[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6088830A - Method of controlling operation characteristic quantity for operation control means of internal-combustion engine - Google Patents

Method of controlling operation characteristic quantity for operation control means of internal-combustion engine

Info

Publication number
JPS6088830A
JPS6088830A JP19689183A JP19689183A JPS6088830A JP S6088830 A JPS6088830 A JP S6088830A JP 19689183 A JP19689183 A JP 19689183A JP 19689183 A JP19689183 A JP 19689183A JP S6088830 A JPS6088830 A JP S6088830A
Authority
JP
Japan
Prior art keywords
engine
characteristic quantity
operating
value
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19689183A
Other languages
Japanese (ja)
Inventor
Takashi Koumura
隆 鴻村
Toyohei Nakajima
中島 豊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP19689183A priority Critical patent/JPS6088830A/en
Priority to US06/646,684 priority patent/US4513713A/en
Priority to DE19843432379 priority patent/DE3432379A1/en
Priority to GB08422454A priority patent/GB2146142B/en
Priority to FR8413720A priority patent/FR2551498B1/en
Publication of JPS6088830A publication Critical patent/JPS6088830A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To smoothly operate an engine, by changing two engine operation parameters for each other to use one of them when the engine is shifted to a low-load operation from another operation. CONSTITUTION:A throttle valve sensor 17 and an absolute pressure (PBA) sensor 12 are provided so that these two sensors are used to control an engine when it is shifted from a low-load operation from another operation. Until a control quantity corresponding to the degree of opening of a throttle valve and a control quantity corresponding to the absolute pressure PBA become equal to each other, the engine is controlled on the basis of the former control quantity. After both the control quantities have become equal to each other, the engine is controlled on the basis of the latter control quantity. Such low-load operation of the engine as idling is thus smoothed.

Description

【発明の詳細な説明】 本発明は内燃エンジンの作動制御手段の動作特性量制御
方法に関し、特にエンジンの所定低負荷運転時に作動制
御手段の動作特性量制御値をエンジンの作動状態に応じ
た最適値に設定してエンジンの作動の円滑化を図った動
作特性量制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling an operating characteristic quantity of an operation control means of an internal combustion engine, and in particular, to optimize an operating characteristic quantity control value of an operation control means during a predetermined low load operation of the engine according to the operating state of the engine. The present invention relates to a method of controlling an operating characteristic quantity in order to smoothen the operation of an engine by setting the value to a certain value.

従来、負荷状態を表わすエンジン制御パラメータ、例え
ば吸気管内絶対圧とエンジン回転数とに応じてエンジン
の作動を制御する作動制御手段の動作特性量、例えば燃
料供給量制御装置によジエンジンに供給される燃料量、
点火時期制御装置によシ制御される火花点火時期、排気
還流制御装置によシ制御される排気還流量等を決定し、
斯く決定された動作特性量を吸気温度、エンジン冷却水
温等に応じて補正し所要の動作特性量を正確に設定する
方法が例えば特開昭57−137633号、特開昭53
−8434号等によυ知られている。
Conventionally, operating characteristic quantities of an operation control means for controlling engine operation according to engine control parameters representing load conditions, such as intake pipe absolute pressure and engine rotational speed, are supplied to an engine by a fuel supply amount control device, for example. amount of fuel,
Determine the spark ignition timing controlled by the ignition timing control device, the exhaust gas recirculation amount controlled by the exhaust gas recirculation control device, etc.
A method of correcting the thus determined operating characteristic quantity according to the intake air temperature, engine cooling water temperature, etc. to accurately set the required operating characteristic quantity is disclosed in, for example, JP-A-57-137633 and JP-A-53.
It is known from No.-8434 etc.

又、エンジンの吸気通路の容積、特にスロットル弁下流
側通路部分の容積を大きく設計し、吸入空気の吸気通路
の流通時に生じる吸入空気の圧力損失を極力小さく抑え
て吸入空気の充填効率を高め、もってエンジン出力の増
大等のエンジン特性の向上を計る方法も知られている。
In addition, the volume of the engine's intake passage, especially the volume of the passage on the downstream side of the throttle valve, is designed to be large to minimize the pressure loss of the intake air that occurs when the intake air flows through the intake passage, thereby increasing the filling efficiency of the intake air. There are also known methods for improving engine characteristics such as increasing engine output.

しかるに、スロットル弁下流側の吸気通路部分の容積全
増大させることはエンジンアイドル時等の低負荷運転時
にエンジン回転数の変化度合に対する吸気管内絶対圧の
変化度合を小さくさせることになシ、このため上述の吸
気管内絶対圧とエンジン回転数とに応じて動作特性量を
決定する方法(一般に「スピードデンシティ法」と称さ
れるので以下単に「SD法」と称す)に依れば、燃料量
等の動作特性量をエンジン運転状態に適応して正確に設
定することが困難となシ、エンジン回転数のハンチング
現象が生じ易い。このためスロットル弁上流側圧力PA
’と下流側圧力PBhとの圧力比(P n A/’P 
A ’ )が音速流を生じさせる臨界圧力比(0,52
8)以下となるエンジン低負荷運転時には、スロットル
弁を通過する吸入空気量はスロットル弁下流側圧力Pn
Aや排気圧力には依存せず、スロットル弁の開口面積の
みに依存して決定することが出来ることに着目し、かか
るエンジン低負荷運転時にはスロットル弁の弁開度のみ
を検出して低負荷時に吸入空気針を正確に検出し、該検
出吸入空気量に基いて燃料流量等の動作特性量をめる方
法(以下「KMe法」と称す)が特公昭52−6414
により提案されている。
However, increasing the total volume of the intake passage downstream of the throttle valve does not reduce the degree of change in the absolute pressure in the intake pipe with respect to the degree of change in engine speed during low-load operation such as when the engine is idling. According to the above-mentioned method of determining operating characteristic quantities according to the absolute pressure in the intake pipe and the engine speed (generally referred to as the "speed density method", hereinafter simply referred to as the "SD method"), the amount of fuel, etc. It is difficult to accurately set the operating characteristic quantity in accordance with the engine operating condition, and a hunting phenomenon of the engine speed is likely to occur. Therefore, the throttle valve upstream pressure PA
' and downstream pressure PBh (P n A/'P
A') is the critical pressure ratio (0,52
8) During low-load engine operation, the amount of intake air passing through the throttle valve is equal to the pressure Pn on the downstream side of the throttle valve.
Focusing on the fact that it can be determined only by the opening area of the throttle valve without depending on A method of accurately detecting the intake air needle and calculating operating characteristics such as fuel flow rate based on the detected intake air amount (hereinafter referred to as the "KMe method") was published in Japanese Patent Publication No. 52-6414.
proposed by.

然るに、エンジンのアイドル運転状態等の所定低負荷運
転状態を検出し、エンジンが該所定低負荷運転状態以外
の状態から所定低負荷運転状態に移行したことを検出す
ると同時に、例えば燃料噴射量の設定方法を前述のSD
法からKMe法に切換えると燃料噴射量の急変によジエ
ンジンショックが発生したり、エンジンストールが生じ
る場合がある。
However, when a predetermined low-load operating state such as an idle operating state of the engine is detected and it is detected that the engine has transitioned from a state other than the predetermined low-load operating state to the predetermined low-load operating state, for example, the fuel injection amount is set. The SD method described above
When switching from the KMe method to the KMe method, engine shock or engine stall may occur due to sudden changes in the fuel injection amount.

第1図はこれらの不都合が生じる様子を説明する線図で
あシ、今、エンジンがアイドル点Aから加速元通してB
点に至シ、その後発進が中止されて再びアイドル点Aに
戻る場合を想定する。アイドル点Aはスロットル弁が全
閉位置にあるスロットル弁開度一定・alの作動ライン
上にある。スロットル弁開度IT)lが全閉位置の・a
lからθ2に開弁されると作動ラインエに沿ってエンジ
ン回転数は一旦上昇するがクラッチの接続によってエン
ジン負荷が増大し、このためエンジン回転が減少してス
ロットル弁開度I2一定の作動ライン上にあるB点に至
る。この作動ライン■に溢うエンジンの作動時にはスロ
ットル弁が開弁されて加速状態にあるのでエンジンへの
燃料噴射量の設定は前記SD法によシ行力われる。
Figure 1 is a diagram explaining how these inconveniences occur. Now, the engine is accelerating from idle point A to B.
Assume that the vehicle reaches the idle point A, then stops the start and returns to the idle point A again. Idle point A is on the operating line where the throttle valve opening is constant and the throttle valve is in the fully closed position. Throttle valve opening degree IT)l is fully closed position・a
When the valve is opened from 1 to θ2, the engine speed increases once along the operating line, but the engine load increases due to the engagement of the clutch, so the engine speed decreases and the engine speed increases along the operating line where the throttle valve opening is constant. Reach point B at . When the engine overflows into the operating line (2), the throttle valve is opened and the engine is in an accelerating state, so the fuel injection amount to the engine is set by the SD method.

