[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6083906A - Fiber type optical coupling element and its production - Google Patents

Fiber type optical coupling element and its production

Info

Publication number
JPS6083906A
JPS6083906A JP19217483A JP19217483A JPS6083906A JP S6083906 A JPS6083906 A JP S6083906A JP 19217483 A JP19217483 A JP 19217483A JP 19217483 A JP19217483 A JP 19217483A JP S6083906 A JPS6083906 A JP S6083906A
Authority
JP
Japan
Prior art keywords
fiber
refractive index
stress
fibers
linear polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19217483A
Other languages
Japanese (ja)
Other versions
JPS6230602B2 (en
Inventor
Masao Kawachi
河内 正夫
Juichi Noda
野田 壽一
Yutaka Sasaki
豊 佐々木
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19217483A priority Critical patent/JPS6083906A/en
Publication of JPS6083906A publication Critical patent/JPS6083906A/en
Publication of JPS6230602B2 publication Critical patent/JPS6230602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To maintain satisfactorily the quenching ratio of linear polarization and to decrease excessive loss by matching the refractive index of the stress- applying part of an optical fiber to the refractive index of the clad part thereof. CONSTITUTION:Optical fibers 1-1a, 2-2a for maintaining linear polarization of which the main axis directions are adjusted to a desired arrangement are fixed to supporting bases 41, 42 and are partly heated and welded thereto into one body. The welded part 43 is heated and at the same time the base 42 is smoothly moved toward an arrow 44 to stretch the welded part to a tapered shape, thereby forming a welded and stretched part 3. The two fibers are held in place between glass plates 51 and 52 and are dipped in a matching liquid 53 having the refractive index approximate to the refractive index of the clad part if the fiber 2-2a is already adjusted in the main axis direction and 1-1a is before adjustment. The light of an illuminating light source 54 is polarized by a polarizing plate 55a so as to cross the fiber and is thereafter passed through a polarizing plate 55b. The light is observed by a microscope 56 to detect the position of the stress-applying part and the fiber is rotated and is matched to the required position.

Description

【発明の詳細な説明】 本発明は、光通信や光フアイバセンサの分野に用いるフ
ァイバ形光結合子およびその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber type optical coupler used in the fields of optical communications and optical fiber sensors, and a method for manufacturing the same.

光7アイパ製造技術の進展に伴ない、直線偏波を主軸に
沿って長距離にわたって安定に保存する単一モード光フ
ァイバが開発され、直線偏波保持性光ファイバと呼ばれ
て光通信や光フアイバセンサの分野に新らたな進歩を生
み出すものと期待されている。直線偏波保持性光ファイ
バの利用に際しては、ファイバに接続される光回路部品
にも直線偏波保持性が要求される。なかでも、ファイバ
形光結合子は重要な光回路部品であシ、従来、第1図の
構造が提案されている。第7図において、2本の直線偏
波保持性光ファイバ1−1a、2〜28は、その一部が
融着・延伸されている。直線偏波保持性光ファイバは、
コア部4aの周囲のクラッド部4bK応力付与部5を有
し、応力付与部5で定まるファイバ主軸6a、6bが互
いに平行に揃うように、融着・延伸部3の断面7でファ
イバが配列されている。ファイバ1に入射した直線偏光
8は、ファイバ主軸に沿って伝わり、融着・延伸部で他
方の光ファイバにも分割され、直線偏光9.10として
、それぞれ7アイパ1a、2aから出射する。
With the advancement of optical 7-IPA manufacturing technology, single-mode optical fibers that stably preserve linearly polarized waves over long distances along their main axis have been developed, and are called linear polarization-maintaining optical fibers, which are used in optical communications and optical fibers. It is expected that this will lead to new advances in the field of fiber sensors. When using a linear polarization-maintaining optical fiber, optical circuit components connected to the fiber are also required to have linear polarization-maintaining property. Among these, the fiber type optical coupler is an important optical circuit component, and the structure shown in FIG. 1 has heretofore been proposed. In FIG. 7, two linear polarization-maintaining optical fibers 1-1a, 2-28 are partially fused and stretched. Linear polarization maintaining optical fiber is
The cladding part 4bK surrounding the core part 4a has a stress applying part 5, and the fibers are arranged in the cross section 7 of the fusion/stretching part 3 so that the fiber main axes 6a and 6b determined by the stress applying part 5 are aligned parallel to each other. ing. The linearly polarized light 8 incident on the fiber 1 is transmitted along the fiber main axis, is split into the other optical fiber at the fusion/stretching section, and is emitted as linearly polarized light 9.10 from the seven eyepers 1a and 2a, respectively.

