JPS6094759A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS6094759A JPS6094759A JP58201768A JP20176883A JPS6094759A JP S6094759 A JPS6094759 A JP S6094759A JP 58201768 A JP58201768 A JP 58201768A JP 20176883 A JP20176883 A JP 20176883A JP S6094759 A JPS6094759 A JP S6094759A
- Authority
- JP
- Japan
- Prior art keywords
- type
- substrate
- diffused layer
- drain
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- 239000002019 doping agent Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 238000002161 passivation Methods 0.000 abstract description 3
- 239000011574 phosphorus Substances 0.000 abstract description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 abstract description 2
- -1 Phosphorus ions Chemical class 0.000 abstract 2
- 229910052796 boron Inorganic materials 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0925—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明け、0MO8半導体装置に関し、主に、高速スイ
ッチング特性に秀わた構造f提イ11.するものである
。最近、微細化技術の曲中により、MO8型半導体装置
の高性卵イヒけぬざましいものがあり、従来TTLに代
8されるバイポーラ半導体装置の領域であった高速動作
城迄、達成するKt(−Iた。さらにcMos半導体装
置は、NMOEI半導体装置と同程度のスピードを、持
ちながら数分の一稈変の消費電力で済み、今後、MO8
半導体装置で高集積化が進むに当りr111題となる、
装置自体の発熱の十からも低消費電力のCMo5半導体
装置の役割は、増々大負くなると考えられている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an 0MO8 semiconductor device, and mainly provides a structure f excellent in high-speed switching characteristics.11. It is something to do. Recently, due to the progress of miniaturization technology, the high performance of MO8 type semiconductor devices has been significantly reduced, and it is difficult to achieve Kt of high speed operation, which was the domain of bipolar semiconductor devices conventionally replaced by TTL. (-I) Furthermore, cMoS semiconductor devices have the same speed as NMOEI semiconductor devices, but consume only a few minutes of power consumption.
As semiconductor devices become more highly integrated, R111 issues arise.
It is thought that the role of CMo5 semiconductor devices with low power consumption will become increasingly important due to the fact that the devices themselves generate heat.
そこで、本発明は従来、0MO8素子に於いて、製造上
の容易さからPチャネルもしくけNチャネルトランジス
ターの一方のスイッチング特性を、犠牲にしてきたwe
11方式と異なり、PN両チャネルのトランジスターを
最適化したものであり、竹にドレイン容量の低減を行t
、「うものでちる。第1図にN型シリコン基板Kpwe
llを形成した従来例を示す。一般にo Mo s素子
でit、NMOEI素子に比べ、プロセスエ稈が長くな
るた)、工程低減のたぬMOEI)ランジス4のスl/
・ソシュホー/lド雷圧(v + h、 )が、設バl
値(0,5t「いし1. (l Vが多い)になるよう
な基板101#lN!l−を選ぶ、このためシリコンゲ
ー) M OS +−ランジスタに於いてけN基板濃度
は、ゲート酸化1lt1106厚600Aでは、5ない
し10 x 10”C’になる。y、p?nell 2
02はV+hの安定性、クツチア9ブ対策士、5ないし
15μmの深さで濃度は、V−1−h′f合わせるため
、1ないし5 X 10” am−” Kなるよう、
B+等P型ドーパントを注入し、はぼ均一な濃度分布に
な不よう熱処理をほどこす。Pチャネルトランジスクの
ソースドレインP+拡散層104及びNチャネルトラン
ジスタのソースドレインN 拡散層105、チャネルス
トリパ拡散層107、素子分離酸化膜103、多結晶シ
リコンゲートff極10日、アルミff1tli配線1
09及びパッシベーション嘩より成る。ここで、MOS
トランジスタの鉱散容#を考えてみると、第1図の例で
HPチャネルトランジスタのドレイン1041d 、
N 基板101との間で、ジャンクション容量をもも、
またNチャネルトランジス々のドレイン105け、Pw
ell 102との間で、ジーy 71 シqン容量が
形成され、PN各々のトランジスターのドレイン容量と
なる。このことは、MOS トランジスタの動作領域が
基板のごく表面でしかW ?iff、 1ii11作し
ていないのに対しその表面#度と、はぼ同程度の濃度を
もつ基板あるいけ、動作領域の数十倍以上の深さをもつ
