[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6090096A - Preparation of deoxidized water - Google Patents

Preparation of deoxidized water

Info

Publication number
JPS6090096A
JPS6090096A JP19706383A JP19706383A JPS6090096A JP S6090096 A JPS6090096 A JP S6090096A JP 19706383 A JP19706383 A JP 19706383A JP 19706383 A JP19706383 A JP 19706383A JP S6090096 A JPS6090096 A JP S6090096A
Authority
JP
Japan
Prior art keywords
water
microorganism
microorganisms
immobilized
respiration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19706383A
Other languages
Japanese (ja)
Other versions
JPH0581316B2 (en
Inventor
Takashi Inoue
井上 喬
Koichi Nakanishi
弘一 中西
Toshio Onaka
尾中 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP19706383A priority Critical patent/JPS6090096A/en
Publication of JPS6090096A publication Critical patent/JPS6090096A/en
Publication of JPH0581316B2 publication Critical patent/JPH0581316B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)

Abstract

PURPOSE:To lower the dissolved oxygen content in water efficiency, by bringing water to be deoxidized into contact with an immobilized microorganism obtained by immobilizing an aerobic or facultative anaerobic bacteria so as not to inhibit of its respiration action. CONSTITUTION:An aerobic or facultative anaerobic microorganism is immobilized in such a mode that its respiration action is not inhibited to prepare an immobilized microorganism. A water not substantially containing a nutritive substance or substrate to said microorganism is brought into contact with said immobilized microorganism to lower the dissolved oxygen content in water by the respiration action of the microorganism (1). Furthermore, it is also pref. that the aforementioned process (1) and a process (2) for bringing the immobilized microorganism into contact with water containing a nutritive substance to said microorganism, at the point of time the respiration action thereof is lowered to a predetermined level, to restore its respiration action are respectively performed at least one time.

Description

【発明の詳細な説明】 発明の背景 俗存酸素を除去した脱酸素水は、アルコール発酵等の各
種発酵によって得られる高濃度発酵液の希釈水、清涼・
果汁飲料等を製造する際の希釈水。
[Detailed Description of the Invention] Background of the Invention Deoxygenated water from which existing oxygen has been removed is commonly used as diluted water of highly concentrated fermented liquor obtained by various fermentations such as alcoholic fermentation, or as refreshing water.
Dilution water when producing fruit juice drinks, etc.

或いはこういった食品工業に於ける原料水、雑用水(洗
浄水、ゼイラー水等)などとしてその用途は幅広い。
Alternatively, it has a wide range of uses, such as raw water and miscellaneous water (washing water, Zeiler water, etc.) in the food industry.

このような脱酸素水の製造法としては真空法(Tecb
、 Quart、 Master Brew、 As5
− Amer、、 l 8.150゜1980 ) 、
加熱炭酸ガス吹き込み法(特開昭57−201583号
公ナリ、炭酸ガス吹き込み法(Tcch。
The vacuum method (Tecb) is a method for producing such deoxygenated water.
, Quart, Master Brew, As5
- Amer,, l 8.150°1980),
Heated carbon dioxide gas blowing method (Japanese Patent Application Laid-Open No. 57-201583, carbon dioxide gas blowing method (Tcch).

Quart、 Master Brew、 Ass、 
tuner−、18,136。
Quart, Master Brew, Ass.
tuner-, 18,136.

1981)、14素ガス吹き込み法(Eur、 Bre
w、 Conv、。
1981), 14 gas blowing method (Eur, Bre
w, Conv.

Proc、 Congr、 17 th、 Berli
n(West)、 245 、 1979 )などがよ
く知られている。しかし、これらの方法は、それぞれ兵
窒衷随、加熱装置、炭酸ガス吹き込み装置、窒素ガス吹
き退入装置、或いは水の脱イオ/装置、p過装置等の設
備が必些であって、g備コスト・ラノ二/グコストが大
きくなるという欠点があった。
Proc, Congr, 17th, Berli
n (West), 245, 1979), etc. are well known. However, each of these methods requires equipment such as a military equipment, a heating device, a carbon dioxide gas blowing device, a nitrogen gas blowing device, a water deionization device, a p-filtration device, etc. The disadvantage was that the preparation cost and running cost were high.