次いで、スロットル弁が弁開変電θ2から・alに閉弁
されると共にクラッチが再びオフにされると、エンジン
は所定低負荷運転状態にあると判別される。本発明にお
ける該所定低負荷運転状態は、例えば、スロットル弁開
度がエンジンの加速状態を判別する所定開度以下であり
、スロットル弁下流側の吸気管内絶対圧がスロットル弁
部において音速流を生じさせる基準圧力PRAC以下で
且つエンジン回転数がアイドル回転数よシ大きい所定回
転数NIDL以下である運転状態であシ、二/ジ/が上
記所定低負荷運転状態にあることが検出されたときに燃
料噴射量の設定方法をSD法から前記KMe法に直ちに
切換えてしまうと、8点上にあるエンジンにはスロット
ル弁開度・alに応じた燃料量、すなわちスロットル弁
全閉定常作動ライン〃、l上のB点と同じエンジン回転
数であるB′点に対応する燃料量しか供給され々いこと
になシ、エンジンに供給される混合気はり一ン化し、エ
ンジン回転数は作動ラインHに沿って急激に低下し、場
合によってはエンジンストールを生じさせる。
Next, when the throttle valve is closed from the valve opening voltage transformation θ2 to -al and the clutch is turned off again, it is determined that the engine is in a predetermined low-load operating state. The predetermined low-load operating state in the present invention is, for example, when the throttle valve opening is less than or equal to a predetermined opening for determining the acceleration state of the engine, and the absolute pressure in the intake pipe on the downstream side of the throttle valve causes a sonic flow in the throttle valve portion. When it is detected that the engine is in the predetermined low-load operating state in an operating state in which the reference pressure PRAC is lower than the reference pressure PRAC and the engine speed is below the predetermined rotation speed NIDL, which is higher than the idling speed. If the method for setting the fuel injection amount is immediately switched from the SD method to the KMe method, the engine at 8 points will have a fuel amount corresponding to the throttle valve opening/al, that is, the throttle valve fully closed steady operation line. Since only the amount of fuel corresponding to point B', which is the same engine speed as point B on l, is supplied, the air-fuel mixture supplied to the engine becomes uniform, and the engine speed reaches the operating line H. This can cause the engine to stall in some cases.

又、第1図の作動ライン■はエンジンの始動時のそれを
示し、エンジン停止状態を示す0点からスタータの作動
及びその後のエンジン自立運転によってスロットル弁全
閉定常作動ラインθlと異る作動ライン■に涜りてアイ
ドル点Aに向う。これはエンジンのスロットル弁下流側
通路部の容積を前述の通シ大きく設計しているために吸
気管内圧力が急激には低下しないためである。この作動
ライン■に治ってエンジンがアイドル点Aに向う途中に
おいて、吸気管内絶対圧PBAが前記基準圧FBAC以
下となって前記所定低負荷運転状態が検出されたとき(
作動ライン■上のD点)、燃料量の設定方法をSD法か
らKMe法に直ちに切換えてしまうとD点上にあるエン
ジンにはスロットル弁全閉定常作動ジインθ1上のD点
と同じエンジン回転数であるD′点に対応する燃料量し
か供給されないととにカリ、前述と同様に混合気かり一
ン化してエンジンのアイドル点までの到達が遅れたり(
第1図の作動ラインIll’)、場合によってはエンジ
ンストールが生じる。
In addition, the operating line ■ in Fig. 1 shows the operating line when the engine is started, and the operating line differs from the throttle valve fully closed steady operating line θl due to starter operation and subsequent engine self-sustaining operation from the 0 point indicating the engine stopped state. ■Head to idle point A. This is because the volume of the downstream passage of the engine throttle valve is designed to be large as described above, so that the pressure inside the intake pipe does not drop suddenly. When the absolute pressure PBA in the intake pipe falls below the reference pressure FBAC and the predetermined low-load operating state is detected (
If the fuel amount setting method is immediately switched from the SD method to the KMe method, the engine at point D will have the same engine speed as at point D on the throttle valve fully closed steady operation input θ1. If only the amount of fuel corresponding to point D' is supplied, as mentioned above, the mixture will become uniform and the engine will be delayed in reaching the idle point (
1), an engine stall may occur.

更に、エンジンが例えば長い緩やかな下り坂を下る定常
運転状態にあって第1図のスロットル弁全閉定常作動ラ
インθ、1上のE点に留まっているとする。このような
運転状態から急にエンジンブレーキを掛ける等によりエ
ンジン回転数が急激に低下した場合、吸気管内絶対圧P
B人は吸気通路が大容積に設計されているために急激に
は上昇せずこのため第1図の作動2インθ1よシ低負荷
側の作動ライン■に溢ってアイドル点Aに向う。この作
動ライン■に沿ってエンジンがアイドル点Aに向う途中
において、エンジン回転数Neが前記所定回転数NID
L以下となって前記所定低負荷運転状態が検出されたと
き、直ちに燃料量の設定方法をSD法からKMe法に切
換えてしまうと、上述の始動時の場合とは逆に過剰な燃
料量がエンジンに供給されることになり、エンジンに供
給される燃料量の急変によって所謂エンジンショックを
生じ運転状態を阻害することになる。
Further, suppose that the engine is in a steady operating state, for example, going down a long gentle downhill slope, and remains at point E on the throttle valve fully closed steady operating line θ,1 in FIG. If the engine speed suddenly drops due to sudden application of engine brake under such operating conditions, the intake pipe absolute pressure P
Person B does not rise rapidly because the intake passage is designed to have a large volume, so it overflows into the operating line (2) on the low load side from the operating 2-in θ1 in FIG. 1 and heads toward the idle point A. While the engine is moving toward the idle point A along this operating line
If the fuel amount setting method is immediately switched from the SD method to the KMe method when the predetermined low load operating state is detected, contrary to the case at the time of starting mentioned above, an excessive amount of fuel may be generated. A sudden change in the amount of fuel supplied to the engine causes so-called engine shock, which disturbs the operating condition.

本発明はかかる不都合を回避せんがためになされたもの
で内燃エンジンの作動制御手段の動作特性、量を電子的
に制御する動作特性量制御方法において、エンジンの所
定低負荷運転状態を検出し、エンジンが該所定低負荷運
転状態にあるとき、エンジンの負荷状態を表わす第1の
エンジン運転パラメータ値を検出し、該検出した第1の
エンジン運転パラメータ値によシ前記動作特性量の制御
値を決定し、エンジンが前記所定低負荷運転状態以外の
状態にあるとき、エンジンの負荷状態を表わす第2のエ
ンジン運転パラメータ値を検出し、該検出した第2のエ
ンジン運転パラメータ値によシ前記動作特性量の制御値
を決定し、エンジンが前記所定低負荷運転状態以外の状
態から前記所定低負荷運転状態へ移行したことを検出し
たとき、前記第1及び第2のエンジン運転パラメータ検
出値の両者によシ夫々第1及び第2動作特性量制御値を
め請求めた第2動作特性量制御値が前記第1動作特性量
制御値に実質的に一致するに至るまでの間は前記第2の
エンジン運転パラメータ検出値によ多動作特性量制御値
を決定し、前記作動制御手段の動作特性量を斯く決定し
た動作特性量制御値に制御するようにしてアイドル運転
等の低負荷運転時にエンジンの円滑にして安定した作動
を得るようにした内燃エンジンの作動制御手段の動作特
性量制御方法を提供するものである。
The present invention has been made to avoid such inconveniences, and includes a method for electronically controlling the operating characteristics and quantities of the operating control means of an internal combustion engine, which includes: detecting a predetermined low-load operating state of the engine; When the engine is in the predetermined low load operating state, a first engine operating parameter value representing the engine load state is detected, and the control value of the operating characteristic quantity is determined based on the detected first engine operating parameter value. and when the engine is in a state other than the predetermined low load operating state, detecting a second engine operating parameter value representing the engine load state, and performing the operation based on the detected second engine operating parameter value. When determining the control value of the characteristic quantity and detecting that the engine has transitioned from a state other than the predetermined low-load operating state to the predetermined low-load operating state, both the first and second engine operating parameter detected values Until the second operating characteristic quantity control value, which is obtained by requesting the first and second operating characteristic quantity control values, respectively, substantially matches the first operating characteristic quantity control value, the second operating characteristic quantity control value is A multi-operating characteristic quantity control value is determined based on the engine operating parameter detected value, and the operating characteristic quantity of the operation control means is controlled to the thus determined operating characteristic quantity control value. An object of the present invention is to provide a method for controlling an operating characteristic quantity of an operation control means for an internal combustion engine, which achieves smooth and stable operation.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の方法が適用された内燃エンジンの燃料
噴射制御装置の全体を略示する構成図であシ、符号lは
例えば4気筒の内燃エンジンを示し、エンジylには開
口端にエアクリーナ2を取ル付けた吸気管3と排気管4
が接続されている。
FIG. 2 is a block diagram schematically showing the entire fuel injection control device for an internal combustion engine to which the method of the present invention is applied. Reference numeral l indicates, for example, a four-cylinder internal combustion engine, and the engine yl has an open end. Intake pipe 3 and exhaust pipe 4 with air cleaner 2 attached
is connected.

吸気管3の途中にはスロットル弁9が配置され、このス
ロットル弁9の下流の吸気管3に開口し大気に連通ずる
空気通路8が配設されている。空気通路8の大気側開口
端にはエアクリーナ7が取シ付けられ又、空気通路8の
途中には補助空気量制御弁(以下単に「制御弁」という
)6が配置されている。この制御弁6は常閉型の電磁弁
であシ、ソレノイド6aとソレノイド6aの付勢時に空
気通路8を開成する弁6bとで構成され、ソレノイド6
aは電子コントロールユニット(以下「EcU」という
)5に電気的に接続されている。
A throttle valve 9 is arranged in the middle of the intake pipe 3, and an air passage 8 that opens into the intake pipe 3 downstream of the throttle valve 9 and communicates with the atmosphere is arranged. An air cleaner 7 is attached to the open end of the air passage 8 on the atmosphere side, and an auxiliary air amount control valve (hereinafter simply referred to as "control valve") 6 is disposed in the middle of the air passage 8. The control valve 6 is a normally closed solenoid valve, and is composed of a solenoid 6a and a valve 6b that opens the air passage 8 when the solenoid 6a is energized.
a is electrically connected to an electronic control unit (hereinafter referred to as "EcU") 5.