Well十にトランジスタを形成していることになり、
ドレイン容重が大背くなるため、スイッチング特性が遅
くなり、これがため、従来から0MO8素子は、高速動
作に不適とされてきた。そこで本発明の、とのP及びN
チャネルトランジスタドレイン容量を低減させ、高速化
に適した0MO8素子を提供するものである。才ず本発
明の説明の前に、第3図をもって、従来例のMOSトラ
ンジスターの2ヤンクシロン容雫につ(ハで考えてみる
。拡散層の深さx、iをもつドレイン(A)と、近似的
に階段状勾配をもつ、基板あるいけ?oe l l (
B)との間での空乏層l]Wけ、単位面積肖りのジャン
クシ目ン容!laはとなる。ここでNrIは、基板濃度
、その他は定数であるため、(2)式は
0%rとなり、ドレイン容量は基板濃度の平方根に比例
することが分る。ところが、従来例でNDを薄くしてい
くけ、VIA、パンチスルー防ILのため不可能であっ
た。そこで本発明は、P+h及びパンチスルーがドレイ
ン深さxiより表面に近い領域で防止で負ることを見い
111シ、低#麿基板低濃蜜well上に、表面近傍に
VIAを合」つせるように、各々拡散層を形成するもの
である。第2図が、本発明の実施例である0MO8素子
構造である。P型シリコン基板201として、不純物濃
R5X 101′cm−”以下の物を用い、理想的には
イン) IIンシ・ノクシリコンウェノ・−カ良い。N
well 2021dリン等N型ドーパントをイオン注
入熱処理し、深さ3〜10μm、不純物製置1〜1 [
1x 10”cm−3[な 5−
るよう形成されている。Therefore, the present invention has been proposed to overcome the conventional problem of sacrificing the switching characteristics of one of the P-channel and N-channel transistors for ease of manufacturing in the 0MO8 element.
Unlike the No. 11 method, it is an optimized version of both PN channel transistors, and the drain capacitance is reduced using bamboo.
, ``Umonodechiru.'' Figure 1 shows an N-type silicon substrate Kpwe.
A conventional example in which ll is formed is shown. In general, the process length of MoS elements is longer than that of NMOEI elements.
・The lightning pressure (v + h, ) is
Select a substrate 101#lN!l- that has a value of 0.5t (0.5t). 1lt1106 thickness 600A will be 5 to 10 x 10"C'. Y, p? nell 2
02 is the stability of V + h, the concentration is 1 to 5
A P-type dopant such as B+ is implanted, and a heat treatment is performed to make the concentration distribution uniform. P channel transistor source drain P+ diffusion layer 104 and N channel transistor source drain N diffusion layer 105, channel striper diffusion layer 107, element isolation oxide film 103, polycrystalline silicon gate FF pole 10 days, aluminum FF1tli wiring 1
09 and passivation fight. Here, MOS
Considering the dispersion capacity of a transistor, in the example of FIG. 1, the drain 1041d of the HP channel transistor,
The junction capacitance between N and the substrate 101 is
Also, the drains of N-channel transistors 105, Pw
A capacitance is formed between the capacitor and the capacitor 102, and serves as the drain capacitance of each PN transistor. This means that the operating area of the MOS transistor is only on the very surface of the substrate. If, 1ii11 is not formed, the transistor is formed in a substrate whose surface density is approximately the same as the concentration, and in a well whose depth is several tens of times greater than the operating area. become,
Since the drain capacity becomes large, the switching characteristics become slow, and for this reason, the 0MO8 element has conventionally been considered unsuitable for high-speed operation. Therefore, P and N of the present invention