融着・延伸部3でも、直線偏光状態が破壊されない一本
のファイバの配列構造としては、第1図に示した例を含
めて、第一図に示すように一本のファイバを融着操作2
1して得た構造が3通りあることが知られている(参考
文献M、Kawachiイ也: Electron、L
ett、/g(15’&、2)’i’乙2)。
Even in the fusing/stretching section 3, the arrangement structure of a single fiber in which the linear polarization state is not destroyed includes the example shown in Fig. 1, and the fusing operation of a single fiber as shown in Fig. 2
It is known that there are three structures obtained by 1 (References M, Iya Kawachi: Electron, L
ett, /g(15'&,2)'i'Otsu2).

このようなファイバの配列操作は、顕微鏡下で応力付与
部位置を観察することによりなされている。
Such fiber arrangement operations are performed by observing the stress applying portion positions under a microscope.

上記のファイバ形光結合子は、確かに入射・出射ファイ
バの主軸に沿って、直線偏波を一部 、5dB程度の消
光比で良好に保持するが、融着・延伸部3での過剰損失
が3 dB41度と大きいという欠点があった。これは
、応力付与部を有しない通常の単一モード光ファイバか
ら構成される直線偏波保持性のないファイバ形光結合子
の過剰損失が/dB程度以下である。ことと対照的で、
第1図に示した従来の直線偏波保持性ファイバ形光結合
子の使用上の大きな問題点であった。
The above-mentioned fiber-type optical coupler does maintain some linearly polarized waves well along the main axes of the input and output fibers with an extinction ratio of about 5 dB, but excessive loss occurs in the fusion/stretching section 3. The disadvantage was that the angle was as large as 3 dB and 41 degrees. This means that the excess loss of a non-linear polarization-maintaining fiber-type optical coupler made of an ordinary single-mode optical fiber having no stress-applying portion is about /dB or less. In contrast,
This was a major problem in the use of the conventional linear polarization maintaining fiber type optical coupler shown in FIG.

本発明は上記の事情に鑑みてなされたもので、過剰損失
の少いファイバ形光結合子およびその製造方法を提供す
ることを目的とする。本発明の第1の発明であるファイ
バ形光結合子は、クランド部に応力付与部を有する複数
本の直線偏波保持性光ファイバの一部が、ファイバ主軸
方向を揃えて融着・延伸されてなるファイバ形光結合子
において、該光ファイバの応力付与部の屈折率がクラッ
ド部の屈折率に整合していることを特徴とするものであ
る。また第2の発明であるファイバ形光結合子の製造方
法は、クラッド部に応力付与部を有する複数本の直線偏
波保持性光ファイバの−@金融着・延伸するファイバ形
光結合子の製造方法において、融着・延伸に先たち、該
光ファイバの応力付与部位置を光フアイバ側面↓り偏光
あるいは紫外光を用いて検出し、必要に応じて個々の光
ファイバをその中心軸に関して回転し、複数本の該光フ
ァイバの主軸方向を所望の配列に揃えることを特徴とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fiber type optical coupler with little excess loss and a method for manufacturing the same. A fiber-type optical coupler, which is the first invention of the present invention, has a part of a plurality of linear polarization-maintaining optical fibers each having a stress applying part in the crand part, which are fused and stretched so that the main axis directions of the fibers are aligned. The fiber type optical coupler is characterized in that the refractive index of the stress applying portion of the optical fiber is matched to the refractive index of the cladding portion. Further, the second invention, a method for manufacturing a fiber-type optical coupler, includes manufacturing a fiber-type optical coupler in which a plurality of linear polarization-maintaining optical fibers having stress-applying parts in the cladding parts are bonded and stretched. In this method, prior to fusing and drawing, the position of the stress applying part of the optical fiber is detected using polarized light or ultraviolet light from the side of the optical fiber, and if necessary, each optical fiber is rotated about its central axis. , the principal axes of the plurality of optical fibers are aligned in a desired arrangement.

