[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6096707A - Direct reduction of iron ore - Google Patents

Direct reduction of iron ore

Info

Publication number
JPS6096707A
JPS6096707A JP20201283A JP20201283A JPS6096707A JP S6096707 A JPS6096707 A JP S6096707A JP 20201283 A JP20201283 A JP 20201283A JP 20201283 A JP20201283 A JP 20201283A JP S6096707 A JPS6096707 A JP S6096707A
Authority
JP
Japan
Prior art keywords
reduction furnace
exhaust gas
furnace
smelting
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20201283A
Other languages
Japanese (ja)
Inventor
Shigeru Haseba
長谷場 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20201283A priority Critical patent/JPS6096707A/en
Publication of JPS6096707A publication Critical patent/JPS6096707A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce hydrocarbon content in the exhaust gas in a smelting reducing furnace by a method in which the operating pressure of a prereducing furnace is set higher than that of the smelting reducing furnace, and by supplying the exhaust gas of the former to the latter, the high-grade hydrocarbon group in the said gas is pyrolyzed. CONSTITUTION:In the smelting reducing process of iron ore, the operating pressure in a prereducing furnace is set higher than that of a smelting reducing furnace. The exhaust gas containing the hydrocarbon group generated in the prereducing furnace is fed to the smelting reducing furnace using the pressure inclination and is used for the reduction of molten iron, and is made to pyrolyze the high-grade hydrocarbon group of tar, etc. in the exhaust gas by means of intense heat of the smelting reducing furnace. By this system, the prereducing efficiency is improved, so that the iron ore prereduced can be charged to the smelting reducing furnace in the intense heat condition. Furthermore, the transport system for the prereduced ore can be simplified.

Description

【発明の詳細な説明】 本発明は、高炉を用いずに鉄鉱石を直接還元する溶融鉄
の製造プロセスの改良に関し、詳細には予備還元炉と転
炉型溶融還元炉を使用するプロセス(以下転炉型溶融プ
ロセスという)において、各炉内の圧力を制御して熱経
済性を改善すると共に、還元性排ガス中の高級炭化水素
成分、例えばタール類等の含有量を可及的に軽減する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a process for producing molten iron that directly reduces iron ore without using a blast furnace, and more specifically, a process using a pre-reduction furnace and a converter-type smelting reduction furnace (hereinafter referred to as In the converter-type melting process), the pressure inside each furnace is controlled to improve thermoeconomic efficiency, and the content of higher hydrocarbon components such as tars in reducing exhaust gas is reduced as much as possible. It is about the method.

高炉法に代る新製鉄法は各方面で研究されているが、資
源事情を繁栄して一般炭を使用することのできるプロセ
スが注目されており、jN RE D法、ELRED法
、PLASMA法、Krup’p法、KR法、転炉型溶
融法等が開発されている。
New iron manufacturing methods to replace the blast furnace method are being researched in various fields, but processes that can improve the resource situation and use steam coal are attracting attention. Krup'p method, KR method, converter type melting method, etc. have been developed.

しかし各方法には一長一短があり、例えばI NRED
法では予備還元炉と溶融還元炉が直結されてほぼ一体的
な外観を呈し、エネルギー消費量が最小となる様に設計
されると共に、排ガスのエネルギーでスチームタービン
を稼動させて電気炉の必要電力をまかなう様にしている
という色々な利点はあるが、秒単位の反応をベースとす
4ものであるから操業管理が極めて困難であり、又石炭
は02と混合して同時的に吹込み完全燃焼させているの
で、排ガスの有用性については成分的に見て殆んど期待
が持てず、有価ガスを製造するという観点からは全く評
価できない。
However, each method has its advantages and disadvantages; for example, I NRED
In this method, the preliminary reduction furnace and smelting reduction furnace are directly connected to create an almost integrated appearance, and are designed to minimize energy consumption, and the exhaust gas energy is used to operate a steam turbine to generate the electricity required for the electric furnace. Although there are various advantages in that it is possible to cover the following conditions, it is extremely difficult to manage operations because the reaction is based on seconds, and coal is mixed with 02 and simultaneously injected to ensure complete combustion. Therefore, there is little hope for the usefulness of the exhaust gas from a component standpoint, and it cannot be evaluated at all from the perspective of producing valuable gas.

次にELRED法では溶鉄の製造に当って電気炉を使用
するので高容量の電力が必要となり、発電設備コストが
極めて膨大となる。又本プロセスでは予備還元炉におい
て900°C以下の温度で反応が進行する為、排ガス中
のタール分等は未分解のままであり、排ガス処理プロセ
ス中にタール処理工程を付加する必要があって、ここに
も設備コスト上昇の原因となるとともに操業上の欠点と
もなっている。しかもタール処理設備の如何によっては
公害問題を惹起する恐れがあって、水沈の採用には難点
が多い。又PLASMA法には、コークス充填シャフト
炉中でプラズマアークを発生させるPlasma−3m
elt法と、プラズマアークで石炭やコークス等をガス
化し、このガスをシャフト炉に導いて鉄鉱石を還元する
Plas+wa−red法があるが、プラズマアーク発
生の為に電力消費量が大きく高炉法に代る程のメリット
はない。
Next, since the ELRED method uses an electric furnace to produce molten iron, a high capacity of electric power is required, and the cost of power generation equipment becomes extremely large. In addition, in this process, the reaction proceeds at a temperature of 900°C or less in the pre-reduction furnace, so the tar content in the exhaust gas remains undecomposed, making it necessary to add a tar treatment step during the exhaust gas treatment process. This also causes an increase in equipment costs and is also a drawback in terms of operation. Moreover, depending on the type of tar treatment equipment, there is a risk of causing pollution problems, and there are many difficulties in adopting water submergence. The PLASMA method also uses Plasma-3m, which generates a plasma arc in a coke-filled shaft furnace.
There are two methods: the ELT method and the Plas+WA-RED method, in which coal and coke are gasified using a plasma arc and the gas is led to a shaft furnace to reduce iron ore, but the plasma arc requires a large amount of electricity to generate, making it difficult to use the blast furnace method. There is no advantage to replace it.