The present invention provides an 0MO8 element which reduces channel transistor drain capacitance and is suitable for high speed operation. Before explaining the present invention, let us consider a conventional MOS transistor having a capacity of 2 Yanks and a drain (A) with diffusion layer depths x and i, respectively, with reference to FIG. Is there a substrate with approximately step-like gradient?oe l l (
The depletion layer between B) is the size of the unit area! la becomes. Here, since NrI is the substrate concentration and the others are constants, equation (2) becomes 0%r, and it can be seen that the drain capacitance is proportional to the square root of the substrate concentration. However, in the conventional example, it was impossible to make the ND thinner because of VIA and punch-through prevention IL. Therefore, in order to prevent P+h and punch-through in a region closer to the surface than the drain depth xi, the present invention integrates VIA near the surface on a low-concentration well of a low #marine substrate. A diffusion layer is formed in each case so that the FIG. 2 shows an 0MO8 element structure according to an embodiment of the present invention. As the P-type silicon substrate 201, a material with an impurity concentration R5x101'cm-" or less is used, ideally a silicon substrate with an impurity concentration of R5x101'cm-".
Well 2021d N-type dopants such as phosphorus are ion-implanted and heat-treated to a depth of 3 to 10 μm, with impurity deposits 1 to 1 [
It is formed to have a size of 1 x 10"cm-3.
MOSトランジスターt■の素子分離は、熱酸化1lQ
203fもって行ない、Nザヤネル領域に設けたチャネ
ルスト9バ204は、P型鉱散層によってなる。Nwe
ll領穢にリンを1〜5X10”側−2イオン注入し、
又、P基板Nチャネル領域にポロンを同じく1〜5 X
10 ”cm−”イオン打入し、1000〜1100
℃1時間稈守の熱処理を行ない、深さ05〜15μm基
板表面濃度Nwell領穢1〜3 x 10 ”tyn
−3、N基板領域1〜6X10”硼1となるようN型拡
散N4206、P型拡散層207を形成した。208け
Nチャネルトランジスタのソース番ドレイン拡散層、2
n5n−pチャネルソース、ドレイン41A IN I
4であり、多結晶シリコンのゲート電極210に対し、
各々、自己熱台によりイオン注入により形成した。コン
タクトホール開口後、 Atの配線209f形TJV後
、パヅシペーション膜211を形成した。本実施例で拡
散容喰について、第3図をもって説明する。(C)が本
発明のチャネル部の濃度分布であり、従来例(B)に対
し基板表面近傍の濃度は、11fぼ同程度であり、これ
6−
によりv + h、の合せ及びパンチスル一対策を行な
り。ソース・ドレイン拡散層(〜が、従来例と同様によ
りxjの深さをもって階段上(C分布しているものとし
、本発明の拡散層がxj + ZDの深さをもりて、基
板濃度もしく n 、 Nwellの濃度Nαになって
いるものとし、かつ、近似的にxjからXブ+7Dまで
の!I彎勾配が、直線分布しているものとして、空乏層
中Xとドレイン容量をめればよ< 、 (1) (2)
式に示す
ここで、空乏層中Xは、(3)式の積分方程式を解かな
ければならないので
ただし、f (e)= b−αX ・・・・・・・・・
・(4)簡略的に従来例と同一2として、(2)式から
ドレイン容量をめれば、第3図で深さxjからXまでの
間の、(0)とX軸とで囲まれる面積に相当し、本例で
は計算上、従来法のドレイン容量のW130 %にイ氏
浦されることが分った。■、従来法に比べ表面濃度はほ
と丸と変らないためl/C,MOF+トランジスターの
電流増l]率βの低下はみら引ない。つキリ、IV+
o s トランジスターの移lIr1 inの低下?r
<’、ドレイン容量を太l】に低域でへるプロ七ヌを
徘伊するものであり、高速化に適した構造とい憂−る。Element isolation of MOS transistor t■ is done by thermal oxidation 1lQ
The channel strike 9 bar 204, which was carried out with 203f and provided in the N-layer region, is made of a P-type mineral layer. Nwe
Inject 1 to 5 x 10'' side-2 ions of phosphorus into the ll area,
Also, poron was added to the N channel region of the P substrate by 1 to 5
10 "cm-" ion implantation, 1000-1100
Heat treatment of the culm guard for 1 hour at ℃ is carried out to a depth of 05 to 15 μm and the substrate surface concentration Nwell area is 1 to 3 x 10” tyn.