本発明者は、過剰損失要因を鋭意検討した結果、応力付
与部の屈折率値が過剰損失に大きく影響することを見出
したもので、本発明は、低損失化のため、7アイパ形光
結合子を構成する光ファイバの応力付与部の屈折率値を
、2種以上のドーパントを用いて、クラッド部の屈折率
に匹敵するよう補償せしめたものである。M]折率を補
償された応力付与部仲/、従来のような顕微鏡観察では
側面よりの位置観察が不可能で、ファイバ主軸の配列が
困難という問題が生じたが、これをファイバ側面より偏
光あるいは紫外光を用いて観察することにより解決した
のである。以下、図面について本発明の詳細な説明する
As a result of intensive study on excessive loss factors, the present inventor found that the refractive index value of the stress-applying part has a large effect on excessive loss. The refractive index value of the stress applying part of the optical fiber constituting the optical fiber is compensated using two or more types of dopants so that it is comparable to the refractive index of the cladding part. M] Stress-applying part center with compensated refractive index / In conventional microscope observation, it is impossible to observe the position from the side, and it is difficult to align the main axis of the fiber, but this can be solved by polarizing the fiber from the side. Alternatively, the problem was solved by observing using ultraviolet light. Hereinafter, the present invention will be described in detail with reference to the drawings.

第3図(a)は、種々の応力付与部屈折率値を有する直
線偏波保持性光ファイバからfN成したファイバ形光結
合子の過剰損失と応力付与部比屈折率差(クラッド部の
屈折率を基準)との関係(実験値)を示したものである
。用いたファイバ側面図を第3図(b)に示したが、7
アイバ外径は/、2jμm。
Figure 3(a) shows the excess loss and stress-applying part relative refractive index difference (refraction of the cladding part) of a fiber-type optical coupler formed by fN from linear polarization-maintaining optical fibers having various stress-applying part refractive index values. It shows the relationship (experimental value) with A side view of the fiber used is shown in Figure 3(b),
The outer diameter of the eyeglass is /, 2jμm.

コア径1x、511m、コア部比屈折率差+θq%、応
力付与部5半径3θμm、応力付耳部中心とコア中心と
の距離30μmである。応力付与部にはドーパントとし
てB203(屈折率を低下させる)とGeo2(屈折率
を増加させる)を含み、そのバランスにより比屈折率差
が制御されている。ここでは2本のファイバは、第λ図
ta)に示した配列構造で融着・延伸され、/、3μm
でほぼ59%;59%の分割比を持つよう延伸部が調節
されており、第3図(a)に示す過剰損失は、それぞれ
作製した70個の結合子のうち、良好な5個の平均値を
示したものである。
The core diameter is 1x, 511 m, the difference in refractive index relative to the core portion +θq%, the radius of the stress applying portion 5 is 3θ μm, and the distance between the center of the stressed ear portion and the center of the core is 30 μm. The stress applying portion contains B203 (to lower the refractive index) and Geo2 (to increase the refractive index) as dopants, and the relative refractive index difference is controlled by the balance thereof. Here, two fibers are fused and stretched in the arrangement structure shown in Figure λ(ta), /, 3 μm.
The stretching part is adjusted to have a splitting ratio of approximately 59%; the excess loss shown in Figure 3(a) is the average of the five good connectors out of the 70 connectors fabricated. It shows the value.