一力、酵母等の微生物を一定化して利用することは、既
に食品工業、医礒品工業、@療工学で)多くの分野で行
なわれている。ただし、これまでの同定化微生物の利用
は、その微生物の代謝経路を用いて何らかの物質を生産
したり分解したりする形でしか行7よりれなかった。
The use of microorganisms such as yeast in a constant manner has already been carried out in many fields (in the food industry, medical products industry, and medical engineering). However, until now, identified microorganisms have only been utilized in the form of producing or degrading some kind of substance using the metabolic pathway of the microorganism.

発明の鋭要 要旨 本発明者らも固定化微生物を用いた有用物質の生産を目
的として研究を行なってきたが、その過程で、固定化酵
母が全く栄養分を含まない水中でも長期にわたって呼吸
活動を持続して鹸存酸素を効率的に除くことならびに呼
吸活動の低下した微生物は栄養を与えることによって再
生されること。
Summary of the Invention The present inventors have also conducted research with the aim of producing useful substances using immobilized microorganisms, but in the process, it was discovered that immobilized yeast could continue to perform respiration activities for a long period of time even in water that did not contain any nutrients. To continuously and efficiently remove residual oxygen, and to regenerate microorganisms whose respiratory activity has decreased by providing nutrients.

を見出して、本発明に到った。They discovered this and arrived at the present invention.

従って、本発明による脱酸素水の製造法は、好゛ 気性
または通性嫌気性の微生物をその呼吸作用を阻害しない
態様で固定化したものからなる固定化微生物に脱酸素す
べき水(たyし、この水は、該微生物に対する栄養分な
いし基質を実質的に含まないものである)を接触させて
、該微生物の呼吸作用の結果として該水中の高存歳素股
を低下させること、を特徴とするものである。
Therefore, the method for producing deoxygenated water according to the present invention involves immobilizing aerobic or facultative anaerobic microorganisms in a manner that does not inhibit their respiration. and this water is substantially free of nutrients or substrates for the microorganisms) to reduce the longevity of the water as a result of the respiration of the microorganisms. It is something to do.

また、不発明によるもう一つの脱酸素水の製造法は、下
記の工8(1)および(2)をそれぞれ少なくとも1回
実施すること、を特徴とするものである。
Another uninvented method for producing deoxygenated water is characterized in that steps 8 (1) and (2) below are each carried out at least once.

(1) 好気性または通性嫌気性の微生物をその呼吸作
用を阻害しない態様で固定化したものからなる固定化微
生′吻に脱酸素すべき水(たyし、この水は、該微生物
に対する栄養分ないし−Mi質を実質的に含まないもの
である)/を接触させて。
(1) Water to be deoxygenated to the immobilized microorganism's proboscis, which consists of an aerobic or facultatively anaerobic microorganism immobilized in a manner that does not inhibit its respiration (this water is (substantially does not contain any nutrients or -Mi).

該微生物の1呼吸作用の結果として該水中の溶存取素敗
を低下させる工程、 (2) 該微生物の呼吸作用が所定レベルまで低下した
時点で、該固定化微生物な該微生物に対する栄養を含む
水と接触させてその呼吸作用を回復させる工程。
(2) reducing the dissolved waste in the water as a result of the respiration of the microorganism; (2) when the respiration of the microorganism has decreased to a predetermined level, the water containing nutrients for the immobilized microorganism; The process of restoring its respiratory action by bringing it into contact with.

効果 4′発明に従って、実質的に栄養の存在しない水中でも
固定化微生物がその呼吸活動を持続してこの水の溶q岐
糸駄を低下させることおよびそれが水の9酸素手段とし
て利用できること、ならびに呼吸活動が低下したときに
この固定化微生物を栄養を含む水と接触させれば再生さ
れることおよびそれが再生工程として利用できること、
が見出されたのであるが、これらはそれ自身が思いがげ
なかったことであるばかりで7“よく前記した従来の固
定化微生物の利用態様からいっても思いがけなかったこ
とと15ことができよう。
Effect 4' According to the invention, the immobilized microorganisms continue their respiration activity even in substantially nutrient-free water to lower the solubility of this water and that it can be used as a means of oxygenation of the water; and that this immobilized microorganism is regenerated by contacting it with nutrient-containing water when its respiratory activity decreases, and that it can be used as a regeneration process;
These findings were not only unexpected in themselves, but also unexpected considering the conventional usage of immobilized microorganisms as described above. Good morning.

本発明によれば、浴存酸素濃度がo −o、t ppm
8夏の脱酸素水を容易に製造することができる。
According to the present invention, the bath oxygen concentration is o - o, t ppm
8 summer deoxygenated water can be easily produced.