-3, N-type diffusion N4206 and P-type diffusion layer 207 were formed to form N substrate region 1 to 6 x 10" 1. Source and drain diffusion layers of 208 N channel transistors, 2
n5n-p channel source, drain 41A IN I
4, and for the polycrystalline silicon gate electrode 210,
Each was formed by ion implantation using a self-heating table. After the contact hole was opened and the At wiring 209f type TJV was performed, a passivation film 211 was formed. In this embodiment, diffusion ingestion will be explained with reference to FIG. 3. (C) is the concentration distribution in the channel portion of the present invention, and the concentration near the substrate surface is about the same as that of the conventional example (B). Do it. It is assumed that the source/drain diffusion layer (-) has a stepwise distribution (C distribution) with a depth of xj as in the conventional example, and the diffusion layer of the present invention has a depth of xj + ZD and has a substrate concentration or Assuming that the concentration of n, Nwell is Nα, and that the !I curve gradient from xj to Xb+7D is approximately linearly distributed, if we consider yo< , (1) (2)
Here, as for X in the depletion layer, the integral equation of formula (3) must be solved, so f (e) = b - αX ......
・(4) If we calculate the drain capacitance from equation (2) using 2, which is simply the same as the conventional example, it will be surrounded by (0) and the X axis between depth xj and X in Figure 3. In this example, it was calculated to be 130% of the drain capacity of the conventional method. (2) Compared to the conventional method, the surface concentration is almost the same, so there is no decrease in l/C, MOF+transistor current increase rate β. Tsukiri, IV+
o s Transistor transfer lIr1 in decrease? r
The structure is suitable for high-speed operation because the drain capacitance is increased and the low-frequency effect is suppressed.
頷1図は、従来の0MO8素子の構造図。
第2図が本発明の高仲CMO8素子の構造図。
第3図が、従来及び本発明のドレイン部の不純物濃度分
布。
以 十
゛ 出願人 株式会社 諏訪nT舎
第2図
χ1
第3図Figure 1 is a structural diagram of a conventional 0MO8 element. FIG. 2 is a structural diagram of the Takanaka CMO8 element of the present invention. FIG. 3 shows the impurity concentration distribution in the drain part of the conventional and the present invention. Applicant Suwa nTsha Co., Ltd. Figure 2 χ1 Figure 3
Claims (1)
板の一部に、N型ドーパント物質をイオン注入し、熱工
程により、3ないし10μmのNwe l lが形成さ
れていること、かつ、このNwe l lの不純物製電
を1X I Q”crn−”以下になっていること、P
型シリコン基板上にNチャネルMO8)ランジスタを形
成すること、かつ、基板表面濃度が1・ないし6X 1
016Cm’程度になる。深さ[1,5t、p イし1
.5tirnのP型不純物層が形成されていること、同
様にNqne l l領域に、PチャネルMO日トラン
ジスタが形成され、かつ、基板表面濃度が1ないし3
x 1016cm−3程度になる深さ、05ないし1.