第3図より、応力付与部の比屈折率差が一θj〜−θ7
%程度の光ファイバから構成される従来のファイバ形光
結合子の過剰損失が3dB程度以上となることが確認さ
れるとともに、過剰損失が/dB程度以下になる領域は
、−θ/j%≦応力付与応力付折部比屈折率差5%と狭
いことがわかる。第3図(alにおいて、応力付与部の
比屈折率差がマイナスの方向に移動するにつれて、過剰
損失が増加する理由としては次の点が考えられる。すな
わち、′融着・延伸部では、コア径が細くなるため、光
はコア部のみならずクラッド部にも大きく広がって伝わ
るが、応力付与部の比屈折率差がマイナスの場合には、
電界分布が乱されてしまい、基本モードから高次モード
への変換が生じ散乱損失の増加を招いてしまうものと推
定される。逆に比屈折率差がプラスの場合には、上記の
要因とともに、応力付与部への望ましくない光結合が生
じてしまうためと考えられる。第3図(2りの実M結果
は、第1図ta+の配列に対応したものであるが、第一
図(bl、 (C1の配列の場合には、応力付与部が2
つのコア間に介在することになるので、L6カ付与部屈
折率値の不整合に伴なう過剰損失増加は、さらに著しい
ものとなる。かくして、ファイバ形光結合子の低損失化
のためには、応力付与部の屈折率がり2ラド部の1直に
整合するよう複数のドーノくントで補償することが必要
である。
From Figure 3, the relative refractive index difference of the stress applying part is -θj~-θ7
It has been confirmed that the excess loss of a conventional fiber-type optical coupler composed of optical fibers of about 3 dB is about 3 dB or more, and the region where the excess loss is about / dB or less is -θ/j% ≦ It can be seen that the difference in refractive index between the stress-applied and stressed folded portions is as narrow as 5%. In Figure 3 (al), as the relative refractive index difference in the stress-applying part moves in the negative direction, the excess loss increases due to the following points. As the diameter becomes smaller, the light spreads widely and is transmitted not only to the core part but also to the cladding part, but if the relative refractive index difference of the stress applying part is negative,
It is estimated that the electric field distribution is disturbed and a conversion from the fundamental mode to a higher order mode occurs, leading to an increase in scattering loss. On the other hand, when the relative refractive index difference is positive, this is considered to be because, in addition to the above factors, undesirable optical coupling to the stress applying portion occurs. The actual M results in Figure 3 (2) correspond to the arrangement shown in Figure 1 ta+, but in the case of the arrangement shown in Figure 1 (bl, (C1), the stress applying part is 2
Since the L6 core is interposed between two cores, the increase in excess loss due to the mismatch in the refractive index values of the L6-applied portion becomes even more significant. Thus, in order to reduce the loss of the fiber-type optical coupler, it is necessary to compensate by using a plurality of dono-kunts so that the refractive index of the stress-applying part is aligned with the 2-rad part.

第9図は本発明のファイバ形光結合子の製造工程説明図
である。まず、2本の直線偏波保持性光ファイバ1−1
a、2−2aの主軸方向を第一図に示した所望の配列に
調節し支持台41.42に固定する(第9図(a) )
、つづいて、ファイバの一部を、酸素・プロパン炎で加
熱し、一体になるよう融着する(第り図(b))。次に
融着部43を加熱すると同時に、失持台42を滑らかに
矢印44方向に移動させ、融着m43*テーパ状に延伸
し、融着・延伸部3を形成する(第グ図(C))。
FIG. 9 is an explanatory diagram of the manufacturing process of the fiber type optical coupler of the present invention. First, two linear polarization maintaining optical fibers 1-1
a, adjust the main axis direction of 2-2a to the desired arrangement shown in Figure 1 and fix it to the support stand 41, 42 (Figure 9 (a))
Next, a part of the fiber is heated with an oxygen/propane flame to fuse it into one piece (Fig. 3(b)). Next, while heating the fused portion 43, the holding table 42 is smoothly moved in the direction of the arrow 44, and the fused portion m43* is stretched in a tapered shape to form the fused/stretched portion 3 (Fig. )).

