[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6081419A - Purifying method of exhaust - Google Patents

Purifying method of exhaust

Info

Publication number
JPS6081419A
JPS6081419A JP58190176A JP19017683A JPS6081419A JP S6081419 A JPS6081419 A JP S6081419A JP 58190176 A JP58190176 A JP 58190176A JP 19017683 A JP19017683 A JP 19017683A JP S6081419 A JPS6081419 A JP S6081419A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio
palladium
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58190176A
Other languages
Japanese (ja)
Other versions
JPH0465206B2 (en
Inventor
Yoshiyasu Fujitani
藤谷 義保
Hideaki Muraki
村木 秀昭
Koji Yokota
幸治 横田
Tamotsu Nakamura
保 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58190176A priority Critical patent/JPS6081419A/en
Publication of JPS6081419A publication Critical patent/JPS6081419A/en
Publication of JPH0465206B2 publication Critical patent/JPH0465206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve purifying efficiency of exhaust, by setting the ratio of a time holding air-fuel ratio in its rich side to that in its lean side to 0.05-10, in the case of an internal-combustion engine equipping a ternary catalyst of palladium system. CONSTITUTION:In the case of an engine equipping a ternary catalyst of palladium system, if air-fuel ratio of an intake mixture is amplitude changed alternately to a lean side 11 and a rich side 12, the air-fuel ratio C being the center of amplitude change is determined by ratio (a) of a holding time (D, E) in the lean side to the time in the rich side and a width W of change. If the ratio (a) of the holding time, that is, a value of E/D is determined to a range of 0.05- 0.8 or 1.5-10, high efficiency of purifying exhaust gas can be maintained over all of NOx, CO, HC.

Description

【発明の詳細な説明】 本発明は、内燃機関から排出される排気中の有害成分で
ある窒素酸化物、−酸化炭素及び灰化水素を高能率で浄
化する排気浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas purification method for highly efficiently purifying nitrogen oxides, carbon oxides, and hydrogen ash, which are harmful components in exhaust gas discharged from an internal combustion engine.

内燃機関の排気中の前記有害成分を浄化する方法につい
ては種々の提案がなされている。そして。
Various proposals have been made regarding methods for purifying the harmful components in the exhaust gas of internal combustion engines. and.

上記三成分を同時に浄化する方法の1つとして。As one method for purifying the above three components at the same time.

内燃機関の運転をその空燃比(内燃機関へ送入するガソ
リンに対する空欠の重量比、A、/Fで表わす。)が理
論空燃比を中心として高空燃比側と低空燃比側とに等し
い時間で変動させる方法(以下。
The operation of an internal combustion engine is defined as a period in which the air-fuel ratio (depleted weight ratio to gasoline fed to the internal combustion engine, expressed as A, /F) is equal to the high air-fuel ratio side and the low air-fuel ratio side around the stoichiometric air-fuel ratio. How to vary (see below)

等時間変動法という)がある。There is a method called the isotemporal variation method.

一方、上記排気浄化用触媒も種々のものが提案されてい
るが、その中パラジウム系触媒は、資源面、経済面等に
おいても上記触媒として使用することが有望視されてし
)る。
On the other hand, various types of exhaust purification catalysts have been proposed, among which palladium-based catalysts are considered promising for use as the catalyst in terms of resources and economy.

しかしながら、該パラジウム系触姥を用いて前記等時間
変動法による浄化法を行なった場合、後述するごとく高
い浄化率を達成することができない。
However, when the above-mentioned isochronous variation method is used for purification using the palladium-based catalyst, a high purification rate cannot be achieved as will be described later.

本発明は、かかる従来法の欠点を克服し、高能率で曲記
三W分を浄化することができる方法を提供しようとする
ものである。
The present invention aims to overcome the drawbacks of such conventional methods and provide a method capable of purifying the 3W component with high efficiency.

即ち2本発明は、前記排完中の窒1酸化物(以下、NO
xという)、−酸化炭素(以下、COという)及び炭化
水素(以下、THCという)を触媒により浄化する方法
におし\て、上記触媒としてパラジウム系触媒を用い、
内Ip′機関の運転は、その空燃比を高空燃比側と低空
燃比側とに変動させると共に、該高空燃比側に対する低
空燃比側の空燃比保持の時間比を0.05ないし0.8
又はL5ないしlOの範囲とし、かつ平均空燃比を理論
空燃比付近とすることを特徴とするものである。
That is, two aspects of the present invention are to eliminate nitrous oxide (hereinafter, NO
x), - a method for purifying carbon oxides (hereinafter referred to as CO) and hydrocarbons (hereinafter referred to as THC) using a catalyst, using a palladium-based catalyst as the catalyst,
In operation of the engine, the air-fuel ratio is varied between a high air-fuel ratio side and a low air-fuel ratio side, and the time ratio of maintaining the air-fuel ratio on the low air-fuel ratio side with respect to the high air-fuel ratio side is 0.05 to 0.8.
Alternatively, the air-fuel ratio is in the range of L5 to 10, and the average air-fuel ratio is near the stoichiometric air-fuel ratio.