5#7TのN型不純物層が形成されていることを特徴と
する半導体装置。An N-type dopant material is ion-implanted into a part of a P-type silicon substrate with an impurity concentration lower than 5XjO''α1, and a NweIl of 3 to 10 μm is formed by a thermal process; The impurity power of l is below 1X I Q"crn-", P
Forming an N-channel MO8) transistor on a type silicon substrate, and having a substrate surface concentration of 1 to 6×1.
It will be about 016 cm'. Depth [1,5t, p 1
.. Similarly, a P-channel MO transistor is formed in the Nqnel region, and the substrate surface concentration is 1 to 3.
x depth of about 1016cm-3, 05 to 1.
A semiconductor device characterized in that a 5#7T N-type impurity layer is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58201768A JPS6094759A (en) | 1983-10-27 | 1983-10-27 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58201768A JPS6094759A (en) | 1983-10-27 | 1983-10-27 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6094759A true JPS6094759A (en) | 1985-05-27 |
Family
ID=16446615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58201768A Pending JPS6094759A (en) | 1983-10-27 | 1983-10-27 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6094759A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5801426A (en) * | 1994-08-17 | 1998-09-01 | Nec Corporation | Field effect transistor with improved source/drain diffusion regions having an extremely small capacitance |
JP2009187890A (en) * | 2008-02-08 | 2009-08-20 | Nec Lighting Ltd | Fluorescent lamp |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5010083A (en) * | 1973-05-23 | 1975-02-01 | ||
JPS5028981A (en) * | 1973-07-13 | 1975-03-24 |
-
1983
- 1983-10-27 JP JP58201768A patent/JPS6094759A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5010083A (en) * | 1973-05-23 | 1975-02-01 | ||
JPS5028981A (en) * | 1973-07-13 | 1975-03-24 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5801426A (en) * | 1994-08-17 | 1998-09-01 | Nec Corporation | Field effect transistor with improved source/drain diffusion regions having an extremely small capacitance |
US5990522A (en) * | 1994-08-17 | 1999-11-23 | Nec Corporation | Field effect transistor with improved source/drain diffusion regions having an extremely small capacitance |
US6163057A (en) * | 1994-08-17 | 2000-12-19 | Nec Corporation | Field effect transistor with improved source/drain diffusion regions having an extremely small capacitance |
JP2009187890A (en) * | 2008-02-08 | 2009-08-20 | Nec Lighting Ltd | Fluorescent lamp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4435895A (en) | Process for forming complementary integrated circuit devices | |
US4463492A (en) | Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state | |
US5334870A (en) | Complementary MIS transistor and a fabrication process thereof | |
TW494481B (en) | Semiconductor device and manufacturing method thereof | |
CA1228178A (en) | Cmos integrated circuit technology | |
US5688722A (en) | CMOS integrated circuit with reduced susceptibility to PMOS punchthrough | |
JPS63502633A (en) | Manufacturing method for stacked MOS device | |
JPH0510828B2 (en) | ||
TWI232546B (en) | Manufacturing method of semiconductor device and semiconductor device | |
JPS6094759A (en) | Semiconductor device | |
JPS58170048A (en) | Semiconductor device | |
WO2007002858A2 (en) | High voltage depletion fet employing a channel stopping implant | |
JPS63278265A (en) | Manufacture of semiconductor bicmos device | |
JP3192857B2 (en) | Vertical MOS semiconductor device and method of manufacturing the same | |
JPH02224223A (en) | Semiconductor device | |
JPH10303423A (en) | Manufacture of semiconductor device and semiconductor device | |
JP2880712B2 (en) | Semiconductor device | |
JPS60128668A (en) | Manufacture of semiconductor device | |
JPS62181458A (en) | Complementary type mos transistor and manufacture thereof | |
JPH023270A (en) | Manufacture of hct semiconductor device | |
JPS628950B2 (en) | ||
JPS6017946A (en) | Semiconductor device | |
JPS6065558A (en) | Semiconductor device | |
JPS62162360A (en) | Semiconductor device and manufacture thereof | |
JPS6157714B2 (en) |