[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6093149A - Fuel injection device in internal-combustion engine - Google Patents

Fuel injection device in internal-combustion engine

Info

Publication number
JPS6093149A
JPS6093149A JP20069283A JP20069283A JPS6093149A JP S6093149 A JPS6093149 A JP S6093149A JP 20069283 A JP20069283 A JP 20069283A JP 20069283 A JP20069283 A JP 20069283A JP S6093149 A JPS6093149 A JP S6093149A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
fuel
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20069283A
Other languages
Japanese (ja)
Inventor
Tatsuya Oofu
大符 龍也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20069283A priority Critical patent/JPS6093149A/en
Publication of JPS6093149A publication Critical patent/JPS6093149A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To burn unburnt gas within a catalyst to aim at enhancing the purification factor of exhaust gas, in a fuel injection device in which the air-fuel ratio of the engine is made leaner than a stoichiometric air-fuel ratio upon steady state running condition, by increasing the amount of fuel injection at every predetermined fuel injection cycle number. CONSTITUTION:In a fuel injection device in an internal-combustion engine, there are provided a throttle switch 6 which is associated with a throttle valve 4 positioned downstream of an intake-air temperature sensor 2 and which is turned on when the throttle valve 4 is fully closed but is turned off when the throttle valve is opened, and a pressure sensor 10 in a surge tank 8. Further, fuel injection valves 16 are provided in an engine intake manifold, for each engine cylinders, and combustion chambers 14 in the engine 14 are communicated with a catalyst converter 15 in which a ternary catalyst is charged through an exhaust manifold 18. In a distributor 24, there are provided an engine cylinder discriminating sensor 26 and an engine rotational speed sensor 28 whose signals are delivered to a control circuit 30 so that the amount of fuel is increased at every predetermined cycle number.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は内燃機関の燃料噴射装置に係り、特に機関定常
運転状態時に空燃比が理論空燃比より希薄になるよう燃
料を噴射すると共に、機関定常運転状態以外のときに空
燃比が理論空燃比になるよう燃料を噴射する内燃機関の
燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel injection device for an internal combustion engine. The present invention relates to a fuel injection device for an internal combustion engine that injects fuel so that the air-fuel ratio becomes the stoichiometric air-fuel ratio when the engine is not in operation.

〔発明の背景〕[Background of the invention]

従来より、排ガス中の一酸化炭素、炭化水素および窒素
酸化物を同時に浄化するために三元触好が用いられてお
り、この三元触媒の浄化率を良好にするためo2センサ
により排ガス中の残留酸素濃度を検出して空燃比を推定
し、空燃比を理論空燃比近傍に制御するフィードバック
制御が行なわれている。このフィードバック制御を行な
うにあたっては、機関負荷(吸気管圧力PMまたは機関
1回転当りの吸入空気量Q、/N Fli )と機関回
転数とによって定まる基本燃料噴射時間TPに、0!セ
ンサから出力されかつ信号処理された空燃比信号に基づ
いて燃料噴射時間を比例積分動作させるだめの空燃比フ
ィードバック補正係数FAFを乗算して燃料噴射時間T
AUをめ、この燃料噴射時間TAUに相当する時間燃料
噴射弁を開弁することにより空燃比を理論空燃比近傍に
制御している。
Conventionally, a three-way catalyst has been used to simultaneously purify carbon monoxide, hydrocarbons, and nitrogen oxides in exhaust gas, and in order to improve the purification rate of this three-way catalyst, an O2 sensor is used to Feedback control is performed to detect the residual oxygen concentration, estimate the air-fuel ratio, and control the air-fuel ratio to near the stoichiometric air-fuel ratio. In performing this feedback control, the basic fuel injection time TP determined by the engine load (intake pipe pressure PM or intake air amount Q per engine revolution, /N Fli ) and engine speed is set to 0! Based on the air-fuel ratio signal output from the sensor and subjected to signal processing, the fuel injection time T is multiplied by the air-fuel ratio feedback correction coefficient FAF for performing proportional integral operation on the fuel injection time.
The air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by opening the fuel injection valve for a time corresponding to the fuel injection time TAU after AU.

