蒸着量と時間
の関係は蒸着膜厚測定器10.11によってあらかじめ
測定し算出するものである。、電流計18は試料3に蒸
着される電子とイオンの割合をυり定するもので抵抗2
0と電池21の組合せによってその割合を任意に決める
調整器である。
Figure 1 shows a block diagram schematically explaining the apparatus of the present invention, in which 1 is a vacuum container, 2 is an exhaust system for creating a vacuum, 3 is a sample for which a thin film is to be deposited, and 4 is for evaporation. 5 indicates a plurality of furnaces for vaporizing various types of substances; 6 indicates an electron gun; 7 indicates a thermionic emission electrode filament having a circular structure J6 for uniformly or completely ionizing the evaporated particles;
The eyelid/door has a structure in which thermoelectrons are kept constant by a control power source 17 via a transformer 16. In the first figure, li
Electric @17 uses a highly accurate constant voltage regulator. What evaporated from evaporation furnace 5? When T4 passes through the center of the electrode filament 7 which emits electrons for ionization, it is ionized by the electrons and most of the ions reach the deposition sample as is. Also, the io/ formed near JJi7 reaches the electrode 7 and becomes an ion? The structure is such that the current becomes an If current and the whistle of evaporation is read by the ammeter 12. Since the control power source 15 automatically controls the indication of the ammeter 12 to a predetermined value, the evaporation rate of the evaporated substance 4 is constant. The evaporated particles 4 are deposited on the sample 3 by polishing the gloss 7 tar 8. The relationship between the amount of evaporation and time is calculated by measuring in advance with a evaporation film thickness measuring device 10.11. , the ammeter 18 determines the ratio of electrons and ions deposited on the sample 3, and the resistor 2
This is a regulator that arbitrarily determines the ratio depending on the combination of 0 and battery 21.

第2図は、第1図に示す装置を具体的に動作させた時に
電流計12に流れる電流を曲線(mlで表わし、同時に
電流計18に流れる電流を(1)lで表わす。
FIG. 2 shows a curve (expressed in ml) of the current flowing through the ammeter 12 when the apparatus shown in FIG.

横軸は動作の経過時間を示す。(A1は初めに17に電
源を入れ電極7から熱電子が照射した状態を示す。次に
■位七15の制御電源が動作すると蒸発物4は蒸発して
、熱電子放射電極7の中央部分を通過するとイオノとな
り大部分は蒸着基板3に到達する。又イオ/の1部は電
極7に到達し電流計12に流れ込みこの電流計の設定値
になるまで制御電源15が動作して0の状態で一定とな
る。
The horizontal axis indicates the elapsed time of the operation. (A1 shows the state in which the power is first turned on to 17 and thermionic electrons are irradiated from the electrode 7.Next, when the control power source 715 is activated, the evaporated matter 4 is evaporated and the central part of the thermionic emission electrode 7 When it passes through, it becomes ion and most of it reaches the deposition substrate 3.Also, a part of ion reaches the electrode 7 and flows into the ammeter 12, and the control power supply 15 is operated until it reaches the set value of this ammeter, and the ion reaches the evaporation substrate 3. It remains constant in the state.

第3図は熱電子放射電極ブイラメ/ドアを上から見た構
造図を示す、71゜72はアイラメ/ドアに電力を供給
するための電極リングで、72は静電的に熱電子を中央
側に向けるために半円構造となっている。+73は71
の電極、74は72の電極、75は絶縁硝子、76はフ
ィラメントがら熱電子を引き出すための電極、フィラメ
ント7と電極76の間には電流計12を通して電源13
が接続されている。電極76は接地されている。16は
フィラメント7に電力を供給するトランスを示す。
Figure 3 shows the structure of the thermionic emitting electrode eyelet/door viewed from above. 71 and 72 are electrode rings for supplying power to the eyelet/door, and 72 electrostatically emits thermionic electrons to the center side. It has a semicircular structure in order to direct it towards the target. +73 is 71
, 74 is the electrode of 72, 75 is insulating glass, 76 is an electrode for extracting thermoelectrons from the filament, and a power source 13 is connected between the filament 7 and the electrode 76 through an ammeter 12.
is connected. Electrode 76 is grounded. 16 indicates a transformer that supplies power to the filament 7.