吸気管3のエンジンlと前記空気通路8の開口8a間に
は燃料噴射弁10が設けられておシ、この燃料噴射弁1
0は図示しない燃料ポンプに接続されていると共にEC
U3に電気的に接続されている。
A fuel injection valve 10 is provided between the engine l of the intake pipe 3 and the opening 8a of the air passage 8.
0 is connected to a fuel pump (not shown) and EC
Electrically connected to U3.

前記スロットル弁9にはスロットル弁開度センサ17が
、吸気管3の前記空気通路8の、開口8a下流には吸気
温度センサ11及び吸気管内絶対圧センサ12が、エン
ジン1本体にはエンジン冷却水温センサ13及びエンジ
ン回転数センサ14が夫々取シ付けられ、各センサはE
C(J5に電気的に接続されている。符号15は例えば
ヘッドライト、ブレーキライト、ラジェータ冷却用ファ
ン等の電気装置を示し、電気装置15の一接続端子はス
イッチ16を介してECU3に電気的に接続される一方
、他の接続端子はバッテリ19に接続されている。符号
18は大気圧を検出する大気圧センサを示し、大気圧セ
ンサ18からの大気圧信号がECU3に供給される。
A throttle valve opening sensor 17 is installed in the throttle valve 9, an intake air temperature sensor 11 and an intake pipe absolute pressure sensor 12 are installed downstream of the opening 8a in the air passage 8 of the intake pipe 3, and an engine cooling water temperature sensor 12 is installed in the engine 1 body. A sensor 13 and an engine speed sensor 14 are respectively attached, and each sensor is
C (electrically connected to J5. Reference numeral 15 indicates an electrical device such as a headlight, a brake light, a radiator cooling fan, etc., and one connection terminal of the electrical device 15 is electrically connected to the ECU 3 via a switch 16. while the other connection terminal is connected to the battery 19. Reference numeral 18 indicates an atmospheric pressure sensor that detects atmospheric pressure, and an atmospheric pressure signal from the atmospheric pressure sensor 18 is supplied to the ECU 3.

次に上述のように構成される燃料噴射制御装置の作用に
ついて説明する。
Next, the operation of the fuel injection control device configured as described above will be explained.

スロットル弁開度センサ17、吸気温度センサ11、絶
対圧セ/す12、冷却水温セ/す13、エンジン回転数
センサ14及び大気圧センサ18から夫々のエンジン運
転パラメータ信号がECU3に供給され、ECU3はこ
れらのエンジン運転パラメータ信号と電気装置15がら
の電気負荷状態信号に基いて制御弁6による補助空気を
供給すべき運転状態を判別すると共に、目標アイドル回
転数を設定し、補助空気を供給すべき運転状態を判別し
たとき、目標アイドル回転数と実ニシジン回転数の差に
応じ、この差を最小とするように補助空気量、従って制
御弁6の開弁デユーティ比DoUTを演算し、該演算値
に応じて制御弁6を作動させる駆動信号を制御弁6に供
給する。
Respective engine operating parameter signals are supplied to the ECU 3 from the throttle valve opening sensor 17, intake air temperature sensor 11, absolute pressure sensor 12, cooling water temperature sensor 13, engine speed sensor 14, and atmospheric pressure sensor 18. determines the operating state in which auxiliary air should be supplied by the control valve 6 based on these engine operating parameter signals and the electrical load state signal from the electrical device 15, sets the target idle rotation speed, and controls the supply of auxiliary air. When the desired operating state is determined, the amount of auxiliary air, and therefore the valve opening duty ratio DoUT of the control valve 6, is calculated in accordance with the difference between the target idle speed and the actual engine speed so as to minimize this difference, and the calculation is performed. A drive signal is supplied to the control valve 6 to operate the control valve 6 according to the value.

制御弁6のソレノイド6aは前記開弁デユーティ比DO
UTに応じた開弁時間に亘シ付勢されて弁6bを開弁し
て空気通路8を開成し開弁時間に応じた所定量の空気が
空気通路8及び吸気管3を介してエンジン1に供給され
る。
The solenoid 6a of the control valve 6 has the valve opening duty ratio DO.
The valve 6b is energized for a valve opening time corresponding to the UT to open the air passage 8, and a predetermined amount of air according to the valve opening time flows into the engine 1 via the air passage 8 and the intake pipe 3. supplied to

制御弁6の開弁時間を長くして補助空気量を増加させる
とエンジン1への混合気の供給量が増加し、エンジン出
力は増大してエンジン回転数が上昇する。逆に制御弁6
の開弁時間全組くすれば供給混合気量は減少してエンジ
ン回転数は下降する。
When the amount of auxiliary air is increased by lengthening the opening time of the control valve 6, the amount of air-fuel mixture supplied to the engine 1 increases, the engine output increases, and the engine speed increases. Conversely, control valve 6
If the full valve opening time is set, the amount of air-fuel mixture supplied will decrease and the engine speed will drop.

斯くのどとく補助空気量すなわち制御弁6の開弁時間を
制御することによってアイドル時のエンジン回転数が目
標回転数に保持される。
By controlling the amount of auxiliary air, that is, the opening time of the control valve 6, the engine speed during idling is maintained at the target speed.

一方、ECU3は上述の各種エンジン運転パラメータ信
号値に基いてTDC信号に同期して燃料噴射弁12の燃
料噴射時間TOUTを以下に示す式によシ演算する。
On the other hand, the ECU 3 calculates the fuel injection time TOUT of the fuel injection valve 12 based on the above-mentioned various engine operating parameter signal values and in synchronization with the TDC signal according to the formula shown below.

Tour=’I’1xK1 +に、=−・−・−・・・
・・(1)ここにTiは基本噴射時間を示し、該基本噴
射時間+11iは、詳細は後述するように、エンジンが
所定のアイドル運転条件が成立する領域にあるか否かに
応じてSD法及びKMe法のいずれかによって設定され
る。
Tour='I'1xK1 +,=-・-・-...
(1) Here, Ti indicates the basic injection time, and the basic injection time +11i is determined by the SD method depending on whether the engine is in a region where predetermined idle operating conditions are satisfied, as will be described in detail later. and KMe method.

補正係数又は補正値Kl及びに2は前述の各種センサ、
すなわちスロットル弁開度センサ17、大気圧上ンサ1
8、吸気温度センサ11等のエンジン運転パラメータセ
ンサからのエンジン運転パラメータ信号に応じて演算さ
れる補正係数又は補正値であって補正係数Klは例えば
次式で与えられる。
The correction coefficients or correction values Kl and 2 are the various sensors mentioned above,
That is, the throttle valve opening sensor 17, the atmospheric pressure sensor 1
8. A correction coefficient or correction value calculated according to an engine operation parameter signal from an engine operation parameter sensor such as the intake air temperature sensor 11, and the correction coefficient Kl is given by the following equation, for example.

Kl =KTAXKPAXKTWXKWOTx=−・・
−・・−(2)ここにKTAは吸気温度補正係数、KP
Aは大気圧補正係数であシ、これらの補正係数KTA 
、 KFAは後述するようにSD法とKMe法とで夫々
別個の算出式によシ夫々の方法に適宜な値に設定される
Kl=KTAXKPAXKTWXKWOTx=-・・
−・・−(2) Here, KTA is the intake air temperature correction coefficient, KP
A is an atmospheric pressure correction coefficient, and these correction coefficients KTA
, KFA is set to an appropriate value for each method using separate calculation formulas for the SD method and the KMe method, as will be described later.

又、KTWは冷却水温センサ13によシ検出されるエン
ジン水温Twに応じて設定される燃料増量係数、KWO
Tは定数であってスロットル弁全開時のリッチ化係数で
ある。
Further, KTW is a fuel increase coefficient, KWO, which is set according to the engine water temperature Tw detected by the cooling water temperature sensor 13.
T is a constant and is the enrichment coefficient when the throttle valve is fully open.

ECU3は上述のようにしてめた燃料噴射時間TOUT
に基いて燃料噴射弁12を開弁させる駆動信号を燃料噴
射弁12に供給する。
ECU3 sets the fuel injection time TOUT as described above.
A drive signal for opening the fuel injector 12 based on this is supplied to the fuel injector 12.

第3図は第2図のECU3内部の回路構成を示す図で、
第2図のエンジン回転角度位置センサ14からの出力信
号は波形整形回路501で波形整形された後、T’DC
信号として中央処理装置c以下1’−CPUJという)
503に供給されるとともにMeカウンタ502にも供
給される。Meカウンタ502はエンジン回転角度位置
センサ14からの前回’I’DC信号の入力時から今回
’I’DC信号の入力時までの時間間隔を計数するもの
で、その計数値Meはエンジン回転数Neの逆数に比例
する。
FIG. 3 is a diagram showing the circuit configuration inside the ECU 3 of FIG.
The output signal from the engine rotation angle position sensor 14 in FIG. 2 is waveform-shaped by a waveform shaping circuit 501, and then
As a signal, the central processing unit c (hereinafter referred to as 1'-CPUJ)
503 and is also supplied to the Me counter 502. The Me counter 502 counts the time interval from when the previous 'I' DC signal was input from the engine rotation angle position sensor 14 to when the current 'I' DC signal was input, and the counted value Me is equal to the engine rotation speed Ne. is proportional to the reciprocal of

1vreカウンタ502は、この計数値Meをデータバ
ス510を介してCPU503に供給する。
1vre counter 502 supplies this count Me to CPU 503 via data bus 510.