また、近時低燃比化の観点から、フィードバック制御中
の所定条件下すなわち機関定常運転状態時において、空
燃比を理論空燃比より希薄(リーン)側にフィードフォ
ワード制御するリーン制御を行なうことが提案されてい
る。
In addition, from the perspective of lowering the fuel ratio, it has recently been proposed to perform lean control in which the air-fuel ratio is feedforward controlled to the lean side from the stoichiometric air-fuel ratio under predetermined conditions during feedback control, that is, during steady engine operation. has been done.

上記の空燃比制御は、次の(1)式に基づいて燃料噴射
時間TAUを演算して所定量の燃料を噴射するものであ
る。
The above air-fuel ratio control calculates the fuel injection time TAU based on the following equation (1) and injects a predetermined amount of fuel.

T A U = T P 、 F A F 、 F (
t) ・・・・・・・・・・川・・(1)ただし、F(
t)は暖機増量係数や始動時増量係数等の補正係数であ
る。
T A U = T P , F A F , F (
t) ・・・・・・・・・・River...(1) However, F(
t) is a correction coefficient such as a warm-up increase coefficient and a start-up increase coefficient.

従って、との空燃比制御方法によれば、0!センサ出力
に応じて空燃比フィードバック補正係数FAFが1付近
で変化することから空燃比が理論空燃比になるように制
御され、空燃比フィードバック補正係数FAFを1未満
の所定値(例えば、0.8)に設定することによりフィ
ードフォワード制御にょろり一ン制御が行なわれる。
Therefore, according to the air-fuel ratio control method, 0! Since the air-fuel ratio feedback correction coefficient FAF changes around 1 according to the sensor output, the air-fuel ratio is controlled to become the stoichiometric air-fuel ratio, and the air-fuel ratio feedback correction coefficient FAF is set to a predetermined value less than 1 (for example, 0.8 ), feedforward control is performed.

しかし、上記の空燃比リーン制御では、三元触媒の反応
成分が少ないため、触媒温度が低くなり排ガス浄化率が
悪化する、という問題があった。
However, in the air-fuel ratio lean control described above, there is a problem in that since there are few reactive components in the three-way catalyst, the catalyst temperature becomes low and the exhaust gas purification rate deteriorates.

上記問題を解消するため、実開昭49−84522号公
報に示されるようにリーン制御時の気筒の半分を空燃比
過濃(リッチ)にする機関が知られている。しかし、こ
の機関では一率に気筒の半分をリッチにしているため、
リーン制御による燃費の向上が期待できない、という問
題がある。
In order to solve the above problem, an engine is known in which the air-fuel ratio is made rich in half of the cylinders during lean control, as shown in Japanese Utility Model Application Publication No. 49-84522. However, in this engine, half of the cylinders are made rich, so
There is a problem in that lean control cannot be expected to improve fuel efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解消すべく成されたもので、燃費
を悪化させることなく、リーン制御時の排ガス浄化率を
向上させた内燃機関の燃料噴射装置を提供することを目
的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a fuel injection device for an internal combustion engine that improves the exhaust gas purification rate during lean control without deteriorating fuel efficiency.

〔発明の構成〕[Structure of the invention]

上記目的を達成するために本発明は、機関定常運転状態
時に空燃比が理論空燃比より希薄になるよう燃料を噴射
する内燃機関の燃料噴射装置において、所定の燃料噴射
回数毎に燃料噴射量を増量させるよう構成したことを特
徴とする。燃料噴射量が増量される結果、触媒中で未燃
排ガスが燃焼して触媒温度が上昇するため、排ガスの浄
化率を向上させることができる。
In order to achieve the above object, the present invention provides a fuel injection device for an internal combustion engine that injects fuel so that the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio during steady engine operation. It is characterized by being configured to increase the amount. As a result of increasing the fuel injection amount, unburned exhaust gas is combusted in the catalyst and the catalyst temperature increases, so that the purification rate of exhaust gas can be improved.