一方転炉型溶融法は、鉄鉱石をシャフト炉や流動層で予
備還元し、続いてこれを溶融還元炉に導き底吹転炉方式
で製鉄及び石炭ガス化を行なうものであるから、装嵌コ
ストが比較的安価であると共に有価ガスが得られるとい
うメリットもあり、高炉法に代り得る方法として有望視
されているが、酸素を多量に使用すること、装置が複雑
になるごと、転炉式溶融還元炉の底部に数多くの原料装
入口を設ける必要があり運転性が悪いことなどの欠点を
有している。
On the other hand, in the converter type melting method, iron ore is pre-reduced in a shaft furnace or fluidized bed, and then it is introduced into a smelting reduction furnace for iron production and coal gasification in a bottom-blowing converter method. It is seen as a promising alternative to the blast furnace method due to its relatively low cost and the ability to obtain valuable gas. This method has drawbacks such as poor operability since it is necessary to provide a large number of raw material charging ports at the bottom of the melting reduction furnace.

本発明はこの様な状況下になされたものであって、各プ
ロセス毎に長所及び短所を比較検討し、改善の余地を探
求した結果、転炉型溶融法について有望な方策があるこ
とを見出し、更に種々の検討を加えて本発明の完成に到
達した。即ち本発明は、多量の酸素を使わず、代りに空
気で代用することが”I能であると共に溶融還元炉の原
料装入負荷を低減することができ、更に予備還元炉排ガ
ス中のタール分等を効率良く処理することができるよう
な新しい転炉型溶融プロセスの提供を目的とするもので
ある。
The present invention was made under these circumstances, and as a result of comparing and examining the advantages and disadvantages of each process and searching for room for improvement, it was discovered that there is a promising method for the converter type melting method. After further various studies, the present invention was completed. In other words, the present invention has the ability to use air instead of a large amount of oxygen, and it is also possible to reduce the loading of raw materials into the smelting reduction furnace, and further to reduce the amount of tar in the pre-reduction furnace exhaust gas. The purpose of the present invention is to provide a new converter-type melting process that can efficiently process such materials.

しかして本発明に係る改良転炉型溶融プロセスとは、流
動層を形成する予備還元炉において石炭又はコークスで
鉄鉱石を予備還元し、続いてこれを溶融還元炉に導いて
溶融鉄迄還元するに当り、予備還元炉内の操業圧力を溶
融還元炉内のそれよりも高くする点に主たる要点があり
、予備還元炉において発生した排ガスを溶融還元炉に装
入して溶融鉄への還元に供すると共に、該排ガス中の高
級炭化水素類(以下タール類という)を溶融還元炉の高
熱によって熱分解することを要旨とするものである。
Therefore, the improved converter-type melting process according to the present invention involves pre-reducing iron ore with coal or coke in a pre-reduction furnace that forms a fluidized bed, and then leading it to a smelting-reduction furnace to reduce it to molten iron. The main point is to make the operating pressure in the preliminary reduction furnace higher than that in the smelting reduction furnace, and the exhaust gas generated in the preliminary reduction furnace is charged into the smelting reduction furnace and reduced to molten iron. The gist of the system is to provide a high-temperature reactor and to thermally decompose higher hydrocarbons (hereinafter referred to as tars) in the exhaust gas using the high heat of a smelting reduction furnace.

即ち本発明においては、予備還元炉内で発生した炭化水
素類含有排ガスを、圧力傾斜を利用して溶融還元炉に送
り、該還元炉の熱によってタール類の熱分解を図るもの
であり、その為に予備還元炉操業圧を溶融還元炉操業圧
より高くしているが予備還元炉の操業圧を高めることに
よる効果としでは、前記の他に、予備還元炉がコンパク
ト化されること、予備還元効率が向上すること、予備還
元された鉄鉱石を高熱状態のままで溶融還元炉へ装入で
きること、予Ii+還元済鉄鉱石の輸送シスチムが簡略
化されること等を挙げることができる。
That is, in the present invention, the hydrocarbon-containing exhaust gas generated in the preliminary reduction furnace is sent to the melting reduction furnace using a pressure gradient, and the tars are thermally decomposed by the heat of the reduction furnace. Therefore, the operating pressure of the pre-reduction furnace is made higher than the operating pressure of the smelting reduction furnace.In addition to the above, the effects of increasing the operating pressure of the pre-reduction furnace are that the pre-reduction furnace can be made more compact, and the pre-reduction furnace can be made more compact. Examples include improved efficiency, the ability to charge the pre-reduced iron ore into the smelting reduction furnace in a high-temperature state, and the simplification of the transportation system for the pre-reduced iron ore.

以下従来の転炉型溶融プロセスと本発明の転炉型溶融プ
ロセスを対比説明することによって、本発明の構成及び
作用効果を明らかにしていく。
The configuration and effects of the present invention will be clarified by comparing and explaining the conventional converter type melting process and the converter type melting process of the present invention.