第2図のスロットル弁開度センサ17、吸気管内絶対圧
PBAセンサ12、吸気温センサ11、大気圧上ンサ1
8等の各種センサからの夫々の出力信号はレベル修正回
路504で所定電圧レベルに修正された後、マルチプレ
クサ505にょシ順次A/Dコンバータ506に供給さ
れる。A/Dコンバータ506は前述の各センサからの
出力信号を順次デジタル信号に変換して該デジタル信号
をデータバス5101r、介してCPU503に供給す
る。
Throttle valve opening sensor 17, intake pipe absolute pressure PBA sensor 12, intake temperature sensor 11, and atmospheric pressure sensor 1 shown in FIG.
After each output signal from various sensors such as 8 is corrected to a predetermined voltage level by a level correction circuit 504, it is sequentially supplied to an A/D converter 506 through a multiplexer 505. The A/D converter 506 sequentially converts the output signals from the aforementioned sensors into digital signals and supplies the digital signals to the CPU 503 via the data bus 5101r.

第2図の電気装置15のスィッチ16オンーオフ信号は
夫々レベル修正回路512で所定電圧レベルに修正され
た後、データ入力回路513で所定信号に変換されデー
タバス510を介してCPU503に供給される。
The on-off signals of the switches 16 of the electrical device 15 in FIG.

5071.yyダムyり*、<メモIJ (RAM)5
08及び駆動回路509.511に接続されておシ、R
AM508はCPU503での演算結果等を一時的に記
憶し、I(0M507はCPU503f実行される制御
プログラム、基本燃料噴射時間マツプ等を記憶している
5071. yy dumb yri*, <Memo IJ (RAM) 5
08 and drive circuits 509 and 511.
The AM508 temporarily stores the calculation results of the CPU 503, and the I(0M507) stores the control program executed by the CPU 503f, a basic fuel injection time map, etc.

CPU503はROM507に記憶されている制御プロ
グラムに従って前述の各種エンジンパラメータ信号に応
じてエンジン運転状態を判別すると共に電気装置15の
オン−オフ信号に応じてエンジンに対する電気負荷状態
を判別して、エンジンに対する負荷状態に応じた制御弁
6の開弁デュ−テイ比DoUTを演算する。
The CPU 503 determines the engine operating state according to the various engine parameter signals mentioned above according to the control program stored in the ROM 507, and also determines the electrical load state on the engine according to the on-off signal of the electric device 15, thereby controlling the engine. The valve opening duty ratio DoUT of the control valve 6 is calculated according to the load state.

CPU503は上述の制御弁6の開弁デユーティ比DO
UTの演算値に応じた制御信号をデータバス510を介
して駆動回路511に供給し、駆動回路511は制御弁
6をオン−オフさせる駆動信号を制御弁6に供給する。
The CPU 503 determines the valve opening duty ratio DO of the control valve 6 described above.
A control signal corresponding to the calculated value of the UT is supplied to the drive circuit 511 via the data bus 510, and the drive circuit 511 supplies the control valve 6 with a drive signal for turning the control valve 6 on and off.

又、CPU503は上述の各種エンジンパラメータ信号
に応じて、詳細は後述するように燃料噴射弁10の開弁
時間To UTを演算し、この演算値に応じた制御信号
をデータバス510金介して駆動回路509に供給し、
駆動回路509はこの制御信号に応じて燃料噴射弁10
を開弁させる駆動信号を該噴射弁10に供給する。
Further, the CPU 503 calculates the valve opening time To UT of the fuel injection valve 10 according to the above-mentioned various engine parameter signals, as will be described in detail later, and drives a control signal according to this calculated value via the data bus 510. supplying the circuit 509;
The drive circuit 509 operates the fuel injection valve 10 according to this control signal.
A drive signal for opening the injection valve 10 is supplied to the injection valve 10.

第4図は第3図のCPO503で前記TDC信号のパル
ス発生毎に実行される。燃料噴射弁10の開弁時間T’
 OU T 1(演算する方法を示すプログラムフロー
チャートである。
FIG. 4 is executed by the CPO 503 of FIG. 3 every time a pulse of the TDC signal is generated. Valve opening time T' of the fuel injection valve 10
OUT1 (This is a program flowchart showing a method of calculating.

先ず、第4図のステップlではSD法により基本燃料噴
射時間’piMAp f決定する。このSD法によるT
iMAP値の決定は検出した吸気管内絶対圧PBAとエ
ンジン回転数Neとに応じたTiMAp値を第3図のR
OM507に記憶されている基本燃料噴射時間マツプか
ら読出することによシ行なわれる。次に、ステップ2乃
至4においてエンジンが所定のアイドル運転条件が成立
したか否かを判別する。ステップ2ではエンジン回転数
Neが所定回転数NIDL(例えば101000rp以
下であるか否かを判別し、判別結果が否定(No)であ
ればアイドル運転条件は成立せずとして直ちに後述する
ステップ5及び6に進む。ステップ20判別結果が肯定
(Yes)であればステップ3に進み、吸気管内絶対圧
PBAが基準圧力PRACよジエンジン低負荷側、すな
わち基準圧力PRAC以下か否かを判別する。この基準
圧力PBACはスロットル弁9上流側の吸気管内絶対圧
PA′に対するスロットル弁下流側の吸気管内絶対圧P
BAの比(PBA/PX)がスロットル弁9を通過する
吸気流速が音速流となる臨界圧力比(0,528)以下
となるか否かを判別するために設定されるものであって
基準圧力FBACは次式によって与えられる。
First, in step 1 of FIG. 4, the basic fuel injection time 'piMAp f is determined by the SD method. T by this SD method
The iMAP value is determined by converting the TiMAp value according to the detected intake pipe absolute pressure PBA and engine speed Ne to R in Fig. 3.
This is done by reading from the basic fuel injection time map stored in OM507. Next, in steps 2 to 4, the engine determines whether a predetermined idle operating condition is satisfied. In step 2, it is determined whether or not the engine rotation speed Ne is less than or equal to a predetermined rotation speed NIDL (for example, 101000 rpm), and if the determination result is negative (No), the idle operating condition is not satisfied, and steps 5 and 6, which will be described later, are immediately performed. If the determination result in step 20 is affirmative (Yes), proceed to step 3, where it is determined whether or not the intake pipe absolute pressure PBA is lower than the reference pressure PRAC on the low engine load side, that is, below the reference pressure PRAC. Pressure PBAC is the absolute pressure P in the intake pipe on the downstream side of the throttle valve relative to the absolute pressure PA' in the intake pipe on the upstream side of the throttle valve 9.
The ratio of BA (PBA/PX) is set to determine whether or not the intake flow velocity passing through the throttle valve 9 is equal to or less than the critical pressure ratio (0,528) at which the flow becomes sonic flow, and is the reference pressure. FBAC is given by the following equation.

PRAC= PA’x(臨界圧力比)=PA’Xここに
 は空気の比熱比(に=1.4 )であシ、スロットル
弁9上流の吸気管内絶対圧PA’は近似的に第2図の大
気圧上ンサ18によシ検出される大気圧PAに等しいの
で上式の関係が得られる。
PRAC = PA'x (critical pressure ratio) = PA'X Here is the specific heat ratio of air (=1.4), and the absolute pressure PA' in the intake pipe upstream of the throttle valve 9 is approximately as shown in Figure 2. Since the atmospheric pressure PA is equal to the atmospheric pressure PA detected by the sensor 18, the above relationship is obtained.

ステップ3での判別結果が否定(NO)の場合、所定ア
イドル運転条件は成立せずとしてステップ5及び6に進
み、肯定(Yes)の場合ステップ4に進む。ステップ
4ではスロットル弁9の弁開度θTHが所定開度θ’I
DLH以下であるか否かを判別する。この判別を設ける
理由はスロットル弁9が略全閉位置のアイドル運転状態
からスロットル弁が急速に開弁される加速運転状態に移
行した場合、上述のステップ2及び3のエンジン回転数
及び吸気管内絶対圧の変化のみによシこの加速運転状態
を判別すると絶対圧センサの応答遅れ等によシ加速運転
状態の検出が遅れるため、加速運転状態をスロットル弁
開度によシ検出し、加速運転状態が検出された場合には
、SD方式によシ適宜量の加速燃料量を演算し、この燃
料量をエンジンに供給する必要があるためである。ステ
ップ4の判別結果が否定(No)の場合、所定アイドル
運転条件は成立せずとしてステップ5及び6に進み、肯
定(Yes)の場合ステップ7に進む。
If the determination result in step 3 is negative (NO), the predetermined idle operation condition is not satisfied and the process proceeds to steps 5 and 6, and if the result is affirmative (Yes), the process proceeds to step 4. In step 4, the valve opening θTH of the throttle valve 9 is set to a predetermined opening θ'I.
It is determined whether or not it is below DLH. The reason for this determination is that when the throttle valve 9 shifts from an idling operating state in which the throttle valve 9 is in a substantially fully closed position to an accelerating operating state in which the throttle valve is rapidly opened, the engine speed and intake pipe absolute If the acceleration operation state is determined only based on pressure changes, the detection of the acceleration operation state will be delayed due to the response delay of the absolute pressure sensor, etc. Therefore, the acceleration operation state is detected based on the throttle valve opening, and the acceleration operation state is determined based on the throttle valve opening. This is because, if detected, it is necessary to calculate an appropriate amount of acceleration fuel using the SD method and supply this fuel amount to the engine. If the determination result in step 4 is negative (No), the predetermined idle operation condition is not satisfied and the process proceeds to steps 5 and 6, and if the result is affirmative (Yes), the process proceeds to step 7.