〔発明の効果〕〔Effect of the invention〕

上記本発明の構成によれば、所定噴射回数毎に燃料噴射
量を増量させているため、−率に半分の気筒をリッチに
する場合に比較して燃費が悪化することなぐり一ン制御
時の排ガス浄化率を良好にすることができる、という効
果が得られる。
According to the above configuration of the present invention, since the fuel injection amount is increased every predetermined number of injections, the fuel consumption is not deteriorated compared to the case where half the cylinders are made rich at the negative rate. The effect is that the exhaust gas purification rate can be improved.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例を示す概略図である。エア
クリーナ(図示せず)の下流側には吸入空気の温度を検
出して吸気温信号を出力する吸気温センサ2が取付けら
れている。吸気温センサ2の下流側にはスロットル弁4
が配置され、このスロットル弁4に連動しかつスロット
ル弁全閉時にオンスロットル弁が開いたときにオフとな
るスロットルスイッチ6が取付けられている。スロット
ル弁4の下流側には、サージタンク8が設けられ、この
サージタンク8にスロットル弁下流側の吸気管圧力を検
出して吸気管圧力信号を出力する圧力センサ10が取付
けられている。サージタンク8は、インテークマニホー
ルド12を介してエンジンの燃焼室14に連通されてい
る。このインテークマニホールド12には、燃料噴射弁
16触媒を充填した触媒コンバータ15に連通されてい
る。また、エンジンブロックには、エンジン冷却水温を
検出して水温信号を出力する水温センサ20が取付けら
れている。エンジンの燃焼室14には、点火プラグ22
の先端が突出され、点火プラグ22はディストリビュー
タ24に接続されている。ディストリビュータ24には
、ディストリビュータハウジングに固定されたピックア
ップとディストリビュータシャフトに固定されたシグナ
ルロータとで各々構成された気筒判別センサ26および
エンジン回転数センサ28が設けられている。気筒判別
センサ26は例えば720°CA毎に気筒判別信号をマ
イクロコンピュータ等で構成された制御回路30へ出力
し、エンジン回転数センサ28は例えば30°CA毎に
エンジン回転数信号を制御回路30へ出力する。そして
、ディストリビュータ24はイグナイタ32に接続され
ている。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. An intake temperature sensor 2 is installed downstream of an air cleaner (not shown) to detect the temperature of intake air and output an intake temperature signal. A throttle valve 4 is located downstream of the intake temperature sensor 2.
A throttle switch 6 is attached which is interlocked with the throttle valve 4 and turns off when the throttle valve is on when the throttle valve is fully closed. A surge tank 8 is provided downstream of the throttle valve 4, and a pressure sensor 10 is attached to the surge tank 8 to detect the intake pipe pressure downstream of the throttle valve and output an intake pipe pressure signal. The surge tank 8 is communicated with a combustion chamber 14 of the engine via an intake manifold 12. This intake manifold 12 is connected to a catalytic converter 15 filled with a fuel injection valve 16 catalyst. Further, a water temperature sensor 20 that detects the engine cooling water temperature and outputs a water temperature signal is attached to the engine block. A spark plug 22 is provided in the combustion chamber 14 of the engine.
The tip of the spark plug 22 is protruded, and the spark plug 22 is connected to a distributor 24. The distributor 24 is provided with a cylinder discrimination sensor 26 and an engine rotation speed sensor 28, which each include a pickup fixed to the distributor housing and a signal rotor fixed to the distributor shaft. The cylinder discrimination sensor 26 outputs a cylinder discrimination signal to the control circuit 30 made up of a microcomputer or the like every 720 degrees CA, for example, and the engine rotation speed sensor 28 outputs an engine rotation speed signal to the control circuit 30 every 30 degrees CA, for example. Output. Further, the distributor 24 is connected to the igniter 32.

また、エキゾーストマニホールドには、排ガス中の残留
酸素濃度を検出して空燃比信号を出力する0、センサ3
4および排ガスの温度を検出して排気温信号を出力する
排気温センサ35が取付けられている。
In addition, the exhaust manifold is equipped with a sensor 3 that detects the residual oxygen concentration in the exhaust gas and outputs an air-fuel ratio signal.
4 and an exhaust gas temperature sensor 35 that detects the temperature of exhaust gas and outputs an exhaust temperature signal.