S1図は従来の転炉型溶融プロセスを示す代表的フロー
図で、実線で示す様に変更したフローからなるプロセス
も知られている。即ち原料鉄鉱石は粉状、塊状またはペ
レット状にしてラインAから予備還元炉に装入され、ラ
インMから供給される900℃前後の還元ガス(H2リ
ッチ)によって部分的な(通常70%程度の)予備還元
を受けC る。予備還元された高熱の鉄鉱石はラインBに沿って冷
却器に入り、ラインc 、 c’力方向循環する冷媒(
1はクーラー)によって若干降温され、吹いてラインD
に沿って溶融a元炉に装入される。凹かには造滓剤がラ
インEから装入され、ギヤリヤーカス(N2又は還元性
カス)と共にラインHから装入される粉末石炭(又はコ
ークス)、及びラインIから装入されるo2とノズル冷
却用カスの混合ガスによって溶融還元が進行する。そし
て生成した溶鉄はラインGがら、又溶融スラグはライン
Fがら夫々排出され、coとN20を主成分とする溶融
還元炉排ガス(通常1600〜1700’c程度)はラ
インJから排出される。そしてこの排ガスはクーラー3
で冷却された後、ベンチュリー型等の除塵器を通過して
更に冷却される。次にコンプレッサーにて加圧されライ
ンに′から脱CO2器6に入る。一方予備還元炉朗ガス
は、ラインOからラインP、Rに分離され、後者はクー
ラー2による冷却を受けた後コンプレッサーで加圧され
、ラインSから矢印に′に合流する。即ち予備還元炉排
ガス中には未反応の還元性ガス(N2 +GO)が残さ
れているので、これを循環使用する趣旨である。合流後
のカスは前述の脱CO2器6に入り、例えば乾式あるい
は湿式等の方法で脱CO2を行なわせ、迫元能カの高ま
った排ガスはラインPから供給される予備還元炉排ガス
との熱交換によって約900’C程度に回復されてから
、ラインMに沿って予備還元炉に吹込まれる。尚ライン
Pから熱交換器に入ったカスは、ラインQ方向へ排出さ
れ、適切な排ガス浄化処理を受けてから、後工程でボイ
ラー原料ガスなどに有効利用される。尚脱CO2器6か
らラインT方向へ排出されるco2ガスについて大気中
へ放出するか、またはイナートガスとして有効利用され
る。
Figure S1 is a typical flow diagram showing a conventional converter type melting process, and a process with a modified flow as shown by the solid line is also known. That is, raw iron ore is made into powder, lumps, or pellets and charged into a preliminary reduction furnace from line A, and is partially reduced (usually about 70%) by reducing gas (H2 rich) at around 900°C supplied from line M. C) receive a preliminary return. The pre-reduced hot iron ore enters the cooler along line B, and the refrigerant circulating in line c, c' force direction (
1 is a cooler), the temperature is lowered slightly by the cooler, and the air is blown to the line D.
The melting material is charged into the main furnace along the following lines. A slag-forming agent is charged into the recess from line E, powdered coal (or coke) is charged from line H together with gear scum (N2 or reducing scum), and O2 and nozzle cooling are charged from line I. The melting reduction progresses due to the mixed gas of the waste. The produced molten iron is discharged through line G, the molten slag is discharged through line F, and the smelting reduction furnace exhaust gas (usually about 1600 to 1700'C) containing cobalt and N20 as main components is discharged from line J. And this exhaust gas is sent to cooler 3
After being cooled, it passes through a venturi type dust remover and is further cooled. Next, it is pressurized by a compressor and enters the CO2 remover 6 through the line. On the other hand, the preliminary reduction furnace gas is separated from line O into lines P and R, and the latter is cooled by cooler 2, then pressurized by a compressor, and flows from line S to line ''. That is, since unreacted reducing gas (N2 + GO) remains in the exhaust gas of the preliminary reduction furnace, the purpose is to recycle this gas. After the merging, the residue enters the aforementioned CO2 remover 6, where CO2 is removed by a dry or wet method, and the exhaust gas with increased capacity is heated by the pre-reducing furnace exhaust gas supplied from the line P. After being restored to about 900'C by exchange, it is blown into the preliminary reduction furnace along line M. Incidentally, the waste that enters the heat exchanger from line P is discharged in the direction of line Q, undergoes appropriate exhaust gas purification treatment, and is then effectively used as boiler raw material gas in a subsequent process. The CO2 gas discharged from the CO2 remover 6 in the direction of line T is either released into the atmosphere or effectively utilized as inert gas.

尚ラインJ’ 、 S’、 T’、 T”及びUで示さ
れる鎖線ルートのフローは、プロセスとして簡略化され
ているが、本質的には上述の実線ルートのフローと変る
ところはない。
Although the flow of the dashed line route indicated by lines J', S', T', T'' and U is simplified as a process, it is essentially the same as the flow of the solid line route described above.

さて第1図に示した従来のルートにおけるカスの流れを
見ると、高温側(溶融還元炉)で発生した排ガスの保有
熱を低温#(予@還元炉)で利用し、低温側で発生した
排カスは成分的な面を考慮して一部は循環使用するが、
残部は熱交換器における高熱側熱媒として利用した後、
外部へ送られ他目的に利用されるという構成からなって
おり、一般的なtJl熱利川シ用テムとして見れば極め
てオーソトツクスな方法と言える。しかしこのプリセス
を慎重に検討すると色々な問題が内包されている。その
第1点は原料石炭を炉の底部から装入するため、炉底の
羽目の数が多くなって部分的なつまりが発生しやすく、
安定した運転がやりにくいということである。その2点
は、酸化ガスとして酪素を使わないと運転がやりにくい
ので大量の酪素を必要とする為、その製造コストが莫大
となり、コストアップの原因となっている。第3点はこ
のように多量の石炭を小型反応器の中で分解するので、
どうしてもタール状の炭化水素が出口ガス中に残留し、
これが後工程の排ガス処理工程において、配管あるいは
各種機器類の内面等に付着する。この現象は装置類の保
守にとって極めて重要な問題をなげかけている。第4点
は溶融還元炉の排ガスであるがラインJからラインMに
至る工程を見ると、実線フローの場合、冷却→加温→冷
却→加温のサイクルを通っており、熱経済的には極めて
ロスの多い方法と言わなければならない。
Now, looking at the flow of waste in the conventional route shown in Figure 1, the retained heat of the exhaust gas generated on the high temperature side (smelting reduction furnace) is used in the low temperature # (pre-reduction furnace), and the waste generated on the low temperature side is Some of the waste waste is recycled considering its composition, but
The remainder is used as a heat medium on the high-temperature side of the heat exchanger, and then
It has a structure in which it is sent outside and used for other purposes, and can be said to be an extremely conventional method when viewed as a general tJl Atari River system. However, if you carefully examine this process, you will find that it contains various problems. The first point is that raw coal is charged from the bottom of the furnace, which increases the number of pores at the bottom of the furnace, making it easy for local blockages to occur.
This means that stable driving is difficult. Two points are that it is difficult to operate without using butyric gas as an oxidizing gas, and a large amount of butyric is required, which increases the manufacturing cost and causes an increase in costs. The third point is that a large amount of coal is decomposed in a small reactor, so
Tar-like hydrocarbons inevitably remain in the outlet gas,
This adheres to the inner surfaces of piping or various types of equipment during the subsequent exhaust gas treatment process. This phenomenon poses extremely important problems for equipment maintenance. The fourth point is the exhaust gas from the smelting reduction furnace, but if you look at the process from line J to line M, in the case of a solid line flow, it goes through a cycle of cooling → heating → cooling → warming, and thermoeconomically It must be said that this is an extremely lossy method.