第4図は第3図に示す!極の中央部x−x’ 断面に於
ける熱電子の密度と蒸発源から断面x−x’ を通過す
る蒸発粒子の密度を示す。fd1曲線は、熱電子の密度
を示し常に定電流が得られる構造となっている6(c)
曲線は蒸発粒子の密度を示し蒸発量によって増減する。
Figure 4 is shown in Figure 3! The density of thermionic electrons in the cross section xx' at the center of the pole and the density of evaporated particles passing through the cross section xx' from the evaporation source are shown. The fd1 curve shows the density of hot electrons and has a structure that always provides a constant current6(c)
The curve shows the density of evaporated particles, which increases or decreases depending on the amount of evaporation.

ここでフイラノ/ドアから?l1m極の中央に向って照
射された電子は蒸発して通過しようとする粒子に衝突(
又は吸収)して電子をはじき出して粒子はイオノになる
。−青電子は衝突の度毎に増加して電子雪崩を起し蒸発
粒子を常に一定の割合又は全部をイオン化することが知
られている。この方法は構造と真空の圧力が変化しない
場合にはイオン電流を測定すれば蒸発粒子の量が測定す
ることができることから全体のイオンの一部をフィラメ
ント7およびその周囲の7rLNiに流れ込むイオ7?
[で測定し制御を行うと蒸発速度制御ができるものであ
る。
Firano here/from the door? Electrons irradiated toward the center of the l1m pole evaporate and collide with particles passing through (
or absorption) and ejects electrons, and the particle becomes an iono. - It is known that blue electrons increase each time they collide, causing an electron avalanche, and ionizing a certain percentage or all of the evaporated particles. In this method, if the structure and vacuum pressure do not change, the amount of evaporated particles can be measured by measuring the ion current, so some of the total ions flow into the filament 7 and the surrounding 7rLNi.
Evaporation rate can be controlled by measuring and controlling with [.

以上説明したように本発明はχ来困難とされていた蒸発
源の蒸発速度をイオン化という手段を用いて自動制御を
行うことができたことで下記の特徴を有するものである
As explained above, the present invention has the following characteristics in that it is possible to automatically control the evaporation rate of the evaporation source using a means of ionization, which has been difficult in the past.

■試料の温度を一定にできる。■成分の異った蒸着膜を
作ることができる。
■The temperature of the sample can be kept constant. ■It is possible to create deposited films with different components.

又試料に@量の添加ができる。■蒸着の初期条件も制御
できる。■蒸着はイオンである。■高真空でも同じよう
に蒸着できる。■検出器は真空中の汚れに強く、半永久
的に使用できろう■物質によってイオン化が違うが増幅
器の感度を変えて同じように蒸着できる。■膜厚が7ヤ
ツターの時間で制御できる。■再現性が良い。@コンピ
ューターに接続が簡単である。
Also, @ amount can be added to the sample. ■The initial conditions for vapor deposition can also be controlled. ■Vapor deposition is ionic. ■It can be deposited in the same way even in high vacuum. ■The detector is resistant to dirt in a vacuum and can be used semi-permanently. ■Ionization differs depending on the substance, but it can be deposited in the same way by changing the sensitivity of the amplifier. ■ Film thickness can be controlled in 7 minutes. ■Good reproducibility. @Easy to connect to computer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の概略構成を示すブロック
線図、第2図は動作を説明するための制御曲線図、第3
図は同実施例における熱電子放射電極の構成図、M4図
は第3図の中央部のx−x’ 断面に於ける蒸発粒子密
度と放射された熱電子の密度を示す特性曲線図である。 1、・ ペルジャー、  2  排気系、  3.・ 
試料、 4  物質、5  電極、  6  電子銃、
  7.・ フィラメ7)、   8  /ヤッター、
9  ヒーター、 10My、厚計、  11   膜
厚計メーター、12電流計、  13 −電池、14・
・・ トランス、 15   制御TL源、 16トラ
ンス、 17 ・ 制御電源、  18.− it電流
計 19 ・ ダイオード、20 ・可変抵抗、21 
 ・ ?IIC池、22 ・・電源、 71   電極
り/グ、72  電極す/グ、 73TL極、 74.
− TL極、75・・・絶縁物、76  陽TL極
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention, FIG. 2 is a control curve diagram for explaining the operation, and FIG.
The figure is a configuration diagram of the thermionic emission electrode in the same example, and Figure M4 is a characteristic curve diagram showing the density of evaporated particles and the density of emitted thermionic electrons in the xx' cross section in the center of Figure 3. . 1. Pelger, 2 Exhaust system, 3.・
sample, 4 substance, 5 electrode, 6 electron gun,
7.・Filame 7), 8/Yatter,
9 Heater, 10 My, thickness gauge, 11 Film thickness meter, 12 Ammeter, 13 - Battery, 14.
...Transformer, 15 Control TL source, 16 Transformer, 17 Control power supply, 18. - IT ammeter 19 ・Diode, 20 ・Variable resistor, 21
・? IIC pond, 22...Power supply, 71 Electrode/G, 72 Electrode S/G, 73TL pole, 74.
- TL pole, 75...insulator, 76 positive TL pole