このようにして得られる脱酸素水は、使用微生物。The deoxygenated water thus obtained is used for microorganisms.

たとえば酵母、に出来するTOC(総有機炭素)の催か
な増加(通常2〜5 ppm) 、若干の酵母臭の付加
等が認められるが、これらは殺菌装置、除菌フィルター
、活性仄等による処理によって簡単にかつ完全に除去さ
れるので、実用に際しては特に問題はない。従って、本
発明によれば、前記した大規模かつ2/二/グコストの
高い設備1装に類を使う従来の脱酸素水装置の問題点を
解決したものということができる。
For example, a slight increase in TOC (total organic carbon) produced by yeast (usually 2 to 5 ppm) and the addition of a slight yeast odor are observed, but these can be treated with sterilizers, sterilizing filters, active agents, etc. Since it can be easily and completely removed by the method, there is no particular problem in practical use. Therefore, according to the present invention, it can be said that the problems of the conventional deoxygenated water apparatus, which uses a large-scale, high-cost equipment, and the like are solved.

3、発明の詳細な説明 脱酸素 本発明による脱酸素工程は、脱酸素すべき水を固定化微
生物と接触させることからなる。
3. Detailed Description of the Invention Deoxygenation The deoxygenation step according to the invention consists of contacting the water to be deoxygenated with immobilized microorganisms.

固定化微生物 本発明で使用する固定化微生物は、先ず微生物が好気性
または應性嫌気性のものであって、これをその呼吸作用
を阻′iしない帆泳で担持したものからなるものである
Immobilized microorganisms The immobilized microorganisms used in the present invention consist of microorganisms that are aerobic or anaerobic and are supported by a sail that does not impede their respiration. .

このよ5な固疋化做生′吻は各漣のものが公知であって
、先ず微生物としては酵母、カビ、細1などがあり、−
力固ボ用担体としてはアルギ/酸カル7ウム、カラギー
ナン1元架橋性A Ud、マノナノ、アイギョクンなど
がある。
These five types of hardened proboscis are well known, and first of all, there are microorganisms such as yeast, mold, and microorganisms.
Examples of solid carriers include alginate/calcium acid, mono-crosslinked carrageenan, Manonano, and Aigyokun.

このような固定化微生物は新開バイオリアクターとして
最近において特に注目を呆めているものであって、その
具体的な内容、たとえば固定化すべき微生物の桶、・A
、固定化方法、固定化物の形状等、は各棟の税、説およ
び成督に記載されており(たとえは、「発酵と工業」、
第35巻、第1〜5号参照〕本発明でも固定化する威生
゛吻が好気性または通性嫌気性のものであるという点に
対する配慮をするだけで従来公知固定化微生物を適宜使
用することができる。本発明で1−微生物をその呼吸作
用を阻′証しないmQで固定化した」とは、ノ々イオリ
アクターにおいて固定化微生物の生物活性を利用すべく
固定化する態様と本質的に同一の状態を意味する。
Such immobilized microorganisms have recently attracted particular attention as new bioreactors, and their specific contents, such as the tub of microorganisms to be immobilized,
, the immobilization method, the shape of the immobilized product, etc. are written in the tax, theory, and command of each building (for example, ``fermentation and industry'',
[Refer to Volume 35, Nos. 1 to 5] In the present invention, conventionally known immobilized microorganisms can be used as appropriate by simply taking into consideration that the proboscis to be immobilized is aerobic or facultatively anaerobic. be able to. In the present invention, "1-microorganisms are immobilized with mQ that does not inhibit their respiration" means essentially the same state as the mode of immobilization in order to utilize the biological activity of immobilized microorganisms in a Nononio reactor. means.

本発明で使用する固定化微生物の好ましい具体例は、微
生物が酵母であるものである。固定化担体としては、た
とえばアルギン酵カル/ウムがある。固定化酵母に関し
ては、上記の文献の外に、J、 In5t、Brew、
第84巻s m 22B −230頁(1978年)、
Enzyme Mitrob、 Technol、第5
巻、第41−45頁(1983年)、およびBrauw
issenschaft−第35巻。
A preferred specific example of the immobilized microorganism used in the present invention is one in which the microorganism is yeast. Examples of the immobilization carrier include alginic yeast calcium/aluminium. Regarding immobilized yeast, in addition to the above-mentioned references, J. In5t, Brew,
Volume 84 s m 22B-230 (1978),
Enzyme Mitrobe, Technol, 5th
vol., pp. 41-45 (1983), and Brauw.
issenschaft-Volume 35.