即ち溶融還元炉排ガスの1600−1700’c!にも
及ぶ高熱のエネルギーが十分に利用されているとは言え
ない。
That is, 1600-1700'c of smelting reduction furnace exhaust gas! It cannot be said that the energy of high heat, which can reach up to 100,000 yen, is being fully utilized.

第2図は本発明プロセスの一例を示すフロー図であって
、図における各ラインには、第1図に準じ同一の意義を
有するものには同一の記号を付記した。
FIG. 2 is a flow diagram showing an example of the process of the present invention, and in each line in the diagram, the same symbols are added to those having the same meaning as in FIG. 1.

予備還元炉には、粉鉱石がラインAに沿って、又微粉炭
(あるいは微粉コークス)がラインA′に沿って装入さ
れると共に、ラインN方向から供給される常温空気に酩
素ガスが付加され、更に圧縮及び加熱を受けてからライ
ンNに沿って吹込まれる。本所方式プロセスにおける第
1の利点は、原料炭は予備還元炉および溶融還元炉の2
カ所から装入されるので、溶融還元炉の底部から装入さ
れる原料炭の量は半分程度となり、従って底部羽目数は
いちしるしく低減され装置設計上極めて有利となってい
る。
In the preliminary reduction furnace, powdered ore is charged along line A and pulverized coal (or pulverized coke) is charged along line A', and at the same time, fluorine gas is introduced into room temperature air supplied from line N. It is added, further compressed and heated, and then blown along line N. The first advantage of this process is that the coking coal is produced in two stages: the pre-reduction furnace and the smelting reduction furnace.
Since the coking coal is charged from two places, the amount of coking coal charged from the bottom of the smelting reduction furnace is about half, and the number of coals at the bottom is therefore significantly reduced, which is extremely advantageous in terms of equipment design.

Y’ Uti ’;a元炉の型式は、下部から鉱石およ
び微粉炭を吹込んで部分耐化し微粉炭をガス化するとと
もに還元性ガスを製造して粉鉱石を50〜80%ぶ元す
る。還元きれた粉鉱石は還元が進行するにつれて粒度が
大きくなり、一部コークス化された炭材と程合した形で
ラインDに沿いつつ、溶融還元炉に向って移動する。
Y'Uti';a type of main furnace injects ore and pulverized coal from the lower part to partially harden the pulverized coal, gasify the pulverized coal, and produce reducing gas to extract 50 to 80% of the ore powder. As the reduction progresses, the particle size of the reduced fine ore becomes larger, and it moves along line D along the line D, along with the partially coked carbonaceous material, toward the smelting reduction furnace.

第2の利点としては、予備還元炉において使用される酸
化ガスとして酸素の代りに空気を使用する点である。空
気を使用することにより酸素製造用の動力費は溶融還元
炉用のみとなるのでいちじるしく低減されるとともに、
高価な酸素製造装置が小型化されるので設備的にもシン
プルなプロセスとなる。
A second advantage is the use of air instead of oxygen as the oxidizing gas used in the pre-reduction furnace. By using air, the power cost for oxygen production is reduced only for the smelting reduction furnace, and it is significantly reduced.
Since the expensive oxygen production equipment is downsized, the process becomes simpler in terms of equipment.

第3の利点は、通常の直接還元製鉄法とことなり、予備
還元炉の排ガスを溶融還元炉に装入しく通常のプロセス
ではこの逆である)、一部還元に利用するとともに、排
ガス中のタール分を完全分解してタール分の全くない還
元性カスを外部へ供給するように設計した点である。本
利点を有利にするため、予備還元炉は溶融還元炉より高
圧で運転する。しかしあまり予備還元炉を高圧にすると
、酸素を空気に変えた利点がなくなるので、その操業圧
力は2〜5Kg/cm Gが望ましい(酸素製造装置の
動力費は、主に空気を5 Kg/cm2Gに圧縮するた
めの動力費であるので、この圧力以下で空気を圧縮すれ
ば空気を使用する方が有利となる)。
The third advantage is that, unlike the normal direct reduction ironmaking process, the exhaust gas from the preliminary reduction furnace is charged into the smelting reduction furnace (in normal processes, it is the opposite), and while it is partially used for reduction, the exhaust gas in the exhaust gas is The point is that it is designed to completely decompose the tar content and supply reducing scum with no tar content to the outside. To take advantage of this advantage, the pre-reduction furnace is operated at a higher pressure than the smelting reduction furnace. However, if the pre-reduction furnace is made to have too high a pressure, the advantage of converting oxygen to air will be lost, so the operating pressure is preferably 2 to 5 kg/cm2G (the power cost for the oxygen production equipment is mainly for converting air to 5 kg/cm2G). (This is the power cost to compress air to a pressure below this pressure, so it is more advantageous to use air if it is compressed below this pressure.)