Claims (2)

【特許請求の範囲】[Claims] (1)真空中で物質を加熱し蒸発させて蒸着薄膜を作る
真空蒸着薄膜製造装置において蒸発源から蒸発する物質
が時間的に常に一定の膜厚になるように、又蒸発源から
蒸発する粒子が通過する位置に、その蒸発粒子を均一又
は全部をイオンにすることを目的とし、一定の熱電子電
流を放射する電極を設け、蒸発する粒子をイオン化し、
そのイオン電流の一部を用いて蒸発速度を一定になるよ
うにしたイオン化蒸発速度制御装置。
(1) In a vacuum evaporation thin film production device that heats and evaporates a substance in a vacuum to create a thin film, the material that evaporates from the evaporation source always has a constant film thickness over time, and the particles that evaporate from the evaporation source At the position where the evaporated particles pass, an electrode is provided that emits a constant thermionic current for the purpose of ionizing the evaporated particles uniformly or all of them, and ionizes the evaporated particles.
An ionization evaporation rate control device that uses a portion of the ion current to maintain a constant evaporation rate.
(2)(1)に示すイオン化蒸発速度制御装置において
熱電子放射電極を円形(第3図参照)としフィラメント
と熱電子引出し電極によって放射される熱電子が中央に
飛来し、蒸発源から蒸発する粒子の分布密度と一致した
電子密度を持つことによって蒸発粒子を常に一定の割合
又は全部をイオン化する構造としたイオン化蒸発速度制
御装置。
(2) In the ionization evaporation rate control device shown in (1), the thermionic emission electrode is made circular (see Figure 3), and thermionic electrons emitted by the filament and thermionic extraction electrode fly to the center and evaporate from the evaporation source. An ionization evaporation rate control device that has a structure that always ionizes a certain percentage or all of the evaporated particles by having an electron density that matches the distribution density of the particles.
JP22130284A 1984-10-23 1984-10-23 Device for controlling ionizing vaporization velocity Pending JPS61104075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22130284A JPS61104075A (en) 1984-10-23 1984-10-23 Device for controlling ionizing vaporization velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22130284A JPS61104075A (en) 1984-10-23 1984-10-23 Device for controlling ionizing vaporization velocity

Publications (1)

Publication Number Publication Date
JPS61104075A true JPS61104075A (en) 1986-05-22

Family

ID=16764660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22130284A Pending JPS61104075A (en) 1984-10-23 1984-10-23 Device for controlling ionizing vaporization velocity

Country Status (1)

Country Link
JP (1) JPS61104075A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253091A (en) * 1995-03-13 1995-10-03 Mitsubishi Electric Corp Scroll compressor
WO2000008226A3 (en) * 1998-08-03 2000-12-07 Coca Cola Co Vapor deposition system
US6223683B1 (en) 1997-03-14 2001-05-01 The Coca-Cola Company Hollow plastic containers with an external very thin coating of low permeability to gases and vapors through plasma-assisted deposition of inorganic substances and method and system for making the coating
US6599584B2 (en) 2001-04-27 2003-07-29 The Coca-Cola Company Barrier coated plastic containers and coating methods therefor
US6720052B1 (en) 2000-08-24 2004-04-13 The Coca-Cola Company Multilayer polymeric/inorganic oxide structure with top coat for enhanced gas or vapor barrier and method for making same
US6740378B1 (en) 2000-08-24 2004-05-25 The Coca-Cola Company Multilayer polymeric/zero valent material structure for enhanced gas or vapor barrier and uv barrier and method for making same
US6982119B2 (en) 2002-04-15 2006-01-03 The Coca-Cola Company Coating composition containing an epoxide additive and structures coated therewith