第5図は、第y図(alのファイバ主軸配列工程をさら
に詳しく図解したもので、第グ図(alの破aA−A′
に沿った断面図を示したものである。第5図において、
ファイバ2−2aは既に主軸方向調整済の状態にあり、
ファイバ1−1aは調整前の状態にある。主軸配列工程
において、一本の光ファイバ1 1a、2−2aは、一
枚のガラス板51゜52間に挟在せしめられ、しかもフ
ァイバのクラッド部に近い屈折率値を有する整合液53
′4に侵潰されている。照明光源54からの光は偏光板
55aによシ、偏光となシ、ファイバを横断した後、別
の偏光板55bf、通過する。偏光がファイバを横断す
る際に応力付与部の存在によって生ずる光弾性効果のた
め、偏光面が回転し、顕微鏡56で観察することにより
、明暗差として応力付与部の位置を検出することができ
る。応力付与部の屈折率値がクラッド部の屈折率と精度
良く一致していて、通常の顕微鏡観察では応力付与部を
同定できない場合でも応力による光弾性効果は生ずるの
で、第5図の方法で応力付与部の位置を知ることができ
、ファイバを回転して、第一図に示したいずれの配列に
も合わせることができる。以上、配列操作の終了後には
、7アイパを支持台41.42に固定し、ガラス板51
.52を除去し1次の融着工程に備えるのである。ファ
イバ側面に残留した整合液は、融着時に酸・プロパン炎
で分解・気化伊しめられるので何の問題も無い。
Fig. 5 is a more detailed illustration of the fiber main axis arrangement process in Fig.
This figure shows a cross-sectional view along . In Figure 5,
Fiber 2-2a has already been adjusted in its main axis direction,
Fiber 1-1a is in a state before adjustment. In the main axis arrangement process, one optical fiber 11a, 2-2a is sandwiched between one glass plate 51, 52, and a matching liquid 53 having a refractive index value close to that of the cladding part of the fiber.
'4 was destroyed. The light from the illumination light source 54 crosses the fiber through a polarizing plate 55a, and then passes through another polarizing plate 55bf. When the polarized light crosses the fiber, the plane of polarization rotates due to the photoelastic effect caused by the presence of the stress-applying portion, and by observing it with the microscope 56, the position of the stress-applying portion can be detected as a difference in brightness. Even if the refractive index value of the stress-applying part matches the refractive index of the cladding part with high precision and the stress-applying part cannot be identified by normal microscopic observation, a photoelastic effect due to stress will occur. The position of the applicator can be known and the fiber can be rotated into any of the configurations shown in Figure 1. After completing the above arrangement operation, the 7 eyepers are fixed to the support base 41, 42, and the glass plate 51
.. 52 is removed to prepare for the primary fusion process. The matching liquid remaining on the side of the fiber is decomposed and vaporized by the acid/propane flame during fusion, so there is no problem.

ファイバ生釉の配列方法としては、紫外光を用いること
もできる。すなわち第6図に実施例を示すように、ファ
イバ1−18.2−2aは整合液53とともに、ガラス
板51.52間に挟在せしめられてお9、ファイバ側面
には、He−Cdレーザ6、、l(波長θ3Ωjμm、
出力/θmW)からの紫外光が照射されている。ドーパ
ントとしてG e 02を含む応力付与部は紫外光照射
によって可視域に螢光を発するために、螢光分布を顕微
鏡56を通して観察することにより、応力付与部位置、
したがって主軸方向を検出することができ、本発明のフ
ァイバ形光結合子の作製に有効である。顕微鏡観察をテ
レビカメラ等を通さず、直接眼で行なう場合には、適当
な位置に紫外線カツトフィルター62を入れ眼を保護す
ることが望ましい。
Ultraviolet light can also be used as a method for arranging the fiber raw glaze. That is, as shown in the embodiment in FIG. 6, the fiber 1-18, 2-2a is sandwiched between glass plates 51, 52 together with a matching liquid 53, and a He-Cd laser is mounted on the side of the fiber. 6,,l(wavelength θ3Ωjμm,
Ultraviolet light from output/θmW) is irradiated. Since the stress-applying portion containing G e 02 as a dopant emits fluorescence in the visible range when irradiated with ultraviolet light, by observing the fluorescence distribution through the microscope 56, the stress-applying portion position,
Therefore, the main axis direction can be detected, which is effective for producing the fiber type optical coupler of the present invention. When microscopic observation is to be performed directly with the eyes without using a television camera or the like, it is desirable to protect the eyes by inserting an ultraviolet cut filter 62 in an appropriate position.