制御回路30は第2図に示すように、中央処理装置(C
PU)36、リードオンリメモリ(ROM)38、ラン
ダムアクセスメモリ(RAM)40、バックアップラム
(BU−RAM )42、入出力ボート(Ilo)44
、アナログディジタル変換器(ADC)46bよびこれ
らを接続するデータバスやコントロールバス等のバスを
含んで構成されている。工1044には、気筒判別信号
、エンジン回転数信号、空燃比信号、スロットルスイッ
チ6から出力されるスロットル信号が入力されると共に
、駆動回路を介して燃料噴射弁16の開閉時間を制御す
る燃料噴射信号およびイグナイタ32のオンオフ時間を
制御する点火信号が出力される。
As shown in FIG. 2, the control circuit 30 includes a central processing unit (C
PU) 36, read-only memory (ROM) 38, random access memory (RAM) 40, backup RAM (BU-RAM) 42, input/output board (Ilo) 44
, an analog/digital converter (ADC) 46b, and buses such as a data bus and a control bus that connect these. A cylinder discrimination signal, an engine rotational speed signal, an air-fuel ratio signal, and a throttle signal output from the throttle switch 6 are input to the engine 1044, and a fuel injection controller 1044 controls the opening/closing time of the fuel injection valve 16 via a drive circuit. A signal and an ignition signal that controls the on/off time of the igniter 32 are output.

また、ADC46には、吸気管圧力信号、吸気温信号、
排気温信号および水温信号が入力されてCPUの指示に
応じてディジタル信号に変換される。上記のROM38
には、以下で説明する処理ルーチンのプログラム、吸気
管圧力とエンジン回転数とで定められた基本燃料噴射量
のマツプおよび第3図(11〜(6)に示されるリーン
制御用の燃料噴射回数Nを定めだマツプのいずれか1つ
等が予め記憶されている。
The ADC 46 also includes an intake pipe pressure signal, an intake temperature signal,
An exhaust temperature signal and a water temperature signal are input and converted into digital signals according to instructions from the CPU. ROM38 above
The processing routine program described below, a map of the basic fuel injection amount determined by the intake pipe pressure and engine speed, and the number of fuel injections for lean control shown in Fig. 3 (11 to (6)) are included. One of the maps for which N is determined is stored in advance.

第3図m、(21、+41のマツプにおける燃料噴射回
数Nは、燃料噴射量(燃料噴射時間)、排気温度(また
は触媒温度)、吸気管圧力の各々が犬きくなるに従って
犬きくなるように定められている。
The number of fuel injections N in the map m, (21, +41 in Fig. 3) increases as the fuel injection amount (fuel injection time), exhaust temperature (or catalyst temperature), and intake pipe pressure increase. It is determined.

第3図(3)の燃料噴射回数Nは、エンジン回転数が高
くなるに従って小さくなるように定められている。また
、エンジン1回転当りの吸入空気量とエンジン回転数と
で基本燃料噴射時間を定めるエンジンでは、圧力センサ
10に代えて、第4図に示すようにエアクリーナとスロ
ットル弁4との間に、吸入空気量を検出して吸入空気量
信号を出力するエアフローメータ11が取付けられる。
The number of fuel injections N in FIG. 3(3) is determined to decrease as the engine speed increases. In addition, in an engine where the basic fuel injection time is determined based on the intake air amount per engine rotation and the engine rotation speed, instead of the pressure sensor 10, a suction sensor is installed between the air cleaner and the throttle valve 4 as shown in FIG. An air flow meter 11 is attached to detect the amount of air and output an intake air amount signal.

なお、他の構成は第1図と同一であるので記載袋省略す
る。
Note that the other configurations are the same as those in FIG. 1, so their description is omitted.

かかるエンジンにおいては、吸入空気量を検出している
だめ、第3図(4)のマツプに代えて第3図(5)また
は(6)のマツプを採用することが可能である。
In such an engine, as long as the intake air amount is detected, it is possible to use the map shown in FIG. 3 (5) or (6) instead of the map shown in FIG. 3 (4).