一方溶融還元炉については第1図のものより、よりシン
プルな構成からなっており通常常圧高温操業がなされて
いる。従って予備還元炉において部分的な還元が進み、
遊離の鉄が生成して相互に融着が生じはじめると、融着
によって粒径の成長した鉄鉱石原料が予備還元炉の底部
から落下しはじめ、ラインDに沿いつつ溶融還元炉に向
って移動する。この移動経路には、必要に応じて貯留容
器を設け、且つ定量的な切出し装置を付加して溶融還元
炉への原料装入を制御することもできるか、いずれにせ
よ高圧側から常圧側へ向けての輸送であるから、極めて
シンプルな輸送システムにすること力<+q能である。
On the other hand, the melting reduction furnace has a simpler structure than the one shown in FIG. 1, and is normally operated at normal pressure and high temperature. Therefore, partial reduction progresses in the preliminary reduction furnace,
When free iron is generated and fusion begins to occur, the iron ore raw material whose particle size has grown due to fusion begins to fall from the bottom of the pre-reduction furnace and moves along line D toward the smelting reduction furnace. do. If necessary, it is possible to install a storage container on this transfer route and add a quantitative cut-out device to control the charging of raw materials into the smelting reduction furnace, or in any case, from the high pressure side to the normal pressure side. Since the transportation is for the destination, it is possible to create an extremely simple transportation system.

又予備還元された粉鉱石は、それ自身高温であるから、
外気に触れると簡r1tに再酸化されるという傾向があ
るので、上記輸送システムの経路は再酸化を抑制するも
のでなくではならない。しかるに本発明の転炉型溶融法
では、予備還元炉から排出される還元性排ガスを高圧状
態で得ることができるので、例えば該排ガスを1−記輸
送システム内へ導入することによって同システム内を高
圧にするというシール方式を採用することも可能となり
、この面においても極めて合理的な方法として評価する
ことができる。
Also, since the pre-reduced fine ore itself has a high temperature,
Since it has a tendency to be re-oxidized when exposed to outside air, the route of the transport system described above must be such that re-oxidation is inhibited. However, in the converter type melting method of the present invention, the reducing exhaust gas discharged from the preliminary reduction furnace can be obtained in a high pressure state. It is also possible to adopt a sealing method that uses high pressure, and in this aspect as well, it can be evaluated as an extremely rational method.

一方溶融還元炉を若干の加圧下に操業することも不II
f能ではないが、(1)溶鉄の製造工程においては高圧
操業を行なってもランニングコストはそれ程低下しない
こと、(2)予備還元炉との圧力差が少なくなって上述
の各効果が低減すること、(3)1500〜1800℃
にも及ぶ高温操業炉の耐圧構造は設計及び製作上の困難
があること、等の理由によって余り推奨できない。
On the other hand, it is also impractical to operate the smelting reduction furnace under slight pressure.
Although it is not an effective feature, (1) running costs do not decrease significantly even if high-pressure operation is performed in the molten iron manufacturing process, and (2) the pressure difference with the preliminary reduction furnace decreases, reducing each of the above-mentioned effects. (3) 1500-1800℃
The pressure-resistant structure of a high-temperature operating furnace is not recommended due to design and manufacturing difficulties.

ところで予WI還元炉から発生ずる排ガス中には、前述
の如くタール類が含まれ、これらは温度が低下して常温
近傍になると粘着性のある液状物質となり、冷却機(図
示のクーラーを含む)、コンプレッサー、脱CO2器、
あるいはブロワ−1更には配管中に詰って連続運転の実
施に大きな障害となっている。しかし本発明のプロセス
では、予備還元炉の排ガス(通常1〜2%のタール類を
含有している)を可及的にシンプルで且つ短いルートを
経由させて(換言すれば可及的短いパイプラインを通し
て、又更に可能なかぎり高温状!!%を保持したままで
)高温の溶融還元炉へ装入しているから、上記排ガスは
溶融還元炉内で更に高温に加熱され、短時間の滞留によ
ってほぼ完全に熱分解される。従って予@還元炉排ガス
の大部分を排出する為に特別のタール類等処理装置を併
設することが必要とされていた従来プロセスに比べて設
備費及びメンテナンス経費が大幅に節減されると共に、
タール類による公害発生の恐れ自身がな〈なった。
By the way, the exhaust gas generated from the pre-WI reduction furnace contains tars as mentioned above, and when the temperature drops to near room temperature, these tars become sticky liquid substances and are used in the cooler (including the cooler shown). , compressor, CO2 remover,
Alternatively, the blower 1 or even the pipes may become clogged, creating a major obstacle to continuous operation. However, in the process of the present invention, the exhaust gas from the pre-reduction furnace (usually containing 1 to 2% tar) is passed through the simplest and shortest possible route (in other words, the shortest pipe possible). Since the exhaust gas is charged into the high-temperature smelting-reduction furnace through the smelting-reduction furnace (through the line and while maintaining the temperature as high as possible), the above exhaust gas is heated to an even higher temperature in the smelting-reduction furnace and remains there for a short time. almost completely thermally decomposed. Therefore, equipment costs and maintenance costs are significantly reduced compared to the conventional process, which requires the installation of a special tar processing equipment in order to discharge most of the pre-reduction furnace exhaust gas.
The fear of pollution caused by tar has disappeared.

以下に実験結果を示す。The experimental results are shown below.