第254−258頁(1982年ン、その他を参照する
ことができる。
254-258 (1982) et al.

このような固定化酵母として使用すべき酵母としては、
 Saccbaromyces uvarum、 S 
、 cerevisiae等が挙げられる。栄養分の全
くない水中でも長時間にわたって活発な呼吸活動を続け
る株を選ぶことが望ましい。
Yeast that should be used as such immobilized yeast include:
Saccbaromyces uvarum, S
, cerevisiae and the like. It is desirable to select a strain that continues to actively respire for a long time even in water with no nutrients.

脱酸素に使用すべき微生物は実質的に栄養分を含まない
水中においてこの水の溶存酸素を消費させるべく使用す
るのであるから、このような!Jし餓状態において長時
間生存しうるためには、微生物は培養直後で栄誉分たと
えばグリコーゲンを細胞内に十分mMしたものであるこ
とが望ましI/h。なお、飢餓状態を緩和するために置
屋化担体に当該微生物に対する栄交分を含有させたり、
あるいは脱酸素すべき水に当該微生物に刈する栄゛大分
を少量添加することができる(詳細後記)。
This is because the microorganisms used for deoxygenation are used to consume dissolved oxygen in water that is virtually devoid of nutrients. In order for microorganisms to survive for a long period of time in a starved state, it is desirable that the microorganisms have a sufficient amount of glycogen, such as glycogen, in the cells immediately after being cultured. In addition, in order to alleviate the starvation state, the okiya-ized carrier may contain a nutritional component for the microorganism,
Alternatively, a small amount of a fertiliser, which is beneficial to the microorganisms, can be added to the water to be deoxidized (details will be described later).

脱阪系丁べぎ水 脱威素後の水は前記のような用途に使用すべきものであ
るから、抜だ41′発明は固定化微生物の代−(航′吻
として、■用vI質を生成しようとするものではないか
ら、本発明で対象とする脱酸素すべき水は使用敢生物に
対する栄養分ないし基質乞実質的に含まないものでk)
る。ここで「実質的に含まない」ということは、脱叡素
実施阪の水に彼処12Iizl(由来の栄養分ないし基
質あるいはその代謝産物が実質的に会まれないというこ
とy11′意味するのであって、使用微生物の過度の飢
餓状態を緩和してその生存ろ状態を延址するため少量の
栄養分を彼処理水に添加してもよいことは前記した通り
である。
Since the deoxidized water should be used for the above-mentioned purposes, the present invention is based on the use of vI quality as a substitute for immobilized microorganisms. Therefore, the water to be deoxidized, which is the object of the present invention, is substantially free of nutrients or substrates for the organisms that use it.
Ru. Here, "substantially free of" means that substantially no nutrients or substrates or their metabolites are present in the water from the area where silicon has been removed. As mentioned above, small amounts of nutrients may be added to the treated water in order to alleviate excessive starvation of the microorganisms used and to prolong their survival.

本発明で対象とする脱酸素すべき水は、典型的には、水
道水、井戸水ないし地下水等である。
The water to be deoxidized that is the object of the present invention is typically tap water, well water, groundwater, or the like.

脱酸素工程 脱酸素工程は、固定化微生物をパイオリアククーとして
使用する従来公知の技術と本質的には異ならない態様で
実施することができる。従って、粒状、糸状、腺状等の
形状にした固定化微生物を固定床、移動床または流動床
の状態で被処理水と接触させればよい。具体的には、粒
状の固定化微生物を筒状容器に充填してなる脱酸素カラ
ムを1本または被数本t@列および(または)並列に連
結して、被処理水を通過させればよい。
Deoxidation Step The deoxidation step can be carried out in a manner essentially not different from conventionally known techniques in which immobilized microorganisms are used as a bioreactor. Therefore, immobilized microorganisms in the form of granules, threads, glands, etc. may be brought into contact with the water to be treated in a fixed bed, moving bed, or fluidized bed. Specifically, if one or several deoxidizing columns made of granular immobilized microorganisms are packed in a cylindrical container are connected in rows and/or in parallel, the water to be treated can be passed through. good.