以上、本発明の構成等を(,2×、2)形光結合子につ
いて説明したが3本の光ファイバを用いる(3x3)形
等についても同様に有効であることはもちろんである。
Although the configuration of the present invention has been described above for a (,2x,2) type optical coupler, it is of course equally effective for a (3x3) type using three optical fibers.

また、以上の実施例でとりあげた直線偏波保持性元ファ
イバ(P、ANDAファイバ)の他、類似のいわゆる複
屈折性ファイバ(例えばBow−Tieファイバ、楕円
タララドファイバ等)から成るファイバ形光結合子にも
、本発明が適用できることももちろんである。
In addition to the linear polarization-maintaining original fiber (P, ANDA fiber) taken up in the above embodiments, fiber-type light consisting of similar so-called birefringent fibers (for example, Bow-Tie fiber, elliptical Talarado fiber, etc.) Of course, the present invention can also be applied to connectors.

以上説明したように、本発明によれば、直線偏波保持性
光フアイバ応力付与部の屈折率をクラッド部と整゛合さ
せておくことにより、過剰損失/dB程度以下のファイ
バ形光結合子を提供することができる。偏光あるいは紫
外光を用いることにより、ファイバ主軸方向を希望の方
向に揃えて配列させることができるので、元結傘部でm
線偏波を安定に保存することが可能である。本発明のフ
ァイバ形光結合子は、安定な偏波保持が必要なコヒーレ
ント光通信や光7アイパ干渉計センサの構成部品として
使用すると効用が大である。
As explained above, according to the present invention, by matching the refractive index of the stress applying part of the linear polarization maintaining optical fiber with the cladding part, a fiber type optical coupler with an excess loss of less than about /dB can be obtained. can be provided. By using polarized light or ultraviolet light, it is possible to align the main axes of the fibers in the desired direction.
It is possible to stably preserve linear polarization. The fiber-type optical coupler of the present invention is highly effective when used as a component of coherent optical communications that require stable polarization maintenance or optical 7-eyeper interferometer sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は従来の直線偏波保持性ファイバ形光結合子の構
造図、第2図(al〜(C1は直線偏波を保存するファ
イバ配列図、第3図(alは応力付与部比屈折率差と光
結合子過剰損失との関係図、第3図(blは第3図(a
lの実験に用いたファイバの断面図、第7図(a)〜(
C)は本発明、のファイバ形光結合子作製工程図、第3
図は本発明におけるファイバ主軸整列方法の実施例を示
す説明図、第6図は量刑の実施例1−1a、2−2a・
・・・・・直線偏波保持性光ファイバ、3・・・・・・
融着・延伸部、4a・・・・・・コア部、4b・・・・
・・クラッド部、5・・・・・・応力付与部、6a。 6b・・・・・・ファイバ主軸、7・・・・・・融着延
伸部断面、8・・・・・・入射偏波、9,1o・・・・
・・出射偏波、21・・・・・・融着操作、41.42
・・・・・・支持台、43・・・・・・融着部、44・
・・・・・延伸方向、51.52・・・・・・ガラス板
、53・・・・・・屈折率整合液、54・・・・・・照
明光源、55a、55b・・・・・・偏光板、56・・
・・・・顕微鏡、61・・・・・・紫外光源、(f(e
−cdレーザ)、62・・・・・・紫外線カツトフィル
ター。 出願人 日本電信電話公社 代理人 弁理士 志 賀 正 武゛°り1°)゛・(ミ
レソ 第2図 第3図 (a) (b) 床°カイ1与合p比かイ仙Y差−(%)第4図 ) ) 第5図 \55a ↑ 渋し54
Figure 7 is a structural diagram of a conventional linear polarization maintaining fiber type optical coupler; Relationship diagram between rate difference and excess photocoupler loss, Figure 3 (bl is Figure 3 (a)
Cross-sectional views of the fibers used in the experiment of 1, Figures 7(a) to (
C) is a process diagram for manufacturing a fiber type optical coupler of the present invention, No. 3
The figure is an explanatory diagram showing an embodiment of the fiber main axis alignment method in the present invention, and FIG.
...Linear polarization maintaining optical fiber, 3...
Fusion/stretching part, 4a...core part, 4b...
...Clad part, 5...Stress applying part, 6a. 6b...Fiber main axis, 7...Fusion-stretched section cross section, 8...Incoming polarized wave, 9, 1o...
...Emission polarization, 21... Fusion operation, 41.42
... Support stand, 43 ... Fusion part, 44.
...Stretching direction, 51.52...Glass plate, 53...Refractive index matching liquid, 54...Illumination light source, 55a, 55b...・Polarizing plate, 56...
...Microscope, 61...Ultraviolet light source, (f(e
-cd laser), 62... ultraviolet cut filter. Applicant Nippon Telegraph and Telephone Public Corporation Agent Patent Attorney Tadashi Shiga Takeo 1°) (%) Figure 4) ) Figure 5\55a ↑ Shibushi 54