アイドル運転条件が成立しない場合に実行されるステッ
プ5では後述するプログラム制御変数の今回値Xnを零
に設定し、次いで、SD法において適用される大気圧補
正係数KPAI及び吸気温度補正係数KTAIを設定し
、これらの係数を前記ステップlでめた基本燃料噴射時
間TtMApと共に前記式(1)に適用するために乗算
項Ti*KpA・KTA の演算を行う(ステップ6)
In step 5, which is executed when the idle operating condition is not satisfied, the current value Xn of the program control variable described later is set to zero, and then the atmospheric pressure correction coefficient KPAI and the intake air temperature correction coefficient KTAI applied in the SD method are set. Then, in order to apply these coefficients to the above equation (1) together with the basic fuel injection time TtMAp determined in step 1, a multiplication term Ti*KpA·KTA is calculated (step 6).
.

Ti @KpAsKr*=TiMAp−KpAi II
KTAI・・曲(4)ここにSD法に適用される大気圧
補正係数KPAIは例えば特開昭58−853137号
に開示されるごとく、次式によってめられる。
Ti @KpAsKr*=TiMAp−KpAi II
KTAI...Song (4) The atmospheric pressure correction coefficient KPAI applied to the SD method is determined by the following equation, as disclosed in, for example, Japanese Patent Laid-Open No. 58-853137.

ことにPAは実大気圧(絶対圧)、PAOは標準大気圧
、εは圧縮比、には空気の比熱比である。
In particular, PA is the actual atmospheric pressure (absolute pressure), PAO is the standard atmospheric pressure, ε is the compression ratio, and is the specific heat ratio of air.

大気圧補正係数KPAIは一吸気行程でエンジンシリン
ダ内に吸入される空気量が吸気管内絶対圧PBムと、大
気圧P、Aに略等しいと見做せる排気管内絶対圧とによ
シ理論的にめられること及び空燃比を一定に保つには、
標準大気圧PAOにおける吸入空気量に対す実大気圧P
Aにおける吸入空気量の比と同じ比率で燃料量を増減す
ればよいことから上式(5)のようにめられる。
The atmospheric pressure correction coefficient KPAI is based on the theory that the amount of air taken into the engine cylinder during one intake stroke is based on the absolute pressure in the intake pipe, PB, and the absolute pressure in the exhaust pipe, which can be considered to be approximately equal to the atmospheric pressures P and A. In order to keep the air-fuel ratio constant,
Actual atmospheric pressure P for intake air amount at standard atmospheric pressure PAO
Since it is sufficient to increase or decrease the fuel amount at the same ratio as the ratio of the intake air amount in A, the above formula (5) can be obtained.

尚、式(5)よシPA<PAOのとき、KPAI>1と
なる。即ち、高地等において大気圧P^が標準大気圧P
AOよシ低下した場合、平地と同一吸気管内絶対圧PB
Aの条件下で吸入空気量は増加する。従って吸気管内絶
対圧PBAとエンジン回転数との関数として設定される
燃料量を高地等の低い大気圧下において適用すると混合
気はり一ン化することになシ、増量係数KPAIによシ
混合気のり一ン化が防止される′。
Note that according to equation (5), when PA<PAO, KPAI>1. In other words, at high altitudes, the atmospheric pressure P^ is the standard atmospheric pressure P
When AO decreases, the absolute pressure in the intake pipe PB is the same as on a flat ground.
Under condition A, the amount of intake air increases. Therefore, if the fuel amount, which is set as a function of the intake pipe absolute pressure PBA and the engine speed, is applied under low atmospheric pressure such as at high altitudes, the mixture will not become uniform, and the increase coefficient KPAI will change the mixture concentration. Unification is prevented.

一方、SD法に適用される吸気温補正係数KTA1は、
例えば特開昭58−88436号に開示されるごとく、
次式によってめられる。
On the other hand, the intake temperature correction coefficient KTA1 applied to the SD method is
For example, as disclosed in Japanese Patent Application Laid-Open No. 58-88436,
It is determined by the following formula.

ここにTAは吸気管内を流通する吸入空気温度(℃)、
’f’AOはキャリブレーション変数で、例えば50℃
に設定される。CTAMAPはギヤリプレーショ/係数
でエンジンの特性に応じて一定値(例えば1.26X1
0 )に設定される。上式(6)のCTAMAP(TA
−TAO)は1に比べ小さい値であるから近似的に KTA1=l−CTAMAP(TA−’l’Ao) ・
−四−・(7)でめることが出来る。
Here, TA is the intake air temperature (℃) flowing in the intake pipe,
'f'AO is a calibration variable, for example 50℃
is set to CTAMAP is a gear repration/coefficient and is set to a fixed value (for example, 1.26X1) depending on the engine characteristics.
0). CTAMAP(TA
-TAO) is a smaller value than 1, so approximately KTA1=l-CTAMAP(TA-'l'Ao)
-4-・(7) can be concluded.

前記ステップ2乃至4の判別結果が全て肯定(Ye s
 )となシ所定アイドル運転条件が成立した場合には、
先ずステップ7でKMe法により基本燃料噴射時間’f
’icを算出する。このKMe法による基本噴射時間T
ieは次式によってめられる。
All of the determination results in steps 2 to 4 are positive (Yes).
) If the predetermined idle operating conditions are met,
First, in step 7, the basic fuel injection time 'f is calculated using the KMe method.
Calculate 'ic. Basic injection time T by this KMe method
ie is determined by the following formula.

T i =K(A) ・Me ・−(8)ここにK (
A)は吸気通路の絞シ部等価開ロ面積、すなわちスロッ
トル弁9及び制御弁6の各開口面積の和に応じて設定さ
れ、スロットル弁9及び制御弁6の各開口面積はスロッ
トル弁開度センサ17からの弁開度信号値及び前記CP
U503によシ演算される制御弁6の開弁デユーティ比
に基いて夫々求められる。Meは第3図のMeカウンタ
502によシ計測されるTDC信号パルス発生時間間隔
である。基本噴射時間Tiが式(8)によ請求めること
が出来る理由はスロットル弁等の吸気通路の絞シ部を通
過する単位時間当シの吸入空気量は絞シ部前後の圧力比
が前記臨界圧以下である限シ、大気圧PA、吸気温度T
Aが一定の場合には絞シ部の等価開口面積のみの関数に
よって与えられること、及び−吸気行程当シエンジンシ
リンダに吸入される吸入空気量はエンジン回転数Neの
逆数、従ってMe値に比例することによる。
T i =K(A) ・Me ・−(8) Here K (
A) is set according to the equivalent opening area of the throttle part of the intake passage, that is, the sum of the opening areas of the throttle valve 9 and the control valve 6, and the opening area of the throttle valve 9 and the control valve 6 is determined by the throttle valve opening. Valve opening signal value from sensor 17 and the CP
Each is determined based on the valve opening duty ratio of the control valve 6 calculated by U503. Me is the TDC signal pulse generation time interval measured by the Me counter 502 in FIG. The reason why the basic injection time Ti can be expressed by equation (8) is that the amount of intake air per unit time passing through the throttle part of the intake passage such as the throttle valve is such that the pressure ratio before and after the throttle part is the critical value. Atmospheric pressure PA, intake air temperature T
When A is constant, it is given by a function only of the equivalent opening area of the throttle part, and - the amount of intake air taken into the engine cylinder during the intake stroke is the reciprocal of the engine speed Ne, and is therefore proportional to the Me value. By doing.

次に、ステップ8に進み前回ループ時に燃料噴射時間を
前記KMe法によって決定したが(KMe法によって決
定した場合を以下「アイドルモート1と称す)否かを判
別し、前回ループが既にアイドルモードであれば(判別
結果が肯定(Yes)の場合)、後述のステップ9乃至
130判別を行うことなくステップ14に進み、前回ル
ープが未だアイドルモードでなければ(ステップ8の判
別結果が否定(NO)の場合)、本発明に係るステップ
9乃至13の判別が実行される。
Next, proceeding to step 8, it is determined whether the fuel injection time was determined by the KMe method in the previous loop (the case determined by the KMe method is hereinafter referred to as "idle mode 1"), and if the previous loop was already in idle mode. If there is (if the determination result is affirmative (Yes)), the process proceeds to step 14 without performing the determinations in steps 9 to 130 described later, and if the previous loop is not still in idle mode (if the determination result in step 8 is negative (NO)). ), the determinations in steps 9 to 13 according to the present invention are performed.

ステップ9及び11では前記ステップ6でめたと同様に
してSD法に適用される大気圧補正係数KPAI及び吸
気温度補正係数KTAIがめられると同時にKMe法に
適用される大気補正係数:、KPA2及び吸気温度補正
係数KTA2がめられる。
In steps 9 and 11, the atmospheric pressure correction coefficient KPAI and intake air temperature correction coefficient KTAI applied to the SD method are determined in the same manner as in step 6, and at the same time, the atmospheric correction coefficient KPA2 and intake air temperature applied to the KMe method are determined. A correction coefficient KTA2 is set.

これらの係数KPA2及びKTA2は以下の様にしてめ
られる。
These coefficients KPA2 and KTA2 are calculated as follows.

