JPS6086439A - Optical quantifying device of very small quantity - Google Patents
Optical quantifying device of very small quantityInfo
- Publication number
- JPS6086439A JPS6086439A JP19404183A JP19404183A JPS6086439A JP S6086439 A JPS6086439 A JP S6086439A JP 19404183 A JP19404183 A JP 19404183A JP 19404183 A JP19404183 A JP 19404183A JP S6086439 A JPS6086439 A JP S6086439A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- sample
- light
- volume
- sampling nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 7
- 238000005070 sampling Methods 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 238000003384 imaging method Methods 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 5
- 238000011002 quantification Methods 0.000 claims description 4
- 235000012054 meals Nutrition 0.000 claims 1
- 238000002834 transmittance Methods 0.000 claims 1
- 210000002966 serum Anatomy 0.000 abstract description 11
- 239000013505 freshwater Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
- G01F23/292—Light, e.g. infrared or ultraviolet
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Measuring Volume Flow (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、微量の液体の容積を光学的に定量する光学
式微量定量装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical micro-metering device that optically determines the volume of a small amount of liquid.
近年、化学分析に際し、試料の微量化が進行する。特に
、臨床用の自動化学分析装置においては。In recent years, samples have become increasingly miniaturized for chemical analysis. Especially in clinical automated chemical analyzers.
患者等の被検体よりの試料採取量の微量化の要請が強く
、したがって、微量の試料を分析するための自動化学分
析装置が種々提案されている。There is a strong demand for reducing the amount of samples collected from subjects such as patients, and therefore various automatic chemical analyzers for analyzing minute amounts of samples have been proposed.
従来の自動化学分析装置では、微量の試料の容積を測定
する装置として、シリンジポンプやスライドパルプ等の
機械的動作による定量装置、あるいは、シリンジポンプ
をパルス駆#J″fる際に、そのパルス数をカウントす
ることによる定量装置等が採用されている。Conventional automatic chemical analyzers use mechanically operated quantitative devices such as syringe pumps and slide pulps to measure the volume of minute amounts of samples, or when the syringe pump is pulse-driven, the pulse A quantitative determination device that counts the number of samples is used.
しかしながら、前記定量装置は、機械的精度で試料の容
積を定量するので、精度よく定量可能な容積は5μl程
辰である。5μl以下の容積を精度良く定量するために
は、高精度のシリンジポンプとこれを駆動する精密な駆
動機構な必要とし、そのような定量装置の製造はきわめ
て困難であり、また、保守がきわめて煩雑であり、定量
精度を常に一定に維持するのが難しい。However, since the quantification device quantifies the volume of the sample with mechanical precision, the volume that can be quantified with high precision is about 5 μl. In order to accurately quantify a volume of 5 μl or less, a high-precision syringe pump and a precise drive mechanism are required to drive it, and manufacturing such a quantitative device is extremely difficult and maintenance is extremely complicated. Therefore, it is difficult to maintain constant quantitative accuracy.
この発明は、前記事情に基づいてなされたものであり、
きわめて簡単な構成でありながら、5μl以下の微量の
液体の容積を定量することのできる微量定量装置を提供
することを目的とするものである。This invention was made based on the above circumstances,
It is an object of the present invention to provide a microquantity metering device that can quantify the volume of a trace amount of liquid of 5 μl or less, although it has an extremely simple configuration.
前記目的を達成するためのこの発明の4@裂は。 The four features of this invention to achieve the above object are as follows.
液体を流通させると共に′少なくとも一部に透明部分を
有する液体流通路と、F!′iJ記液体流通路の前記透
明部分を挾んで対設した光源および一次元撮像デバイス
と、液体の元透過本の変化時に前記−次元撮1象デバイ
スより出力される検出信号により液体の流量を定量する
演算処理部とを備えたことを特徴とするものである。A liquid flow path that allows liquid to flow and has at least a portion of a transparent portion, and F! A light source and a one-dimensional imaging device are arranged to sandwich the transparent part of the liquid flow path, and a detection signal output from the -dimensional imaging device when the original transmission line of the liquid changes, is used to detect the flow rate of the liquid. The present invention is characterized by comprising an arithmetic processing unit for quantitative determination.