脱酸素工程の温度は、使用微生物が適当な呼吸速度で艮
期間その呼吸1fi動を持続できる範囲の温度であるこ
とが望ましい。固定化微生物と被処理水との接触時間は
所定の脱酸素効果が得られるのに十分なものでなければ
ならない。この時間は、所与の微生物種、被処理水の酸
素濃度、脱酸素工aS度等に応じて、簡単な実験によっ
て容易に知ることかできよう。
The temperature in the deoxidation step is preferably within a range that allows the microorganisms used to maintain their respiration for a period of time at an appropriate respiration rate. The contact time between the immobilized microorganisms and the water to be treated must be sufficient to obtain the desired deoxidizing effect. This time can be easily determined by a simple experiment depending on the given microorganism species, the oxygen concentration of the water to be treated, the degree of oxygen removal process, etc.

脱酸素処理後は、呼吸作用の結果生成した二酸化炭素除
去のだめの加熱ないし減圧印加、その他の後処理を必要
に応じて行なうことができる。
After the deoxygenation treatment, heating or application of reduced pressure to the reservoir for removing carbon dioxide produced as a result of respiration, and other post-treatments may be performed as necessary.

(14生 本発明の脱酸素は、使用微生物の飢餓状態において行な
うので、使用微生′吻の備蓄栄養が消費されると呼吸活
性が低下してくる。
(14 days) Since the deoxygenation of the present invention is carried out in a starved state of the microorganism used, the respiratory activity of the microorganism decreases as the stored nutrients in the proboscis of the microorganism used are consumed.

使用微生物の呼吸活性があるレベルまで低下した時点、
たとえば、最終宕存!¥素濃度が0 、1 ppmを下
まわらなくなった時点、でその微生′吻に対する栄責分
5たとえば使用i奴生′吻が酵母の場合には麦汁等、を
被処理水に加えてやると、微生物は栄養分乞摂嘔して菌
体内にグリコーゲノを畜えて。
When the respiratory activity of the microorganism used has decreased to a certain level,
For example, Final Survival! At the point when the elemental concentration does not fall below 0.1 ppm, add nutrients to the microorganisms, such as wort, etc., to the water to be treated if the microorganisms are yeast. When this happens, the microorganisms absorb nutrients and accumulate glycogeno within their bodies.

呼吸活性を回復する。Restores respiratory activity.

このような再生工程は脱献素工程と別個に、すなわち両
工程を交互に、両工程をそれぞれ少なくとも一回実施す
ることがふつうである。なお、可能ならば1両工程を別
個に実施する代りに脱赦累工程中に少量の栄養分を添加
することによって再生工程(ないし呼吸活性低下防止〕
乞同時に実施してもよいことは前6cシた通りである。
Such a regeneration step is usually carried out separately from the deionization step, ie both steps are carried out alternately, at least once each. In addition, if possible, instead of performing both steps separately, a small amount of nutrients may be added during the remission step to prevent the regeneration step (or to prevent a decrease in respiratory activity).
However, as mentioned in 6c above, it may be implemented at the same time.

実験例 実施例1 容tit1800cm3(φ7 cm X47 Cm)
の円筒カラムに1%アルギ/酸カルクウムで添加率30
%で固定化したビール酵母(S accbc:ro+n
yces uvarum )を3 mm径のビーズ状に
成形し、充填率80%で充填した。
Experimental Example Example 1 Volume tit 1800cm3 (φ7cm x 47cm)
A cylindrical column with 1% algium/calcium acid added at a loading rate of 30
Brewer's yeast (S accbc: ro + n
yces uvarum) was formed into beads with a diameter of 3 mm and filled with a filling rate of 80%.

2℃において反16器に毎時1200〜2200cm3
(D市水(宕存酸素14ppm)を流速31.2〜57
.20m/hr で流した。円筒カラム出口からは、潴
存酸素症度0〜Q、1pprnの脱酸素水が印日以上安
定的に得られた。
1200-2200cm3 per hour at 2℃
(D city water (remaining oxygen 14 ppm) flow rate 31.2 ~ 57
.. The flow rate was 20m/hr. From the outlet of the cylindrical column, deoxygenated water with a residual oxygen level of 0 to Q and 1 pprn was stably obtained over India and Japan.