吸気管のスロットル弁等の絞シ部上流の吸気管内圧力P
A′に対する下流圧力PBAO比(PBA/PAりが臨
界圧力比(0,528)以下である場合、絞シ部を通過
する吸入空気は音速流となり、吸入空気量・・・・・・
・・・ (9) ことにAはスロットル弁等の絞シ部の等価開口面積(−
)Cは絞シ部の形状等で決る補正係数、PAは大気圧(
PA#Pム’、w+Hg)、には空気の比熱比、Bは空
気のガス定数、’I’APは絞シ部直前の吸気温度(1
)、gは重力加速度(m/secりである0標準大気圧
Pム0における吸入空気量GaOと任意大気圧2人にお
ける吸入空気量Gaとの比率は、吸入空気温度TAF及
び開口面積Aが一定のときGa PA Gao PAO で与えられ、この吸入空気量の比率と同一の比率でエン
ジンに供給される燃料量を変化させると空燃比を一定に
保つことが出来る。従って燃料流量Gfは標準大気圧P
^O(760ymnHg)における燃料流量Gfoから によって与えられる。ここに大気圧補正係数KpA2は
理論上 2人 KPA2 =L丁 と表わすことが出来る。しかし、実□用上は吸気通路の
形状等に起因する種々の誤差を考慮して上式%式%() と表わすことが出来る。ここにCPAは実験的に設定さ
れるMブレーション変数である。
Pressure P in the intake pipe upstream of the throttle part such as the throttle valve in the intake pipe
When the downstream pressure PBAO ratio (PBA/PA ratio) to A' is less than the critical pressure ratio (0,528), the intake air passing through the throttle section becomes a sonic flow, and the intake air amount...
... (9) In particular, A is the equivalent opening area (-
)C is the correction coefficient determined by the shape of the aperture, etc., and PA is the atmospheric pressure (
PA#Pmu', w+Hg), is the specific heat ratio of air, B is the gas constant of air, and 'I'AP is the intake air temperature just before the throttle part (1
), g is the gravitational acceleration (m/sec) The ratio between the intake air amount GaO at standard atmospheric pressure Pm 0 and the intake air amount Ga for two people at arbitrary atmospheric pressure is given by the intake air temperature TAF and the opening area A. When the ratio is constant, Ga PA Gao PAO is given, and by changing the amount of fuel supplied to the engine at the same ratio as this intake air amount ratio, the air-fuel ratio can be kept constant.Therefore, the fuel flow rate Gf is the standard value. Atmospheric pressure P
It is given by from the fuel flow rate Gfo at ^O (760ymnHg). Here, the atmospheric pressure correction coefficient KpA2 can be theoretically expressed as 2 people KPA2=L. However, in practical use, it can be expressed as the above formula %, taking into account various errors caused by the shape of the intake passage, etc. Here, CPA is an experimentally set Mbration variable.

尚、上式α0よシPA<760咽HgのときKPA2<
1となる。即ち、KMe法においては吸入空気量は標準
大気圧PA0を基準としてスロットル弁等の吸気通路絞
シ部の等価開口面積Aのみによって決定されるので高地
等において大気圧FAが標準大気圧PAO(=760y
+aHg)より低下した場合、吸入空気量は大気圧FA
に比例して減少づることになシ、上述の開口面積Aに応
じて燃料量を設定すると前記SD法の場合とは逆に混合
気はリッチ化する。
In addition, from the above formula α0, when PA<760Hg, KPA2<
It becomes 1. That is, in the KMe method, the amount of intake air is determined only by the equivalent opening area A of the intake passage restrictor such as the throttle valve, with reference to the standard atmospheric pressure PA0. 760y
+aHg), the amount of intake air is atmospheric pressure FA
However, if the fuel amount is set according to the opening area A described above, the air-fuel mixture becomes richer, contrary to the case of the SD method.

上述の補正係数KPA2は斯るリッチ化を防止するもの
である。
The correction coefficient KPA2 mentioned above is for preventing such enrichment.

次に、前記式(9)において、大気圧PA及び開口面積
Aを一定とすると絞り部上流温度が基準温度’I’AF
Oであるときの吸入空気量GaOと任意温度で与えられ
、この吸入空気量の比率と同一の比率でエンジンに供給
される燃料量を変化させると空燃比を一定に保つことが
出来る。従って燃料流量Gfは基準温度TiF4時の流
量Gfoからによって与えられる。吸気温度補正係数K
TA2をと表わすと、KTA2は上式を変形して近似的
に次式で表わされる。
Next, in the above equation (9), if the atmospheric pressure PA and the opening area A are constant, the temperature upstream of the aperture part is the reference temperature 'I'AF
The air-fuel ratio can be kept constant by changing the amount of fuel supplied to the engine at the same ratio as the intake air amount GaO when the temperature is O and an arbitrary temperature. Therefore, the fuel flow rate Gf is given by the flow rate Gfo at the reference temperature TiF4. Intake air temperature correction coefficient K
When TA2 is expressed as , KTA2 is approximately expressed by the following expression by modifying the above expression.

・・・・・・・・・(ロ) 式(ロ)でめられるKTA2は絞シ部上流吸気温度TA
Fの関数として与えられる。しかし、絞シ部上流温度T
APと下流温度TAとの関数はアイドル運転条件下で略
下式で与えられることが実験的に確められた。
・・・・・・・・・(B) KTA2 determined by formula (B) is the intake air temperature TA upstream of the throttle part.
It is given as a function of F. However, the temperature upstream of the drawing part T
It has been experimentally confirmed that the function between AP and downstream temperature TA is approximately given by the following equation under idling operating conditions.

TA F = aTA+b ・・・・・・・・・ (6
)ここにa、bは定数である。TAFO=aTAO+b
であることを考慮して式(2)を式(ロ)に代入して整
理すると開式は、 KTA2=1−aa(TA−’I’AO):1−CTA
C(TA−TAO) ・・・・・・・・・ (2)と表
わすことが出来、吸気温度補正係数KTA2は簡略化さ
れた式(至)によ請求められる。
TA F = aTA+b ・・・・・・・・・ (6
) where a and b are constants. TAFO=aTAO+b
Considering that, by substituting formula (2) into formula (b) and rearranging, the open formula is: KTA2=1-aa(TA-'I'AO):1-CTA
It can be expressed as C(TA-TAO) (2), and the intake air temperature correction coefficient KTA2 can be calculated by the simplified formula (to).

上述のようにしてめた補正係数並びに前記ステップ1及
び7でめた基本噴射時間TiMAp 。
The correction coefficient determined as described above and the basic injection time TiMAp determined in steps 1 and 7 above.

TicK!、9、SD法に請求めた乗算項Ti、KpA
TicK! , 9. Multiplication terms Ti and KpA that can be claimed in the SD method
.

KTAの値がKMe法によ請求めたそれに実質的に等し
いか否か判別する。即ち、ステップ9ではSD法による
積値’l[’iMAp 、KPAI 、KTAIがKM
e法によ請求めた積値jI’ic*Kpム2・KTA2
に所定上限係数CM(例えば1.05)を乗算した値よ
シ小さいか否かを判別し、ステップ11ではKMe法に
よる積値Tic@KpA2*KT^2に所定下限係数C
L (例えば0.95)を乗算した値よシ大きいか否か
を判別する0 上述の所定上下限係数CH及びCx、はエンジン作動の
円滑化及び安定化を図るだめ実験的に最適値に設定され
る。
Determine whether the value of KTA is substantially equal to that claimed by the KMe method. That is, in step 9, the product value 'l['iMAp, KPAI, KTAI by the SD method is KM
Product value jI'ic*Kpm2・KTA2 requested by e method
In step 11, a predetermined lower limit coefficient C is applied to the product value Tic@KpA2*KT^2 by the KMe method.
Determine whether the value is larger than the value multiplied by L (for example, 0.95) 0 The above-mentioned predetermined upper and lower limit coefficients CH and Cx are experimentally set to optimal values in order to smooth and stabilize engine operation. be done.

而して、ステップ9及び11の判別結果がいずれも肯定
(Yes)であればSD法でめた上記積値TiM*p 
−KPAI IIKTAIがKMe法による積値TiM
ApeKpA2・KTA2 に実質的に等しいと判別し
て、ステップ14に進み、KMe法によ請求めた基本燃
料噴射時間Tic及び補正係数KPA2 、I(TA2
を前記式(1ンに適用するために乗算項Ti IIKP
A IIKTAにTic*Kpム2・KTム2値を代入
する。
If the determination results in steps 9 and 11 are both affirmative (Yes), the above product value TiM*p determined by the SD method
-KPAI IIKTAI is the product value TiM by KMe method
ApeKpA2・KTA2 is determined to be substantially equal to ApeKpA2・KTA2, and the process proceeds to step 14, where the basic fuel injection time Tic and the correction coefficients KPA2, I(TA2
In order to apply the above equation (1), the multiplication term Ti IIKP
A Assign Tic*Kpmu2・KTmu2 value to IIKTA.

Ti・KPA aKr*=Tic 1lKPA2・KT
A2・・・・・・・・・α荀第5図は第4図のステップ
9乃至130判別結果を第1図のエンジン作動線図と同
様な吸気管内絶対圧PRとエンジン回転数で表わされる
作動線図を用いて説明するもので、上述のステップ9及
び11の判別結果がいずれも肯定(Yes)であること
は前回ループ時のエンジン作動点が、例えば、図示A点
又はB点から今回ループ時にスロットル弁開度が前記所
定開度θIDLHよシ小さい、例えば、一定開度θTの
作動線上に実質的にあるa点又はb点(a点又はb点は
前記上下限係数OH,CLに対応して設定される図示2
本の破線開領域内にある)に変化したことを意味する。
Ti・KPA aKr*=Tic 1lKPA2・KT
A2・・・・・・α觀Figure 5 shows the determination results from steps 9 to 130 in Figure 4 in terms of intake pipe absolute pressure PR and engine rotational speed similar to the engine operating diagram in Figure 1. This will be explained using an operating diagram, and if the determination results in steps 9 and 11 above are both affirmative (Yes), this means that the engine operating point at the previous loop has changed from, for example, point A or point B in the diagram to this time. During the loop, the throttle valve opening is smaller than the predetermined opening θIDLH, for example, at point a or b, which is substantially on the operating line of constant opening θT (point a or b is equal to the upper and lower limit coefficients OH, CL). Diagram 2 set correspondingly
(within the dashed line open area of the book).