(+ ) T 4jfi還元炉に関するテスト実験用小
型流動層(3000mm(lX 100mmφ)を用い
、下記の条件でテストを行なったところ、予備還元率的
70%の鉄鉱石をうるとともに、コークスがその中に2
〜3重量重量%柱、かつ予備還元炉排ガスの組成は、第
1表のとおりとなり、タール分が約2%含まれているこ
とが確認された。
(+) Test on T4JFI reduction furnace Test using a small experimental fluidized bed (3000 mm (1 x 100 mmφ) under the following conditions, iron ore with a preliminary reduction rate of 70% was obtained, and coke was found in it. to 2
The composition of the column and the preliminary reduction furnace exhaust gas was as shown in Table 1, and it was confirmed that it contained about 2% tar.

予備還元炉テスト条件 1)石炭供給@: : 400 g/Kg−Fe2)空
気供給量: 9901 /Kg−Fe3Ni動ガス供給
i: 970文/Kg・Fe4)流動ガス組成: GO=67%、C02=18%。
Preliminary reduction furnace test conditions 1) Coal supply @: : 400 g/Kg-Fe2) Air supply amount: 9901/Kg-Fe3Ni dynamic gas supply i: 970 sentences/Kg・Fe4) Fluid gas composition: GO=67%, C02 =18%.

H2=13%、N20= 1%。H2=13%, N20=1%.

N2=1% 5)予備還元炉温度(平均値):900℃第1表 予備
還元炉テスト条件 (2) タール除去に関するテスト 第3図に示すようなテスト装置を川I/)、in記テス
ト装置から発生した予備還元炉排ガス(第1表)中のタ
ール分の分解テストを行った。
N2 = 1% 5) Pre-reduction furnace temperature (average value): 900°C Table 1 Pre-reduction furnace test conditions (2) Test for tar removal The test equipment as shown in Figure 3 was used for the test shown in Figure 3. A test was conducted to decompose tar in the preliminary reduction furnace exhaust gas (Table 1) generated from the equipment.

溶融還元炉(100+smφX 1000m+*” )
のテスト条件はド記のとおりである。
Melting reduction furnace (100+smφX 1000m+*”)
The test conditions are as shown below.

1)石炭吹込rHj : 630g/ Kg−Fe2)
Y’グ11還元鉱(70%)吹込量:1200g / 
KgIIFe 3)02吹込量: 4501 / Kg ・Fe4)石
 j< : 120g /Kg* Feこの時、発生す
る排ガス組成及び星は下記のとおりであった。
1) Coal injection rHj: 630g/Kg-Fe2)
Y'gu 11 reduced ore (70%) injection amount: 1200g /
KgIIFe 3)02 Injection amount: 4501/Kg ・Fe4) Stone j<: 120g/Kg*Fe At this time, the composition and stars of the generated exhaust gas were as follows.

1)1mガス都−: 1200〜12501 / Kg
 11Fe2)胡ガス組成: C0=59%、C02=14%。
1) 1m gas capital: 1200~12501/Kg
11Fe2) Hu gas composition: C0=59%, C02=14%.

H2=13%、N20=13 N2=1% 3)排ガス温度=1650〜1700℃第3図に示す溶
融還元炉に、予備還元炉排ガスの量および温度を調整し
ながらこれを装入し、出口温度T皇を測定し、出口温度
T1と、タールの除去率との関係を測定した結果、下記
のデータを得た。
H2 = 13%, N20 = 13 N2 = 1% 3) Exhaust gas temperature = 1650-1700°C Charge the preliminary reduction furnace exhaust gas into the smelting reduction furnace shown in Figure 3 while adjusting the amount and temperature, and As a result of measuring the temperature T and the relationship between the outlet temperature T1 and the tar removal rate, the following data were obtained.

第 2 表 注) 炉内でのガスの滞留時間は 約1秒に調整した。Table 2 Note) The residence time of gas in the furnace is Adjusted to about 1 second.

上記の結果から判断すれば、溶融還元炉出口ガスを10
00℃以上にすることにより、予備還元炉排ガス中のタ
ール類はほぼ完全に除去することができ、溶融還元炉排
ガスの取扱いが極めて容易になった。
Judging from the above results, the melting reduction furnace outlet gas is
By heating the temperature to 00° C. or higher, tars in the pre-reduction furnace exhaust gas can be almost completely removed, making handling of the smelting reduction furnace exhaust gas extremely easy.

上記説明では、予備還元炉の排ガスを全て溶融還元炉に
供給する構成及び実験を述べたが、第2図のラインO′
に示す如く、その一部を冷却、除塵した後、再圧縮して
予備還元炉の底部へ返送(循環)する方法、あるいは図
示しなかったが、これらの処理を行なうことなく単に循
環させて予備還元炉へ戻す方法等を採用することもでき
る。尚予備還元炉排ガスの全部又は一部を溶融還元炉へ
装入するに当っては、ラインOで示す如く同部の底部か
ら吹込む場合に限らず、1点鎖線ライン0で示す如く溶
融還元炉の上部に装入し、回部に設けた熱交換器11に
よって前記排ガス中のタール類を効率良く熱分解するこ
とも、推奨に値する一方策である。またタール分を有効
回収したい場合は、Wのルートで系外に排出したのち、
従来法でタールを回収する方法もあることは言うまでも
ない。
In the above explanation, the configuration and experiment were described in which all the exhaust gas from the preliminary reduction furnace is supplied to the smelting reduction furnace.
As shown in the figure, after cooling and removing dust, a part of it is recompressed and returned to the bottom of the pre-reduction furnace (circulation), or, although not shown, it is simply circulated without performing any of these processes to generate a reserve. It is also possible to adopt a method of returning the material to the reduction furnace. When charging all or part of the preliminary reduction furnace exhaust gas to the smelting reduction furnace, it is not limited to the case where it is blown in from the bottom of the same part as shown by line O, but also when it is blown into the smelting reduction furnace as shown by the dashed line 0. It is also a recommended measure to efficiently thermally decompose the tars in the exhaust gas using a heat exchanger 11 that is charged in the upper part of the furnace and provided in the circulation section. In addition, if you want to effectively recover the tar, after discharging it out of the system via route W,
Needless to say, there are also conventional methods for recovering tar.