Claims (1)

【特許請求の範囲】 l り2ラド部に応力付与部を有する複数本の直線偏波
保持性光ファイバの一部が、ファイバ主軸方向を揃えて
融着・延伸されてなるファイバ形光結合子において、該
光7アイパの応力付与部の屈折率がクラッド部の屈折率
に整合していることを特徴とするファイバ形光結合子。 2 クラッド部に応力付与部を有する複数本の直線偏波
保持性光ファイバの−mを融着・延伸するファイバ形光
結合子の製造方法において、融着・延伸に先だち、該九
ファイバの応力付与部位置を光ファイバ側面↓シ偏光あ
るいは紫外光を用いて検出し、必要に応じて個々の光フ
ァイバをその中心軸に関して回転し、複数本の該光ファ
イバの主軸方向を所望の配列に揃えることを特徴とする
ファイバ形光結合子の製造方法。
[Claims] A fiber-type optical coupler in which parts of a plurality of linear polarization-maintaining optical fibers each having a stress-applying part in the two rad parts are fused and stretched so that the main axes of the fibers are aligned. 2. A fiber type optical coupler according to claim 1, wherein the refractive index of the stress applying portion of the optical 7-eyeper is matched to the refractive index of the cladding portion. 2. In a method for manufacturing a fiber-type optical coupler in which -m of a plurality of linear polarization-maintaining optical fibers having a stress applying part in the cladding part is fused and stretched, the stress of the nine fibers is Detect the position of the applied part on the side of the optical fiber using polarized light or ultraviolet light, and if necessary, rotate each optical fiber about its central axis to align the principal axes of the multiple optical fibers in the desired arrangement. A method for manufacturing a fiber type optical coupler, characterized in that:
JP19217483A 1983-10-14 1983-10-14 Fiber type optical coupling element and its production Granted JPS6083906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19217483A JPS6083906A (en) 1983-10-14 1983-10-14 Fiber type optical coupling element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19217483A JPS6083906A (en) 1983-10-14 1983-10-14 Fiber type optical coupling element and its production

Publications (2)

Publication Number Publication Date
JPS6083906A true JPS6083906A (en) 1985-05-13
JPS6230602B2 JPS6230602B2 (en) 1987-07-03

Family

ID=16286908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19217483A Granted JPS6083906A (en) 1983-10-14 1983-10-14 Fiber type optical coupling element and its production

Country Status (1)

Country Link
JP (1) JPS6083906A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235307A (en) * 1985-08-09 1987-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical coupler
JPS63136009A (en) * 1986-11-28 1988-06-08 Fujikura Ltd Optical fiber coupler
JPS63234209A (en) * 1987-03-23 1988-09-29 Fujikura Ltd Production of optical fiber coupler
JPS63249808A (en) * 1987-04-07 1988-10-17 Fujikura Ltd Optical fiber coupler
JPS6461711A (en) * 1987-09-02 1989-03-08 Nippon Telegraph & Telephone Optical fiber coupler
JPH02271307A (en) * 1989-04-12 1990-11-06 Fujikura Ltd Production of constant polarization optical fiber coupler
JPH04107511A (en) * 1990-08-28 1992-04-09 Sumitomo Electric Ind Ltd Production of polarization maintaining optical fiber coupler
EP1079247A3 (en) * 1999-08-20 2003-10-29 Fujikura Ltd. Polarization-maintaining optical fiber and polarization-maintaining optical fiber component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237901A (en) * 1987-03-27 1988-10-04 小松ゼノア株式会社 Manufacture of sprocket for chain saw
JPH0518087Y2 (en) * 1988-10-01 1993-05-14
JPH0265503U (en) * 1988-11-07 1990-05-17