この発明の一実施例について図面を参照しながら説明す
る。An embodiment of the invention will be described with reference to the drawings.
第1図は、臨床用の自動化学分析装置に適用した光学式
微量定量装置を示す構成説明図である。FIG. 1 is an explanatory diagram of the configuration of an optical micro-quantification device applied to a clinical automated chemical analyzer.
同図において、1で示すのは、試料を吸引吐出するサン
プリングノズルであり、透明部材たとえば耐薬品性の硬
質ガラス製で、厳密な寸法出しで内径0.5〜1.0龍
に構成される。前記サンプリングノズル10周側面に沿
って光源2が配置され。In the same figure, the reference numeral 1 indicates a sampling nozzle for sucking and discharging a sample, and it is made of a transparent member, such as chemical-resistant hard glass, and has an inner diameter of 0.5 to 1.0 mm with exact dimensions. . A light source 2 is arranged along the circumferential side of the sampling nozzle 10.
前記光源2と前記サンプリングノズル1との間にはレン
ズ6たとえばシリンドリカルレンズが配置され、光源2
より発する光か、前記レンズ乙により、前記サンプリン
グノズル1の中心線に直父して前記サンプリングノズル
1に入射する平行光線となるように構成される。hlJ
記サンプリングノズル1を挾んで前記光源2とは反対側
に、入射面にライトガイド4を有する一次元撮r象デバ
イス5を配置し、−次元撮像デバイス5の走査により入
射する平行光線の強度変化を検出する構成を有する。A lens 6, for example a cylindrical lens, is disposed between the light source 2 and the sampling nozzle 1, and the light source 2
The light emitted from the sampling nozzle 1 is configured so that the light emitted from the sampling nozzle 1 becomes a parallel beam of light that is directly directed to the center line of the sampling nozzle 1 and is incident on the sampling nozzle 1 by the lens A. hlJ
A one-dimensional imaging device 5 having a light guide 4 on the incident surface is arranged on the opposite side of the light source 2 across the sampling nozzle 1, and the intensity change of the incident parallel light rays is measured by scanning of the -dimensional imaging device 5. It has a configuration to detect.
前記ライトガイド4は光の指向性を向上させ、−次元撮
峠デバイス5におけるチャンネル間のクロストークを防
止するために設けられる。また、−次元撮像デバイス5
は、第2図に示すようにたとえば1ピツチPを10μ7
7L以下にして10間の長さのところに1000素子以
上を配列してなる構成な有する。6で示すのは演算処理
部であり、−次元撮はデバイス5より出力されるデータ
と外部入力装置7より出力されるたとえばサンプリング
ノズル1の内径に関するデータとで、サンプリングノズ
ル1内に吸引した試料の容積を算出する。The light guide 4 is provided to improve the directivity of light and prevent crosstalk between channels in the -dimensional imaging device 5. In addition, -dimensional imaging device 5
For example, one pitch P is 10μ7 as shown in Figure 2.
It has a configuration in which more than 1,000 elements are arranged in a length of 10 to 7 L or less. Reference numeral 6 indicates an arithmetic processing unit, and -dimensional imaging uses data output from the device 5 and data regarding the inner diameter of the sampling nozzle 1, for example, output from the external input device 7. Calculate the volume of
8で示すのは、前記算出結果を表示する表示装置である
。8 is a display device that displays the calculation results.
以上構成の作用について述べる。The operation of the above configuration will be described.
先ず、サンプリングノズル1には、その先端部吸引口ま
で洗浄水が満たされているものとする。First, it is assumed that the sampling nozzle 1 is filled with cleaning water up to its tip suction port.