なお、アルギ/l&カルシウムゲルへの・酵母の同定化
法は、次の通りである。まず、前駆体としてのlチアル
ギン酸す) IJウム水溶液1oo1n1に301のビ
ール酵母を加え、酵母懸濁液とする。これを0.1 M
塩化力ルシクム水溶液中に滴下し、直径3■のピース状
の固定化酵母を得る。
The method for identifying yeast on Algi/L&calcium gel is as follows. First, 301 brewer's yeast is added to 101n1 of an aqueous solution of l-thialginic acid as a precursor to obtain a yeast suspension. This is 0.1 M
The mixture is dropped into an aqueous solution of Lucicum chloride to obtain a piece-shaped immobilized yeast with a diameter of 3 cm.

実施例2 容11500 cm (φ5cxnX’26cm)の円
筒カラムに、10%アイギョクンで添加率10%で固定
化したビーJV ifg母(S accharomyc
es uvarum ) tx 5 mmの角のサイコ
ロ状に成形したものを、充填率ω%で充填した。2℃に
おいて、反応器に毎時250〜400cm30市水(溶
存1友累濃夏11 pp+n )をυi乙した。円筒状
カラム出口からは、?稈存酸素謡度θ〜0.3ppm。
Example 2 In a cylindrical column with a volume of 11500 cm (φ5cxn
es uvarum ) tx 5 mm square cubes were filled at a filling rate of ω%. At 2[deg.] C., 250-400 cm30 city water (11 pp+n dissolved in water) was added to the reactor per hour. From the cylindrical column outlet? Culm existing oxygen degree θ ~ 0.3 ppm.

脱L・ν話水が60日以上女定的に・得られた。De-L/ν talk water was obtained consistently for more than 60 days.

なお、アイギョクシゲルへの酵母の同定化法は矢の通り
である。まず、ビール酵母logを100m1の水に)
静濁させ、これにアイギョク7痩果[Ogを加えて加℃
で即分間攪拌した後、直ちにガーゼにて絞って固形物を
取除く。次に、得られたゾルを板状に引延ばし、これに
0.05 M Ca1l□水me、を加えて2時間放置
してゲル化させる。このゲルを5mm角のサイコロ状に
切断し、更に一昼夜0−05 M Ca C12水G液
中に浸漬して、同定化酵母を得る。
The method for identifying yeast in Aigyokushi gel is as shown in the arrow. First, add brewer's yeast log to 100ml of water)
Let it remain still, add 7 Aigyoku achenes [Og] and heat it.
After stirring for a minute, immediately squeeze with gauze to remove solids. Next, the obtained sol is stretched into a plate shape, and 0.05 M Ca1l water me is added thereto and left to stand for 2 hours to gel. This gel is cut into 5 mm square dice and further immersed in a 0-05 M Ca C12 water G solution for one day and night to obtain identified yeast.

出願人代理人 猪 股 清Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】 1、好気性または通性嫌気性の微生物なその呼吸作用を
阻害しない態様で固定化したものからなる固定化微生物
に脱酸素すべき水(たyし、この水は、該微生物に対す
る栄養分ないし基質を実質的に含まないものである)を
」妾・独させて、該微生物の呼吸作用の結果として該水
中の6存酸素址を低下させることを特徴とする。脱酸素
水の製造法。 2、微生物が酵母である。lrケ許請求の範囲第1項に
記載の方法。 3、下記の工程(1)および(2)をそれぞれ少なくと
も1回実施することをq:J′徴とする、脱酸素水の製
造法。 il+ 好気性または通性η11〔気性の微生物をその
呼吸作用を阻害しない態様で固定化したものからなる固
定化微生物に脱酸素すべき水(たyし、この水は、該微
生物に対する栄養分ないし基質を実質的に含まないもの
である)Iを接触させ【、該微生物の呼吸作用の結果と
して該水中の爵存鐵素量を低下させる工程、(21該微
生物の呼吸作用が所定レベルまで低下した時点で、該固
定化微生物を該微生物に対する栄養を含む水と接触させ
てその呼吸作用を回復させる工程。 4、 *生物が酵母である、特許請求の範囲第3項に記
載の方法。
[Scope of Claims] 1. Water to be deoxygenated to immobilized microorganisms consisting of aerobic or facultatively anaerobic microorganisms immobilized in a manner that does not inhibit their respiration (this water, however, The method is characterized in that the amount of oxygen present in the water is reduced as a result of the respiration of the microorganisms by absorbing the water (substantially free of nutrients or substrates for the microorganisms). Method for producing deoxygenated water. 2. The microorganism is yeast. 1. The method according to claim 1. 3. A method for producing deoxygenated water, characterized in that q:J' comprises carrying out each of the following steps (1) and (2) at least once. il+ Aerobic or facultative η11 [Water to be deoxidized by immobilized microorganisms, consisting of aerobic microorganisms immobilized in a manner that does not inhibit their respiration (this water does not contain nutrients or substrates for the microorganisms) (21) A step in which the amount of iron present in the water is reduced as a result of the respiration of the microorganism (21) when the respiration of the microorganism has decreased to a predetermined level. 4. The method according to claim 3, wherein the immobilized microorganism is brought into contact with water containing nutrients for the microorganism to restore its respiration. 4. *The method according to claim 3, wherein the organism is yeast.
JP19706383A 1983-10-21 1983-10-21 Preparation of deoxidized water Granted JPS6090096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19706383A JPS6090096A (en) 1983-10-21 1983-10-21 Preparation of deoxidized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19706383A JPS6090096A (en) 1983-10-21 1983-10-21 Preparation of deoxidized water