なお、第1図のエンジンにエアフローメータを取付けて
第3図(5)または(6)のマツプを使用することも可
能である。
It is also possible to attach an air flow meter to the engine shown in FIG. 1 and use the map shown in FIG. 3 (5) or (6).

次に第1図のエンジンに本発明を適用した場合の実施例
の処理ルーチンを第5図を参照して説明する。まず、ス
テップ99において吸気管圧力PMやエンジン回転数等
の各種運転条件を取込み、ステップ100〜ステツプ1
04においてリーン制御条件が成立しているか否かを判
断する。ステップ100では、エンジン始動状態か否か
を判断し、エンジン始動状態のときはステップ98で噴
射回数をカウントするカウンタのカウント値C0UNT
をOとした後ステップ112で0.センサの出力信号に
基づいてフィードバック制御用の空燃比フィードバック
補正係数FAFを演算する。エンジンが始動状態か否か
は、スロットルスイッチ6のオンオフ状態とエンジン回
転数により判断でき、スロットルスイッチオンでかつエ
ンジン回転数が所定値(例えば、500rpm)以下の
ときエンジン始動状態と判断される。エンジン始動状態
でないときは、ステップ101においてエンジン冷却水
温に基づいて暖機中でないか否かが判断される。
Next, a processing routine of an embodiment in which the present invention is applied to the engine shown in FIG. 1 will be described with reference to FIG. First, in step 99, various operating conditions such as intake pipe pressure PM and engine speed are taken in, and then in steps 100 to 1.
In step 04, it is determined whether the lean control conditions are satisfied. In step 100, it is determined whether or not the engine is in the engine starting state. If the engine is in the engine starting state, the count value C0UNT of the counter that counts the number of injections is entered in step 98.
is set to O, and then in step 112 0. An air-fuel ratio feedback correction coefficient FAF for feedback control is calculated based on the output signal of the sensor. Whether or not the engine is in the starting state can be determined based on the on/off state of the throttle switch 6 and the engine rotational speed, and the engine is determined to be in the starting state when the throttle switch is on and the engine rotational speed is below a predetermined value (for example, 500 rpm). When the engine is not in the starting state, it is determined in step 101 whether or not the engine is being warmed up based on the engine cooling water temperature.

エンジン冷却水温が所定値(例えば、80℃)以下でエ
ンジン暖機中と判断されたときはステンプットル弁が開
かれているかを判断する。スロットルスイッチがオンの
ときすなわちアイドリンク時はステップ98へ進み、ス
ロットルスイッチがオフのときは、ステップ103およ
びステップ104においてエンジンが定常状態か否かを
判断する。
When it is determined that the engine cooling water temperature is below a predetermined value (for example, 80° C.) and the engine is being warmed up, it is determined whether the stencil valve is open. When the throttle switch is on, that is, during idling, the process proceeds to step 98, and when the throttle switch is off, it is determined in steps 103 and 104 whether or not the engine is in a steady state.

本実施例では、吸気管圧力PMが所定範囲(A<PM(
B )内の値でかつ吸気管圧力PMの変化率の絶対値1
△PMI が正の所定値C以下のときエンジンが定常状
態であると判断している。吸気管きすなわち加減速時等
の過渡状態時にはステップ98へ進む。そして、ステッ
プ112で空燃比フィードバック補正係数FAFを演算
した後ステンプ113でフラグFをリセットし、ステッ
プ110で燃料噴射を実行し、ステップ111でカウン
ト値C0UNTを1インクリメントして燃料噴射回数を
カウントする。
In this embodiment, the intake pipe pressure PM is within a predetermined range (A<PM(
B ) and the absolute value of the rate of change of intake pipe pressure PM is 1
When ΔPMI is less than or equal to a positive predetermined value C, it is determined that the engine is in a steady state. When the intake pipe is closed, that is, in a transient state such as during acceleration or deceleration, the process proceeds to step 98. After calculating the air-fuel ratio feedback correction coefficient FAF in step 112, the flag F is reset in step 113, fuel injection is performed in step 110, and the count value C0UNT is incremented by 1 in step 111 to count the number of fuel injections. .