試料たとえば患者より採取した血清試料なサンプリング
ノズル1で吸引する場合、サンプリングノズル1で先ず
若干の空気を吸引し、次いで血清試料を吸引する。つま
り、サンプリングノズル1内には、第1図および第2図
に示すように、洗浄水9と血清試料10とが空気層11
を介して保持され、また、血清試料10に着目すると、
血清試料10は二つの空気層11.12にはさまれて保
持されることになる。次いで、二つの空気層11.12
にはさまれた血清試料10を、光源2より発せられレン
ズ6で形成された平行光線が入射する部位にまで吸引し
、位置させる。そして、前記血清試料10に平行光線を
照射し、出射する光を一次元撮1象デバイス5で検出す
る。−次元撮1象デバイス5では、各素子を走査して、
空気層11.12を透過する光と血清試料10を透過す
る光とを検知して各素子ごとに検出信号を出力する。し
たがって、検出信号により空気層11.12の位置を知
ることができる。演算処理部6は、入力する検出信号に
より空気層11.12の位置を判別することによってサ
ンプリングノズル1内の血清試料10の両端間の距離を
算出し、次いで、外部入力装置7により入力しているサ
ンプリングノズル1の内径を示すデータにより、血清試
料10の容積を算出し、その結果を表示装置8に表示す
る。When a sample, for example a serum sample collected from a patient, is aspirated with the sampling nozzle 1, the sampling nozzle 1 first aspirates some air and then aspirates the serum sample. That is, inside the sampling nozzle 1, as shown in FIGS.
Also, focusing on serum sample 10,
The serum sample 10 will be held between two air spaces 11 and 12. Then two air layers 11.12
The serum sample 10 sandwiched between the two is aspirated and positioned at a position where the parallel light beam emitted from the light source 2 and formed by the lens 6 is incident. Then, the serum sample 10 is irradiated with parallel light, and the emitted light is detected by the one-dimensional imaging device 5. - In the dimensional imaging device 5, each element is scanned,
Light passing through the air layers 11 and 12 and light passing through the serum sample 10 are detected and a detection signal is output for each element. Therefore, the position of the air layer 11, 12 can be known from the detection signal. The arithmetic processing unit 6 calculates the distance between both ends of the serum sample 10 in the sampling nozzle 1 by determining the position of the air layer 11, 12 based on the input detection signal, and then calculates the distance between the two ends of the serum sample 10 in the sampling nozzle 1. The volume of the serum sample 10 is calculated based on the data indicating the inner diameter of the sampling nozzle 1, and the result is displayed on the display device 8.
−次元撮鍛デバイス5における各素子が10μmのピッ
チPで配列されていて、サンプリングノズルの内径を0
.5 mynとすると、1/1000μlのオ−ダーで
試料容積を算出することができる。-Each element in the dimensional photoforging device 5 is arranged at a pitch P of 10 μm, and the inner diameter of the sampling nozzle is set to 0.
.. If it is 5 myn, the sample volume can be calculated on the order of 1/1000 μl.
以上、この発明の一実施例について詳述したが、この発
明は前記実施例に限定されるものではなぐ、この発明の
要旨を変更しない範囲内で適宜に変形して実施すること
ができるのはいうまでもない。Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above embodiment, and can be implemented with appropriate modifications within the scope of the gist of the invention. Needless to say.
前記実施例は、光学式微量定量装置を自動化学分析装置
に組み込んだものであるが、この発明は、微量の液体の
容積を知る必要の有る他の装置に適宜に適用することが
できる。Although the above-mentioned embodiment incorporates an optical micro-quantification device into an automatic chemical analyzer, the present invention can be applied appropriately to other devices that need to know the volume of a small amount of liquid.
この発明によると、−次元撮隊デバイスによりその前面
に配置された液体流通路中を通過する試料の光量変化を
読み取って、試料容積を算出するので、極く微量の試料
の容積を正確に検出することができる。この発明を自動
化学分析装置に組み込むと、患者より採取する試料の微
量化を達成することができ、しかも、極く微量の試料で
あっても正確にその容積を算出することができるので分
析の精度を損なうことがない。According to this invention, the volume of the sample is calculated by reading the change in the light intensity of the sample passing through the liquid flow path placed in front of it using the -dimensional camera device, so the volume of the extremely small amount of sample can be accurately detected. can do. By incorporating this invention into an automatic chemical analyzer, it is possible to reduce the amount of sample collected from a patient, and the volume of even a very small sample can be calculated accurately, making analysis easier. No loss of accuracy.