本発明プロセスを採用することによる効果としては、前
記の他溶融還元炉排ガスの利用を挙げることカーできる
。即ち本発明における放出ガスは、高温でしかもタール
類等を含まない溶融還元炉排ガスであるから、比較的低
温で且つタール類を含む予備還元炉排ガスと比較して、
その利用範囲は極めて広くなり、且つ環境汚染を生じる
恐れもない。高温エネルギーの利用形態としては、熱交
換を挙げることができるが、COやH2に富んだ化学組
成であることに注目し、燃料(例えば一般ポイラ用燃料
、あるいはガスタービン用燃料等)として利用すること
が一方策として推奨される。尚第2図におけるラインJ
、Wのルートはその一例であるが、ラインWの一部をラ
インX方向に抜出し、集塵後回加圧して予備還元炉へ返
送する場合(ラインW)は、ボイラやサイクロンを通過
する過程で相当低温になっていることを考慮し、ライン
Jから一部うインVに取り出した排ガスで加熱(熱交換
)することが推奨される。しかしより有効な利用用途は
、H2やCOを含むことに着目し、且つタール類等が殆
んど含まれていないことを利用した燃料電池用燃料とし
ての活用である。
In addition to the above-mentioned effects, the effects of employing the process of the present invention include the utilization of smelting reduction furnace exhaust gas. That is, since the discharged gas in the present invention is a smelting reduction furnace exhaust gas which is at a high temperature and does not contain tars, etc., compared to a pre-reduction furnace exhaust gas which is relatively low temperature and contains tars,
Its range of use is extremely wide, and there is no risk of environmental pollution. Heat exchange can be mentioned as a form of utilization of high-temperature energy, but it should be noted that it has a chemical composition rich in CO and H2, and it can be used as a fuel (for example, fuel for general boilers or fuel for gas turbines, etc.). This is recommended as a solution. Note that line J in Figure 2
, W route is an example of this, but when a part of line W is extracted in the line Considering that the temperature is quite low at the line J, it is recommended to heat (heat exchange) with the exhaust gas partially taken out from the line J to the inner V. However, a more effective use is to use it as a fuel for fuel cells, focusing on the fact that it contains H2 and CO, and taking advantage of the fact that it contains almost no tars.

即ち上記排ガス中にはH2やCOが含まれているので、
水素/酸素型や一酸化炭素/酸素型の燃料電池用燃料と
しての利用価値を内在しているが、電気エネルギーへの
変換効率を高める為には電極と電解質の界面面積を大き
くする必要があり、ハニカム構造体や焼結体等の多孔質
物質を使用しなければならない。しかるに供給ガス中に
タール類が多数台まれていると、多孔質構造の表面にそ
れらが付着堆積し、電解質と供給ガスの接触面積が低下
して変換効率に重大な悪影響が与えられる。
In other words, since the above exhaust gas contains H2 and CO,
Although it has inherent utility value as a hydrogen/oxygen type or carbon monoxide/oxygen type fuel for fuel cells, it is necessary to increase the interfacial area between the electrode and electrolyte in order to increase the efficiency of conversion into electrical energy. , porous materials such as honeycomb structures or sintered bodies must be used. However, if a large number of tars are present in the supplied gas, they will adhere to and accumulate on the surface of the porous structure, reducing the contact area between the electrolyte and the supplied gas, and having a serious adverse effect on the conversion efficiency.

従って本来供給ガスは、タール類等を含まない清浄ガス
であることが要求されるが、本発明で得られる溶融還元
炉排ガスはこの条件を十分に満足するものであり、単な
る排熱利用に比較して極めて有用な用途に適用すること
ができる。又これらの他の、C1化学の原料として利用
することも、 −h記の化学組成から容易に理解される
ところであり、本発明は単なる製鉄法として位置付けら
れるべきではなく、石炭ガス化技術としての側面も有す
るものである。
Therefore, the supply gas is originally required to be a clean gas that does not contain tar, etc., but the smelting reduction furnace exhaust gas obtained by the present invention fully satisfies this condition, and is more effective than simply using waste heat. It can be applied to extremely useful applications. In addition, it is easy to understand from the chemical composition in -h that it can also be used as a raw material for C1 chemistry, and the present invention should not be positioned as a mere iron manufacturing method, but as a coal gasification technology. It also has aspects.