ステップ100〜ステツプ104においてリーン制御条
件が成立していると判断されたときは、ステップ105
でフラグFがセットされているか否かを判断する。フラ
グFがリセットされていれば、ステップ106において
ROMに記憶された燃料噴射回数のマツプから補間法に
より燃料噴射回数Nをめる。次のステップ107ではカ
ウント値C0UNTとマツプからめた燃料噴射回数Nと
を比較し、カウント値C0UNTが燃料噴射回数N以上
ならばステップ108でフラグFをセットした後、また
カウント値C0UNTが燃料噴射回数N未満ならばその
まま、ステップ109に進む。
If it is determined in steps 100 to 104 that the lean control conditions are satisfied, step 105
It is determined whether flag F is set. If the flag F has been reset, in step 106, the number N of fuel injections is determined by interpolation from the map of the number of fuel injections stored in the ROM. In the next step 107, the count value C0UNT is compared with the number of fuel injections N determined from the map, and if the count value C0UNT is greater than or equal to the number N of fuel injections, a flag F is set in step 108. If it is less than N, the process directly advances to step 109.

ステップ109では、空燃比フィードバック補正係数F
AFを1未満の一定値(例えば、0.8)に設定して、
ステップ110で燃料噴射を実行して空燃比リーン制御
を行なう。
In step 109, the air-fuel ratio feedback correction coefficient F
Set AF to a constant value less than 1 (for example, 0.8),
In step 110, fuel injection is performed to perform air-fuel ratio lean control.

一方、ステップ105でフラグFがセットされていると
判断されたとき、すなわち空燃比リーン制御のだめの燃
料噴射がN回実行されたときは、ステップ114でカウ
ント値C0UNTを0とし、ステップ115において空
燃比フィードバック補正係数FAF’の値をリーン制御
時の値より大きい一定値(例えば1.1、この値は空燃
比で13程度である)に設定した後、ステップ116で
フラグFをリセットし、ステップ110で燃料噴射を実
行して燃料噴射量を増量させる。
On the other hand, when it is determined in step 105 that the flag F is set, that is, when the fuel injection for lean air-fuel ratio control has been executed N times, the count value C0UNT is set to 0 in step 114, and the count value C0UNT is set to 0 in step 115. After setting the value of the fuel ratio feedback correction coefficient FAF' to a constant value larger than the value during lean control (for example, 1.1, this value is about 13 in terms of air-fuel ratio), the flag F is reset in step 116, and the flag F is reset in step 116. At step 110, fuel injection is performed to increase the fuel injection amount.

以上の結果、リーン制御中はN回の燃料噴射毎に1回燃
料噴射量が増量されることになる。
As a result of the above, during lean control, the fuel injection amount is increased once every N fuel injections.

なお、第4図に示すエンジンにおいては、エンジン1回
転当りの吸入空気量Q/Nが所定範囲(A< Q/N 
< B)内の値か否かおよびエンジン1回転当りの吸入
空気量Q/Hの変化率の絶対値1△Q、/N 1が正の
所定値C未満か否かを判断することにより、エンジンが
定常状態か否かが判断される。
In the engine shown in Fig. 4, the amount of intake air Q/N per engine revolution is within a predetermined range (A < Q/N
By determining whether the value is within <B) and whether the absolute value 1ΔQ,/N1 of the rate of change of the intake air amount Q/H per engine rotation is less than a positive predetermined value C, It is determined whether the engine is in a steady state.