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253091A (en) * 1995-03-13 1995-10-03 Mitsubishi Electric Corp Scroll compressor
US6548123B1 (en) 1997-03-14 2003-04-15 The Coca-Cola Company Method for coating a plastic container with vacuum vapor deposition
US6599569B1 (en) 1997-03-14 2003-07-29 The Coca-Cola Company Plastic containers with an external gas barrier coating, method and system for coating containers using vapor deposition, method for recycling coated containers, and method for packaging a beverage
US6223683B1 (en) 1997-03-14 2001-05-01 The Coca-Cola Company Hollow plastic containers with an external very thin coating of low permeability to gases and vapors through plasma-assisted deposition of inorganic substances and method and system for making the coating
US6279505B1 (en) 1997-03-14 2001-08-28 The Coca-Cola Company Plastic containers with an external gas barrier coating
US6251233B1 (en) 1998-08-03 2001-06-26 The Coca-Cola Company Plasma-enhanced vacuum vapor deposition system including systems for evaporation of a solid, producing an electric arc discharge and measuring ionization and evaporation
US6447837B2 (en) 1998-08-03 2002-09-10 The Coca-Cola Company Methods for measuring the degree of ionization and the rate of evaporation in a vapor deposition coating system
WO2000008226A3 (en) * 1998-08-03 2000-12-07 Coca Cola Co Vapor deposition system
US6720052B1 (en) 2000-08-24 2004-04-13 The Coca-Cola Company Multilayer polymeric/inorganic oxide structure with top coat for enhanced gas or vapor barrier and method for making same
US6740378B1 (en) 2000-08-24 2004-05-25 The Coca-Cola Company Multilayer polymeric/zero valent material structure for enhanced gas or vapor barrier and uv barrier and method for making same
US6808753B2 (en) 2000-08-24 2004-10-26 The Coca-Cola Company Multilayer polymeric/inorganic oxide structure with top coat for enhanced gas or vapor barrier and method for making same
US6811826B2 (en) 2000-08-24 2004-11-02 The Coca-Cola Company Multilayer polymeric/zero valent material structure for enhanced gas or vapor barrier and UV barrier and method for making same
US6599584B2 (en) 2001-04-27 2003-07-29 The Coca-Cola Company Barrier coated plastic containers and coating methods therefor
US6982119B2 (en) 2002-04-15 2006-01-03 The Coca-Cola Company Coating composition containing an epoxide additive and structures coated therewith

Similar Documents

Publication Publication Date Title
US3347701A (en) Method and apparatus for vapor deposition employing an electron beam
US5677012A (en) Plasma processing method and plasma processing apparatus
JPS61104075A (en) Device for controlling ionizing vaporization velocity
JPH06184737A (en) Method and device for generating agglomerate beam
US3168418A (en) Device for monitoring and controlling evaporation rate in vacuum deposition
JPH0122729B2 (en)
US3609378A (en) Monitoring of vapor density in vapor deposition furnance by emission spectroscopy
US4068016A (en) Method for regulating evaporating rate and layer build up in the production of thin layers
US3453143A (en) Method of making a moisture sensitive capacitor
JP2807719B2 (en) Operation method of liquid metal ion source of focused ion beam device
US3949187A (en) Electron-beam evaporation apparatus
Graper Charged particle flux generated by an electron-beam deposition source
JPS60121265A (en) Control of plasma parameter for vacuum deposition device using arc discharge
US4368689A (en) Beam source for deposition of thin film alloys
JP2844213B2 (en) Film forming speed control device of film forming device using plasma
RU2473147C1 (en) Vacuum sputtering plant
JP2906420B2 (en) Thickness gauge for vapor deposition equipment
JPS621868A (en) Apparatus for forming film
WO2013014410A1 (en) Electron beam evaporation apparatus
JPH04116158A (en) Film forming device
US4400407A (en) Method for deposition of thin film alloys utilizing electron beam vaporization
JPH0849074A (en) Thin film producing device and method therefor
JPS58185768A (en) Control device for evaporation rate
JPH0758031A (en) Ion deposition thin film forming apparatus and film forming method using the same
JPS6059537A (en) Production of magnetic recording medium