従ってこの様な判別結果が得られた場合には燃料量の設
定法をSD法からKMe法に切換えても供給燃料量が急
変することなく従って燃料制御法の移行時の円滑なエン
ジン作動が保障される。
Therefore, if such a determination result is obtained, even if the fuel amount setting method is switched from the SD method to the KMe method, the amount of supplied fuel will not change suddenly, thus ensuring smooth engine operation when switching to the fuel control method. be done.

次に、ステップ9での判別結果が否定(No)の場合前
記プログラム制御変数の今回値Xnを3に設定しくステ
ップ10)、このプログラム制御変数の前回値Xn−1
と今回値Xnとの差が1であるか否かを判別する(ステ
ップ13)。この様にプログラム制御変数を用いてその
今回値と前回値との差が1であるか否かの判別を行うの
は今回ループ時に検出されるエンジンの作動点が、前回
ループ時の作動点に対して今回ループ時に検出されたス
ロットル弁開度値である弁開度θT一定作動ラインを実
質的に横切って変化したか否かを判別するためである。
Next, if the determination result in step 9 is negative (No), set the current value Xn of the program control variable to 3 (step 10), and set the previous value Xn-1 of this program control variable.
It is determined whether the difference between the current value Xn and the current value Xn is 1 (step 13). In this way, using program control variables to determine whether the difference between the current value and the previous value is 1 is because the engine operating point detected during the current loop is the same as the operating point during the previous loop. On the other hand, this is to determine whether the valve opening θT, which is the throttle valve opening value detected during the current loop, has changed substantially across the constant operation line.

即ち、例えば前回ループ時ではエンジンは所定アイドル
運転条件が成立せず(この場合前回ループのステップ5
でX n −1=Oと設定されている)、今回ループ時
にはステップ9の判別結果が否定(No)でXn=3(
スf”)プ10)と設定された場合、前回ループも今回
ループもステップ9の判別結果が否定(No)の場合(
この場合にはXn =Xn−1= 3 )等では前回ル
ープ時と今回ループ時との間でエンジンの作動ラインは
弁開度θT一定作動ラインを横切らなかったことを意味
しく第5図の作動ライフ E−+e 、 p −* f
 )、この様な場合にはステップ13の判別結果は否定
(No)となって燃料噴射時間の演算を引続きSD法に
よシ実行する(前記ステップ6)。
That is, for example, in the previous loop, the engine did not meet the predetermined idle operating condition (in this case, step 5 of the previous loop
In this loop, the determination result in step 9 is negative (No) and Xn = 3 (
If step 10) is set, if the determination result in step 9 is negative (No) in both the previous loop and the current loop, (
In this case, Xn = Life E-+e, p-*f
), in such a case, the determination result in step 13 is negative (No), and the calculation of the fuel injection time is continued using the SD method (step 6).

一方、今回ループ時にステップ9の判別結果が否定とな
I)Xn値が3に設定され、前回ループ時に前記ステッ
プ11の判別結果が否定(NO)であシステップ12で
プログラム制御変数t2に設定していた場合(Xn−1
=2)、又は逆に今回ループ時にステップ12を実行し
くXn=2) 、前回ループ時にステップ10を実行し
ていた場合(Xn−1=3)は、前回ループ時と今回ル
ープ時との間でエンジンの作動ラインが弁開度θT一定
作動ラインを横切ったことを意味しく第5図の作動ライ
ンC−+(、D−+d)、即ち前回ループ時と今回ルー
プ時との間でSD法によシ演算される噴射時間とKMe
法によるそれとは実質的に一致していたことを意味し、
この様な場合には直ちにKMe法による燃料制御に切換
えた方が好ましい。そこでステップ13での判別結果が
肯定(Yes)の場合には前記ステップ14のKMe法
による乗算項’I’i@Kp*・KTAの演算が実行さ
れる。
On the other hand, if the determination result in step 9 was negative during the current loop, the I) If (Xn-1
= 2), or conversely, if step 12 was executed during the current loop (Xn = 2), or if step 10 was executed during the previous loop (Xn-1 = 3), then the difference between the previous loop and the current loop is This means that the engine operating line has crossed the constant valve opening θT operating line, which is the operating line C-+ (, D-+d) in Figure 5, that is, the SD method between the previous loop and the current loop. Injection time and KMe calculated by
means that it was substantially consistent with that according to the law;
In such a case, it is preferable to immediately switch to fuel control using the KMe method. Therefore, if the determination result in step 13 is affirmative (Yes), the calculation of the multiplication term 'I'i@Kp*·KTA by the KMe method in step 14 is executed.

斯くしてステップ6及びステップ14によって演算され
た乗算項Ti・Kp^・1(TA の値を前記式(1)
に適用すると共に、更に前記式(2)に示される他の補
正係数を演算適用して燃料噴射弁lOの噴射時間’I”
OUTをめ(ステップ15)、当該プログラムを終了す
る。
Thus, the value of the multiplication term Ti・Kp^・1 (TA calculated in steps 6 and 14 is expressed by the above equation (1).
In addition, the injection time 'I' of the fuel injection valve lO is calculated by applying other correction coefficients shown in the above formula (2).
OUT (step 15), and the program ends.

尚、本発明は上述の燃料噴射制御装置の燃料噴射量制御
に限定されず、動作特性量の制御を吸入空気量に関連し
て行なうものであれば種々の作動制御手段、例えば点火
時期制御装置、排気還流制御装置等に適用することが出
来る。
Note that the present invention is not limited to the fuel injection amount control of the above-mentioned fuel injection control device, but can be applied to various operation control means, such as an ignition timing control device, as long as the control of the operating characteristic quantity is performed in relation to the intake air amount. , exhaust recirculation control device, etc.

以上詳述したように本発明の内燃エンジンの作動制御手
段の動作特性量制御方法に依れば、エンジンの所定低負
荷運転状態以外の状態から所定低負荷運転状態への移行
を検出したとき、エンジンの負荷状態を表わす第1及び
第2のエンジン運転パラメータ検出値の両者によシ夫々
第1及び第2の動作特性量制御値をめ請求めた第2動作
特性量制御値が前記第1動作特性量制御値に実質的に一
致するに至るまでの間は前記第2のエンジン運転パラメ
ータ検出値によ多動作特性量制御値を決定し、その後前
記第lのエンジン運転パラメータ検出値により動作特性
量制御値を決定し、前記作動制御手段の動作特性量を斯
く決定した動作特性量制御値に制御するようにしたので
、アイドル運転等の低負荷運転時のエンジンの作動を円
滑にして安定な作動とすることが出来る。
As detailed above, according to the method for controlling the operating characteristic quantity of the internal combustion engine operation control means of the present invention, when a transition of the engine from a state other than the predetermined low-load operating state to the predetermined low-load operating state is detected, The second operating characteristic quantity control value, which can be assumed to be the first and second operating characteristic quantity control values, respectively, based on both the first and second detected engine operating parameter values representing the load state of the engine is set to the first operating characteristic quantity control value. The operating characteristic quantity control value is determined based on the second detected engine operating parameter value until the operating characteristic quantity control value substantially matches the operating characteristic quantity control value, and thereafter the operating characteristic quantity control value is operated based on the first engine operating parameter detected value. A characteristic quantity control value is determined, and the operating characteristic quantity of the operation control means is controlled to the thus determined operating characteristic quantity control value, so that the engine operates smoothly and stably during low load operation such as idling operation. The operation can be made as follows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエンジンの低負荷運転時に燃料噴射量の制御を
SD法からKMe法に切換える際に生じる従来技術の問
題点を説明する線図、第2図は本発明が適用された燃料
噴射制御装置の全体構成図、第3図は第2図の電子コン
トロールユニット(ECU)の内部構成を示す回路図、
第4図はECU内で実行される燃料噴射時間TOUTを
算出する手順を示すプログラムフローチャート、第5図
はエンジンの作動の変化の種々の態様を示す線図である
。 1・・・内燃エンジン、3・・・吸気通路、5・・・電
子コントロールユニット、(ECU)、9・・・スロッ
トル弁、10・・・燃料噴射弁、12・・・吸気道路内
絶対圧センサ、14・・・エンジン回転角度位置センサ
、:17・・・スロットル弁センサ。 出願人 本田技研工業株式会社 代理人 弁理士渡 部 敏 彦
Fig. 1 is a diagram illustrating the problems of the prior art that occur when switching the fuel injection amount control from the SD method to the KMe method during low-load engine operation, and Fig. 2 is a diagram showing fuel injection control to which the present invention is applied. The overall configuration diagram of the device, Figure 3 is a circuit diagram showing the internal configuration of the electronic control unit (ECU) in Figure 2,
FIG. 4 is a program flowchart showing a procedure for calculating the fuel injection time TOUT executed in the ECU, and FIG. 5 is a diagram showing various aspects of changes in engine operation. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 3... Intake passage, 5... Electronic control unit, (ECU), 9... Throttle valve, 10... Fuel injection valve, 12... Intake road absolute pressure Sensor, 14... Engine rotation angle position sensor: 17... Throttle valve sensor. Applicant Honda Motor Co., Ltd. Agent Patent Attorney Toshihiko Watanabe

Claims (1)