本発明は以上述べた様に構成されているので、予備還元
炉で発生する排ガスの熱量及び成分が溶融還元炉におい
てほぼ完全に利用され、従来の様な熱交換程度の利用に
比べて極めて有効であり、又排ガス中のタール類等がほ
ぼ完全に熱分解されるので、機器類のメンテナンスが容
易になると共に、タール類除去の為の特別設備を設ける
必要がなく、且つ環境汚染の問題もほぼ完全に解消され
た。又溶融還元炉の排ガスは高熱を保有すると共にター
ル類等を含まないので、熱量として直接利用したり各種
燃料として利用するに止まらず、燃料電池のガスやC1
化学の原料ガスとしても利用できる様になった。
Since the present invention is configured as described above, the calorific value and components of the exhaust gas generated in the pre-reduction furnace are almost completely utilized in the smelting reduction furnace, which is extremely effective compared to the conventional use only for heat exchange. In addition, since the tars in the exhaust gas are almost completely thermally decomposed, maintenance of equipment becomes easier, there is no need to install special equipment to remove tars, and there is no problem of environmental pollution. Almost completely resolved. In addition, the exhaust gas from the smelting reduction furnace has high heat and does not contain tar, etc., so it can be used not only directly as heat or as various fuels, but also as fuel cell gas and C1.
It is now possible to use it as a raw material gas for chemicals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプロセスを示すフロー図、第2図は本発
明のプロセスを示すフロー図、第3図は本発明に係るテ
スト装置を示すフロー説明図である。 出願人 株式会社 神戸製鋼所
FIG. 1 is a flow diagram showing a conventional process, FIG. 2 is a flow diagram showing a process of the present invention, and FIG. 3 is a flow explanatory diagram showing a test apparatus according to the present invention. Applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】 (1)流動層を形成する予備還元炉において鉄鉱石を石
炭又はコークスで予備還元し、予備還元された鉄鉱石を
溶融還元炉に導いて溶融鉄に還元する鉄鉱石の直接還元
法であって、予備還元炉内を溶融還元炉内よりも高圧で
操業すると共に、予備還元炉において発生した排ガスを
溶融還元炉に装入して溶融鉄への還元に供し、且つ該排
ガス中の高級炭化水素類を熱分解することによって溶融
還元炉排ガス中の炭化水素量を可及的に軽減することを
特徴とする鉄鉱石の直接還元法。 (2、特許請求の範囲第1項におい七、溶融還元炉の頂
部に熱交換器を設け、予備還元炉排ガスの一部を該熱交
換器に導いて該排ガス中の炭化水素を熱分解させる鉄鉱
石の直接還元法。 (3)特許請求の範囲第1又は2項において、溶融還元
炉排ガスを用いて燃料電池による発電を行なう鉄鉱石の
直接還元法。
[Claims] (1) Iron ore is prepared by pre-reducing iron ore with coal or coke in a pre-reduction furnace that forms a fluidized bed, and leading the pre-reduced iron ore to a smelting reduction furnace to reduce it to molten iron. This is a direct reduction method, in which the inside of the preliminary reduction furnace is operated at a higher pressure than the inside of the smelting reduction furnace, and the exhaust gas generated in the preliminary reduction furnace is charged into the smelting reduction furnace to be reduced to molten iron. A method for direct reduction of iron ore, which is characterized by reducing the amount of hydrocarbons in exhaust gas from a smelting reduction furnace as much as possible by thermally decomposing higher hydrocarbons in the exhaust gas. (2. Claim 1, 7. A heat exchanger is provided at the top of the smelting reduction furnace, and a part of the preliminary reduction furnace exhaust gas is guided to the heat exchanger to thermally decompose hydrocarbons in the exhaust gas. Direct reduction method for iron ore. (3) A method for direct reduction of iron ore according to claim 1 or 2, in which power generation is performed by a fuel cell using exhaust gas from a smelting reduction furnace.
JP20201283A 1983-10-27 1983-10-27 Direct reduction of iron ore Pending JPS6096707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20201283A JPS6096707A (en) 1983-10-27 1983-10-27 Direct reduction of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20201283A JPS6096707A (en) 1983-10-27 1983-10-27 Direct reduction of iron ore

Publications (1)

Publication Number Publication Date
JPS6096707A true JPS6096707A (en) 1985-05-30

Family

ID=16450456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20201283A Pending JPS6096707A (en) 1983-10-27 1983-10-27 Direct reduction of iron ore

Country Status (1)

Country Link
JP (1) JPS6096707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286107A (en) * 1985-10-03 1987-04-20 ミドレツクス インタ−ナシヨナルビ−.ブイ.ロツテルダム Method and apparatus for producing molten iron
JP2003531963A (en) * 2000-04-28 2003-10-28 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ Method and apparatus for producing metal melt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286107A (en) * 1985-10-03 1987-04-20 ミドレツクス インタ−ナシヨナルビ−.ブイ.ロツテルダム Method and apparatus for producing molten iron
JPH0471963B2 (en) * 1985-10-03 1992-11-17 Midoretsukusu Intern Bv Rotsuterudamu
JP2003531963A (en) * 2000-04-28 2003-10-28 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ Method and apparatus for producing metal melt
JP4656796B2 (en) * 2000-04-28 2011-03-23 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ Method and apparatus for producing metal melt

Similar Documents

Publication Publication Date Title
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
US4537626A (en) Method for the production of reaction gases
JP5857054B2 (en) Method and apparatus for directly producing reduced iron using a reducing gas containing hydrogen and carbon monoxide as a supply source
RU2496884C2 (en) Method for cast-iron melting with return of blast furnace gas at addition of hydrocarbons
US20230272495A1 (en) Method for operating a metallurgic plant for producing iron products
CN101755056B (en) Method and apparatus for the direct reduction of iron ores utilizing syngas
MXPA05000222A (en) Method for the production of hydrogen-containing gaseous mixtures.
CN115516116A (en) Method for producing carburized sponge iron
WO2009037587A2 (en) Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
JP2002161303A (en) Method and equipment for utilizing gas discharged from melting reduction furnace
JP2004518020A (en) Method and apparatus for producing pig iron or fluid primary iron from a charge containing iron ore
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
US3985520A (en) Gasification process and apparatus
US5413622A (en) Method of making hot metals with totally recycled gas
JPS6096707A (en) Direct reduction of iron ore
WO2023036475A1 (en) Method for producing direct reduced iron for an iron and steelmaking plant
JP7192900B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JP7192901B2 (en) Blast Furnace Operation Method and Blast Furnace Incidental Equipment
JP2023550359A (en) Process of producing carburized sponge iron
US3888658A (en) Process for the direct reduction of iron ore to steel
JP2003261301A (en) Method of producing hydrogen by steel making co- production
CN112850643B (en) High-efficiency carbon dioxide conversion method
JP2002371307A (en) Method for recycling organic or hydrocarbon waste, and blast furnace facility suitable for recycling
CN117737324A (en) Blast furnace ironmaking process and system for preparing high-temperature hydrogen-rich gas from byproduct gas