第1図はこの発明の一実施例装置を示す説明図、および
第2図は分注ノズルと一次元撮鐵デバイストヲ示す説明
図である。
1・・・サンプリングノズル、 2・・・光源、 5・
・・−次元撮像デバイス、6・・・演算処理部。FIG. 1 is an explanatory view showing an apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory view showing a dispensing nozzle and a one-dimensional imaging device. 1... Sampling nozzle, 2... Light source, 5.
...-dimensional imaging device, 6... arithmetic processing unit.
Claims (2)
部分を有する液体流通路と、前記液体流通路の前記透明
部分を挾んで対設した光源および一次元撮影デバイスと
、液体の光透過率の変化時に前記−次元撮影デバイスよ
り出力される検出信号により液体の流量を定量する演算
処理部とを備えたことを特徴とする光学式微量定食装置
。(1) A liquid flow path that allows liquid to flow and has a transparent portion in at least a portion, a light source and a one-dimensional imaging device that are arranged opposite to each other across the transparent portion of the liquid flow path, and a change in light transmittance of the liquid. An optical micro-quantity set meal device comprising: an arithmetic processing unit that determines the flow rate of liquid based on a detection signal outputted from the -dimensional photographing device.
サンプリングノズルであり、前記−次元撮像デバイスが
、1ピツチ10μm以下の多数の受光素子を10朋の長
さにわたって配列してなることを特徴とする特許請求の
範囲第1項に記載の光学式微量定量装置。(2) The liquid flow path is a sampling nozzle with an inner diameter of *0.5 to 1, and the -dimensional imaging device has a large number of light receiving elements arranged with a pitch of 10 μm or less over a length of 10 mm. The optical micro-quantification device according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19404183A JPS6086439A (en) | 1983-10-19 | 1983-10-19 | Optical quantifying device of very small quantity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19404183A JPS6086439A (en) | 1983-10-19 | 1983-10-19 | Optical quantifying device of very small quantity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6086439A true JPS6086439A (en) | 1985-05-16 |
Family
ID=16317950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19404183A Pending JPS6086439A (en) | 1983-10-19 | 1983-10-19 | Optical quantifying device of very small quantity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6086439A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6199021U (en) * | 1984-12-04 | 1986-06-25 | ||
EP0619476A1 (en) * | 1992-12-19 | 1994-10-12 | Boehringer Mannheim Gmbh | Device for detection of a fluidic interface in a transparent measuring tube |
EP0953843A2 (en) * | 1998-04-27 | 1999-11-03 | Ortho-Clinical Diagnostics, Inc. | Incremental absorbance scanning of liquid in dispensing tips |
JP2002535607A (en) * | 1999-01-14 | 2002-10-22 | エス.エフ.エム.ソフィスティケイティド フロウ メーターズ リミティド | Droplet counter for low flow |
JP2005326365A (en) * | 2004-05-17 | 2005-11-24 | Sigma Meltec Ltd | Test liquid quantity measuring device |
EP2293029A1 (en) | 2009-09-08 | 2011-03-09 | Steven Thomas Bryant | Optical system and method for detection of liquid level in a vessel |
CN103487104A (en) * | 2013-07-03 | 2014-01-01 | 青岛大学 | System and method for collecting and identifying images of capillary pipe liquid level type data |
CN105092308A (en) * | 2015-08-18 | 2015-11-25 | 北京雪迪龙科技股份有限公司 | Quantitative sampling device |
WO2020045080A1 (en) * | 2018-08-31 | 2020-03-05 | 株式会社島津製作所 | Analysis device, analysis method, trace liquid collection device, and trace liquid collection method |
-
1983
- 1983-10-19 JP JP19404183A patent/JPS6086439A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6199021U (en) * | 1984-12-04 | 1986-06-25 | ||
EP0619476A1 (en) * | 1992-12-19 | 1994-10-12 | Boehringer Mannheim Gmbh | Device for detection of a fluidic interface in a transparent measuring tube |