以上説明したように本実施例においては、エンジン運転
状態に応じて燃料噴射量を増量きせる時期を決定してい
るため、燃費が更に向上する、という効果が得られる。
As explained above, in this embodiment, since the timing to increase the fuel injection amount is determined according to the engine operating state, the effect of further improving fuel efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるエンジンの一例を示す概略
図、第2図は第1図の制御回路の詳細を示すブロック図
、第3図(1)〜(6)は燃料噴射回数のマツプを示す
線図、第4図は本発明が適用される他のエンジンを示す
部分概略図、第5図は本発明の実施例の処理ルーチンを
示す流れ図である。 4・・・スロットル弁、 10・・・圧力センサ、 16・・・燃料噴射弁、 30・・・制御回路。 代理人 鵜 沼 辰 之 (ほか1名) 第3図 (1) (2) (晴11時pH)(ス1丁鯨rX5に度)(5)(6) 特開昭GO−93149(6) 第4図
Fig. 1 is a schematic diagram showing an example of an engine to which the present invention is applied, Fig. 2 is a block diagram showing details of the control circuit shown in Fig. 1, and Figs. 3 (1) to (6) show the number of fuel injections. FIG. 4 is a diagram showing a map, FIG. 4 is a partial schematic diagram showing another engine to which the present invention is applied, and FIG. 5 is a flowchart showing a processing routine of an embodiment of the present invention. 4... Throttle valve, 10... Pressure sensor, 16... Fuel injection valve, 30... Control circuit. Agent Tatsuyuki Unuma (and 1 other person) Figure 3 (1) (2) (11:00 p.m. pH) (5 degrees) (5) (6) JP-A-Sho GO-93149 (6) Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)機関定常運転状態時に空燃比が理論空燃比より希
薄になるよう燃料を噴射する内燃機関の燃料噴射装置に
おいて、所定の燃料噴射回数毎に燃料噴射量を増量させ
るよう構成したことを特徴とする内燃機関の燃料噴射装
置。
(1) A fuel injection device for an internal combustion engine that injects fuel so that the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio during engine steady operation, characterized by being configured to increase the fuel injection amount every predetermined number of fuel injections. Fuel injection system for internal combustion engines.
JP20069283A 1983-10-26 1983-10-26 Fuel injection device in internal-combustion engine Pending JPS6093149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20069283A JPS6093149A (en) 1983-10-26 1983-10-26 Fuel injection device in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20069283A JPS6093149A (en) 1983-10-26 1983-10-26 Fuel injection device in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6093149A true JPS6093149A (en) 1985-05-24

Family

ID=16428657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20069283A Pending JPS6093149A (en) 1983-10-26 1983-10-26 Fuel injection device in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6093149A (en)

Similar Documents

Publication Publication Date Title
JPH11210509A (en) Valve opening/closing characteristic controller for internal combustion engine
JP2658460B2 (en) Exhaust gas recirculation system for internal combustion engine
JPH0158334B2 (en)
JPS59549A (en) Method of digitally controlling internal-combustion engine
JPS62126236A (en) Air-fuel ratio control method for fuel feed device of internal combustion engine
JPS62157252A (en) Method of feedback controlling air-fuel ratio of internal combustion engine
JPH09133034A (en) Fuel injection control device of internal combustion engine
JPS59188057A (en) Method and device for controlling air-fuel ratio and ignition timing in internal-combustion engine
US4658785A (en) Method of controlling air-fuel ratio and ignition timing in internal combustion engine and apparatus therefor
JP3973387B2 (en) Intake pressure detection method for internal combustion engine
JPS6093149A (en) Fuel injection device in internal-combustion engine
JP2002180876A (en) Air-fuel ratio controller for internal combustion engine
JPS6345444A (en) Air-fuel ratio controller for internal combustion engine
JPS6172848A (en) Control device of fuel increase and ignition timing in internal-combustion engine
JPS62186029A (en) Abnormality judging method for lean sensor
JPH0720361Y2 (en) Idle adjusting device for internal combustion engine
JPS6165046A (en) Method of controlling idle rotational speed of internal-combustion engine
JP2615680B2 (en) Air-fuel ratio learning control method for internal combustion engine
JPH0658080B2 (en) Air-fuel ratio control method for internal combustion engine
JPH08291739A (en) Air-fuel ratio control device
JPS63162951A (en) Control method for ignition timing and air-fuel ratio of internal combustion engine
JPS58144635A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS6090934A (en) Method of controlling fuel supply when internal- combustion engine is operated with its throttle valve being fully opened
JPH01310146A (en) Ignition timing controller of internal combustion engine
JPH01208541A (en) Device for controlling fuel injection quantity of internal combustion engine