【特許請求の範囲】 1、内燃エンジンの作動制御手段の動作特性量を電子的
に制御する動作特性量制御方法において、エンジンの所
定低負荷運転状態を検出し、エンジンが該所定低負荷運
転状態にあるとき、エンジンの負荷状態を表わす第1の
エンジン運転パラメータ値を検出し、該検出した第1の
エンジン運転パラメータ値によシ前記動作特性量の制御
値を決定し、エンジンが前記所定低負荷運転状態以外の
状態にあるとき、エンジンの負荷状態を表わす第2のエ
ンジン運転パラメータ値を検出し、該検出した第2のエ
ンジン運転パラメータ値によシ前記動作特性量の制御値
を決定し、エンジンが前記所定低負荷運転状態以外の状
態から前記所定低負荷運転状態へ移行したことを検出し
たとき、前記第1及び第2のエンジン運転パラメータ検
出値の両者によシ夫々第1及び第2動作特性量制御値を
め請求めた第2動作特性量制御値が前記第1動作特性量
制御値に実質的に一致するに至るまでの間は前記第2の
エンジン運転パラメータ検出値によシ動作特性量制御値
を決定し、前記作動制御手段の動作特性量を斯く決定し
た動作特性量制御値に制御することを特徴とする内燃エ
ンジンの作動制御手段の動作特性量制御方法。 2、前記エンジンの所定低負荷運転状態への移行を検出
したときにめられる前記第2動作特性量制御値が前記第
l動作特性量制御値に実質的に一致する値を横切って小
さい値になったとき、前記第1のエンジン運転パラメー
タ検出値によシ前記動作特性量の制御値を決定すること
を特徴とする特許請求の範囲第1項記載の内燃エンジン
の作動制御手段の動作特性量制御方法。 3、前記エンジンのB「定低負荷運転状態への移行を検
出したときにめられる前記第2動作特性量制御値が前記
第1動作特性量制御値に実質的に一致する値を横切って
大きい値となったとき、前記第1のエンジン運転パラメ
ータ検出値によシ前記動作特性量の制御値を決定するこ
とを特徴とする特許請求の範囲第1項記載の内燃エンジ
ンの作動制御手段の動作特性量制御方法。 4、前記エンジンの所定低負荷運転状態への移行の検出
後に前記第1のエンジン運転パラメータ検出値によシ前
記動作特性童の制御値を決定した後エンジンの前記所定
低負荷運転状態以外の状態が検出されるまでの間、前記
第1のエンジン運転パラメータ検出値による前記動作特
性量制御値の決定を継続させることを特徴とする特許請
求の範囲第1項乃至第3項のいずれかに記載の内燃エン
ジンの作動制御手段の動作特性量制御方法。 5、前記内燃エンジンは吸気通路と、該通路の開口面積
を調整して吸入空気量を制御する吸気量制御手段とを備
え、前記第1のエンジン運転パラメータは前記吸気量制
御手段により調整される吸気通路の開口面積を含むこと
を特徴とする特許請求の範囲第1項乃至第4項のいずれ
かに記載の内燃エンジンの作動制御手段の動作特性量制
御方法。 6、前記内燃エンジンは吸気通路と、該通路途中に配置
された絞シ弁とを備え、前記第2のエンジン運転パラメ
ータは前記吸気通路の前記絞り弁下流側圧力及びエンジ
ン回転数を含むことを特徴とする特許請求の範囲第1項
乃至第4項のいずれかに記載の内燃エンジン作動制御手
段の動作特性量制御方法。
[Scope of Claims] 1. In an operating characteristic quantity control method for electronically controlling an operating characteristic quantity of an operation control means of an internal combustion engine, a predetermined low load operating state of the engine is detected, and the engine is in the predetermined low load operating state. , when the engine is at the predetermined low When the engine is in a state other than a load operating state, a second engine operating parameter value representing the engine load state is detected, and a control value of the operating characteristic quantity is determined based on the detected second engine operating parameter value. , when it is detected that the engine has transitioned from a state other than the predetermined low load operating state to the predetermined low load operating state, the first and second engine operating parameter detection values are determined based on both the first and second detected engine operating parameter values. Until the second operating characteristic quantity control value for which the second operating characteristic quantity control value has been requested substantially matches the first operating characteristic quantity control value, the second operating characteristic quantity control value is used. 1. A method for controlling an operating characteristic quantity of an internal combustion engine operation control means, characterized in that the operating characteristic quantity control value of an internal combustion engine is determined, and the operation characteristic quantity of the operation control means is controlled to the thus determined operating characteristic quantity control value. 2. The second operating characteristic quantity control value that is detected when the transition to a predetermined low-load operating state of the engine is detected crosses a value that substantially matches the first operating characteristic quantity control value and becomes a smaller value. When the operating characteristic quantity of the internal combustion engine operation control means according to claim 1 is determined, the control value of the operating characteristic quantity is determined based on the detected value of the first engine operating parameter. Control method. 3. The second operating characteristic quantity control value, which is detected when the transition to the B constant low load operating state of the engine is detected, is larger than a value that substantially matches the first operating characteristic quantity control value. The operation of the internal combustion engine operation control means according to claim 1, wherein the control value of the operating characteristic quantity is determined based on the detected value of the first engine operating parameter when the detected value of the engine operating parameter is reached. Characteristic quantity control method. 4. After detecting the transition of the engine to a predetermined low load operating state, determining the control value of the operating characteristic based on the detected value of the first engine operating parameter, and then changing the predetermined low load of the engine. Claims 1 to 3 are characterized in that the determination of the operating characteristic quantity control value based on the detected value of the first engine operating parameter is continued until a state other than the operating state is detected. 5. The method for controlling an operating characteristic quantity of an operation control means for an internal combustion engine according to any one of 5. The internal combustion engine includes an intake passage and an intake air amount control means for controlling an intake air amount by adjusting an opening area of the passage. The internal combustion engine according to any one of claims 1 to 4, wherein the first engine operating parameter includes an opening area of an intake passage adjusted by the intake air amount control means. 6. The internal combustion engine includes an intake passage and a throttle valve disposed in the middle of the passage, and the second engine operating parameter is determined by the throttle valve in the intake passage. 5. A method for controlling an operating characteristic quantity of an internal combustion engine operation control means according to any one of claims 1 to 4, characterized in that the method includes downstream pressure and engine rotational speed.
JP19689183A 1983-09-06 1983-10-20 Method of controlling operation characteristic quantity for operation control means of internal-combustion engine Pending JPS6088830A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19689183A JPS6088830A (en) 1983-10-20 1983-10-20 Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
US06/646,684 US4513713A (en) 1983-09-06 1984-08-31 Method of controlling operating amounts of operation control means for an internal combustion engine
DE19843432379 DE3432379A1 (en) 1983-09-06 1984-09-03 METHOD FOR ELECTRONICALLY REGULATING AN OPERATING SIZE OF AN OPERATING CONTROL ARRANGEMENT SERVING THE CONTROL OF THE OPERATION OF AN INTERNAL COMBUSTION ENGINE
GB08422454A GB2146142B (en) 1983-09-06 1984-09-05 Comtrolling an internal conbustion engine
FR8413720A FR2551498B1 (en) 1983-09-06 1984-09-06 METHOD FOR DETERMINING CONTROL VALUES OF AN OPERATING CONTROL DEVICE OF AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19689183A JPS6088830A (en) 1983-10-20 1983-10-20 Method of controlling operation characteristic quantity for operation control means of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6088830A true JPS6088830A (en) 1985-05-18

Family

ID=16365362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19689183A Pending JPS6088830A (en) 1983-09-06 1983-10-20 Method of controlling operation characteristic quantity for operation control means of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6088830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287651A (en) * 1985-10-12 1987-04-22 Honda Motor Co Ltd Method of controlling operating characteristic amount of operating control means in internal combustion engine
GB2343873A (en) * 1998-11-18 2000-05-24 Jenoptik Jena Gmbh Arrangement for transporting microtitration plates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287651A (en) * 1985-10-12 1987-04-22 Honda Motor Co Ltd Method of controlling operating characteristic amount of operating control means in internal combustion engine
GB2343873A (en) * 1998-11-18 2000-05-24 Jenoptik Jena Gmbh Arrangement for transporting microtitration plates
US6343906B1 (en) 1998-11-18 2002-02-05 Cybio Instruments Gmbh Arrangement for transporting microtitration plates in an automatic handling machine

Similar Documents

Publication Publication Date Title
US6505594B1 (en) Control apparatus for internal combustion engine and method of controlling internal combustion engine
US4739741A (en) Fuel supply control method for internal combustion engines at starting
US5529043A (en) Signal processor
JPH1182090A (en) Internal combustion engine control system
JP2006118517A (en) Controller of internal combustion engine
JPH0465218B2 (en)
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JP2006152932A (en) Controller of internal combustion engine
JP4144626B2 (en) Control device for internal combustion engine
JPS6088830A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPH0692757B2 (en) Bypass air amount control method for internal combustion engine
JP3855557B2 (en) Control device for internal combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JPS6287651A (en) Method of controlling operating characteristic amount of operating control means in internal combustion engine
JPH06185396A (en) Basic fuel injection method
JPH0623554B2 (en) Engine throttle control device
JPH0235863B2 (en)
JPH0577867B2 (en)
JP4211789B2 (en) Control device for internal combustion engine
JPH11343907A (en) Idle engine speed controlling method and device therefor
JPH0463933A (en) Fuel injection control device
JP3303614B2 (en) Idle speed control device for internal combustion engine
JP2672087B2 (en) Fuel injection control device for diesel engine
JP2500183Y2 (en) Warm-up control device
JPH04209941A (en) Air-fuel ratio control device for engine