EP0953843A2 (en) * | 1998-04-27 | 1999-11-03 | Ortho-Clinical Diagnostics, Inc. | Incremental absorbance scanning of liquid in dispensing tips |
EP0953843A3 (en) * | 1998-04-27 | 2000-09-06 | Ortho-Clinical Diagnostics, Inc. | Incremental absorbance scanning of liquid in dispensing tips |
US6235534B1 (en) | 1998-04-27 | 2001-05-22 | Ronald Frederich Brookes | Incremental absorbance scanning of liquid in dispensing tips |
JP4646405B2 (en) * | 1999-01-14 | 2011-03-09 | フローセンス リミテッド | Low flow droplet counter |
JP2002535607A (en) * | 1999-01-14 | 2002-10-22 | エス.エフ.エム.ソフィスティケイティド フロウ メーターズ リミティド | Droplet counter for low flow |
JP2010286482A (en) * | 1999-01-14 | 2010-12-24 | Flowsense Ltd | Droplet counter for low flow rate |
JP2005326365A (en) * | 2004-05-17 | 2005-11-24 | Sigma Meltec Ltd | Test liquid quantity measuring device |
EP2293029A1 (en) | 2009-09-08 | 2011-03-09 | Steven Thomas Bryant | Optical system and method for detection of liquid level in a vessel |
US7982201B2 (en) | 2009-09-08 | 2011-07-19 | Jadak, Llc | System and method for detection of liquid level in a vessel |
CN103487104A (en) * | 2013-07-03 | 2014-01-01 | 青岛大学 | System and method for collecting and identifying images of capillary pipe liquid level type data |
CN105092308A (en) * | 2015-08-18 | 2015-11-25 | 北京雪迪龙科技股份有限公司 | Quantitative sampling device |
CN105092308B (en) * | 2015-08-18 | 2018-08-14 | 北京雪迪龙科技股份有限公司 | A kind of quantitative sampling device |
WO2020045080A1 (en) * | 2018-08-31 | 2020-03-05 | 株式会社島津製作所 | Analysis device, analysis method, trace liquid collection device, and trace liquid collection method |
CN112639432A (en) * | 2018-08-31 | 2021-04-09 | 株式会社岛津制作所 | Analysis device, analysis method, trace liquid extraction device, and trace liquid extraction method |
JPWO2020045080A1 (en) * | 2018-08-31 | 2021-09-02 | 株式会社島津製作所 | Analyzer, analysis method, trace liquid sampling device, and trace liquid sampling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8460942B2 (en) | Semen analysis | |
JP2651349B2 (en) | Detector for fluid phase boundary in transparent measuring tube and accurate automatic metering device for liquid volume | |
KR101516563B1 (en) | Diagnostic strip insertion type reading device | |
JP6524305B2 (en) | Apparatus and method for determining blood settling velocity and other parameters associated therewith | |
US11035784B2 (en) | Methods and systems for optical hemoglobin measurement | |
US3412254A (en) | Apparatus for counting particles suspended in transparent fluids | |
US20060288760A1 (en) | Intergrated apparatus for hematological analysis and related method | |
JPS6086439A (en) | Optical quantifying device of very small quantity | |
JP7382341B2 (en) | Apparatus and method for determining erythrocyte sedimentation rate and other related parameters | |
CN111912767A (en) | White blood cell counting and typing instrument and white blood cell counting and typing method | |
JP5266400B2 (en) | Semen analysis | |
US20220236263A1 (en) | Test device | |
CN107202759A (en) | A kind of solution absorbance auxiliary detection device and system | |
CA2741544C (en) | Semen analysis | |
CN112816437A (en) | Food analyzer based on total reflection refraction method | |
US20200326223A1 (en) | Plasma fill sensor | |
JPH01307608A (en) | Fluid quantity measuring instrument | |
JPS5832138A (en) | Inspection apparatus of blood | |
JPS6073361A (en) | Abnormality detecting apparatus in dispensing apparatus |