Publications (2)

Publication Number Publication Date
JPS6090096A true JPS6090096A (en) 1985-05-21
JPH0581316B2 JPH0581316B2 (en) 1993-11-12

Family

ID=16368094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19706383A Granted JPS6090096A (en) 1983-10-21 1983-10-21 Preparation of deoxidized water

Country Status (1)

Country Link
JP (1) JPS6090096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265792A (en) * 1985-09-18 1987-03-25 Kurita Water Ind Ltd Biological treatment of water containing trace organic material
JPS62106822A (en) * 1985-11-01 1987-05-18 Cosmo Shokuhin Kk Desulfurizing method utilizing sulfur oxidizing
WO2004108612A1 (en) * 2003-06-10 2004-12-16 Valois Andre Biological deoxygenation method and uses thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265792A (en) * 1985-09-18 1987-03-25 Kurita Water Ind Ltd Biological treatment of water containing trace organic material
JPH0128637B2 (en) * 1985-09-18 1989-06-05 Kurita Water Ind Ltd
JPS62106822A (en) * 1985-11-01 1987-05-18 Cosmo Shokuhin Kk Desulfurizing method utilizing sulfur oxidizing
JPH0156813B2 (en) * 1985-11-01 1989-12-01 Kosumo Shokuhin Kk
WO2004108612A1 (en) * 2003-06-10 2004-12-16 Valois Andre Biological deoxygenation method and uses thereof

Also Published As

Publication number Publication date
JPH0581316B2 (en) 1993-11-12

Similar Documents

Publication Publication Date Title
Margaritis et al. Advances in ethanol production using immobilized cell systems
FI88174C (en) Process for immobilizing microorganisms, porous inorganic carcasses grown with microorganisms and useful berry calls
Frankenberger Jr et al. Bacterial effects on hydraulic conductivity of soils
JPS5836959B2 (en) Method for producing palatinose using immobilized α-glucosyltransferase
Lee et al. Citric acid production by Aspergillus niger immobilized on polyurethane foam
JPH02276583A (en) Production of ethanol product
Zheng et al. Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier
US5286385A (en) Method for removing nitrogen from an aqueous solution
US3794582A (en) Process for aerating biological suspensions
JPS6215198B2 (en)
JPS6090096A (en) Preparation of deoxidized water
US6395177B1 (en) Process and apparatus for decoloring liquids and water product thereof
US3737323A (en) Continuous fermentation process for producing alcoholic beverages
JPH01225487A (en) Method for utilizing cellulose in bioreactor carrier aiming at production of citric or gluconic acid with aspergillus niger
CN113564153A (en) Immobilized biocatalyst and preparation method and application thereof
DK144277B (en) FIVE-METHOD OF PREPARING 6-AMINOPENICILLANIC ACID
JPS6178374A (en) Continuous fermentation system using immobilized proliferated microorganism
JPH06319515A (en) Method and device for production of nonalcoholic beer
Shen et al. Denitrification of PVA-immobilized denitrifying photosynthetic bacterium, Rhodobacter sphaeroides
JPH0773710B2 (en) Treatment method of beer manufacturing process waste liquid by methane fermentation
JPS60149377A (en) Apparatus for conducting conversion by microorganism
US2524200A (en) Continuous method of conducting microbiological processes
Nedovic et al. Immobilized cell technology (ict) in beer fermentation–a possibility for environmentally sustainable and cost-effective process
JPS6014996A (en) Treatment of waste water produced in food manufacture and the like
JPS633596B2 (en)