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488138A (en) * 1977-12-26 1979-07-13 Toshiba Corp Production of optical distributor
JPS57123836A (en) * 1981-01-17 1982-08-02 Nippon Telegr & Teleph Corp <Ntt> Preparation optical fiber having single mode of internal stress and double refraction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488138A (en) * 1977-12-26 1979-07-13 Toshiba Corp Production of optical distributor
JPS57123836A (en) * 1981-01-17 1982-08-02 Nippon Telegr & Teleph Corp <Ntt> Preparation optical fiber having single mode of internal stress and double refraction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235307A (en) * 1985-08-09 1987-02-16 Nippon Telegr & Teleph Corp <Ntt> Optical coupler
JPS63136009A (en) * 1986-11-28 1988-06-08 Fujikura Ltd Optical fiber coupler
JPH0578005B2 (en) * 1986-11-28 1993-10-27 Fujikura Kk
JPS63234209A (en) * 1987-03-23 1988-09-29 Fujikura Ltd Production of optical fiber coupler
JPS63249808A (en) * 1987-04-07 1988-10-17 Fujikura Ltd Optical fiber coupler
JPS6461711A (en) * 1987-09-02 1989-03-08 Nippon Telegraph & Telephone Optical fiber coupler
JPH02271307A (en) * 1989-04-12 1990-11-06 Fujikura Ltd Production of constant polarization optical fiber coupler
JPH04107511A (en) * 1990-08-28 1992-04-09 Sumitomo Electric Ind Ltd Production of polarization maintaining optical fiber coupler
EP1079247A3 (en) * 1999-08-20 2003-10-29 Fujikura Ltd. Polarization-maintaining optical fiber and polarization-maintaining optical fiber component
US7050672B1 (en) 1999-08-20 2006-05-23 Fujikura Ltd. Polarization-maintaining optical fiber and polarization-maintaining optical fiber component

Also Published As

Publication number Publication date
JPS6230602B2 (en) 1987-07-03

Similar Documents

Publication Publication Date Title
JP2996602B2 (en) Optical branching coupler for constant polarization optical fiber
JP2015513124A (en) Fiber optic coupler for combining a signal beam with a non-circular light beam
JPS6083906A (en) Fiber type optical coupling element and its production
JPS59198419A (en) Production of fiber-shaped directional coupler
US6701046B1 (en) Method for producing an optical coupler for extracting a signal from a polarization maintaining optical fiber, and corresponding coupler
JPS60154215A (en) Fiber type directional coupler
JP3295053B2 (en) 4-core ferrule for constant polarization optical fiber
JP2864520B2 (en) Optical coupler manufacturing method
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH0335643B2 (en)
Stasiewicz et al. Automatic set-up for advanced optical fiber elements manufacturing
JPS60113214A (en) Fiber type optical switch
JPH0667057A (en) Optical fiber coupler maintaining plane of polarization
JPH0427903A (en) Optical fiber polarizer and production thereof
JP2749842B2 (en) Multiplexer / demultiplexer
JP2931914B2 (en) Optical fiber branch coupler
JPH04107511A (en) Production of polarization maintaining optical fiber coupler
CA2386068A1 (en) Method for producing an optical coupler for extracting a signal from a polarization maintaining optical fibre, and corresponding coupler
JPH01246510A (en) Polarized wave maintaining optical fiber
JPH04322207A (en) Optical fiber coupler and its manufacture
JP4015017B2 (en) Polarized beam splitter
Cullen Polarization-diversity fiber networks
JPS62103617A (en) Optical circulator
JPH08220369A (en) Optical fiber coupler and its production
JPS63257705A (en) Optical fiber coupler