@−g 、 T HCを高能率で浄化することができる
。また1本発明において用いる触媒はパラジウム系触媒
である故、資源的、経済的にも有利な浄化方法である。
@-g, THC can be purified with high efficiency. Furthermore, since the catalyst used in the present invention is a palladium-based catalyst, the purification method is advantageous in terms of resources and economy.

と 本発明において、バヮジウム系触に古は、バヮジウム、
パラジウムー白金、パラジウム−ランタン、パラジウム
−セリア、パラジウム−白金−セリア等の、パラジウム
のみ又はこれを主成分とする触媒をいう。
In the present invention, the vaadium-based catalyst is vaadium,
Refers to catalysts containing only palladium or containing palladium as a main component, such as palladium-platinum, palladium-lanthanum, palladium-ceria, and palladium-platinum-ceria.

次に、内燃機関の運転は、第1図に矩形波で示すごと・
1.空燃比を高空燃比側11と低空燃比側12とに交互
に振幅変動させることにより行なう。
Next, the operation of the internal combustion engine is as shown by the square wave in Figure 1.
1. This is done by alternating the amplitude of the air-fuel ratio to a high air-fuel ratio side 11 and a low air-fuel ratio side 12.

しかして、この振幅変動の中心となる空炉・比(中心空
燃比)Cは、後述するごとく、高空燃比側と低空燃比側
との保持時rttj(D、E)の比(a)。
Therefore, the air-furnace ratio (center air-fuel ratio) C, which is the center of this amplitude fluctuation, is the ratio (a) of the high air-fuel ratio side and the low air-fuel ratio side at the time of holding rttj (D, E), as described later.

変動幅(W)、及び理論空燃比の饋によって定められる
It is determined by the fluctuation range (W) and the stoichiometric air-fuel ratio.

本発明において最も重要なことは、上記の空燃比変動を
前記従来法のごとく#P時間変動させるのではなく、第
1図に矩形波で示すごとく、高空燃比側11の保持時間
(D)と低空燃比側182の保持時間(E)とを異なら
せ、しかもその比率を所定の範囲とすること、及びその
変動の結果生ずる平均空燃比(T)が理論空燃比付近で
あるということである。
The most important thing in the present invention is that the above-mentioned air-fuel ratio fluctuation is not caused to vary by #P time as in the conventional method, but by changing the holding time (D) of the high air-fuel ratio side 11 as shown by the rectangular wave in FIG. The retention time (E) on the low air-fuel ratio side 182 is varied, and the ratio is set within a predetermined range, and the average air-fuel ratio (T) resulting from the variation is near the stoichiometric air-fuel ratio.

上記において、高空燃比側保持時間CD)に対する低空
燃比側保持時間(E)の比率(E/D)。
In the above, the ratio (E/D) of the low air-fuel ratio side holding time (E) to the high air-fuel ratio side holding time CD).

即ち保持時間比(σ)は0、o5ないしo、8.または
15ないし10の範囲とする必要がある。aが0.05
より低い場合には低空燃比側の保持時間が短かくなり、
またaが0.8より大ぎい場合には保持時間比が等量近
くなるため1本発明の浄化効率向上の効果が得られなく
なる。また、αがL5より小さい場合には保持時間比が
等量近くになるため、またαが10より大きい場合には
高空燃比側の保持時間が短かくなり1本発明の浄化効率
向上の効果が得られない。
That is, the retention time ratio (σ) is 0, o5 to o, 8. Or it needs to be in the range of 15 to 10. a is 0.05
If the air-fuel ratio is lower, the holding time on the low air-fuel ratio side will be shorter,
Furthermore, if a is too large than 0.8, the retention time ratios will be close to the same amount, making it impossible to obtain the effect of improving the purification efficiency of the present invention. In addition, when α is smaller than L5, the retention time ratio becomes close to the same amount, and when α is larger than 10, the retention time on the high air-fuel ratio side is shortened, and the effect of improving the purification efficiency of the present invention is reduced. I can't get it.

次に、内燃機関の運転を上記の条件下で行なう場合、第
1図に示すごとき、平均空燃比(T)。
Next, when the internal combustion engine is operated under the above conditions, the average air-fuel ratio (T) is as shown in FIG.

中心空燃比(C)、中心空燃比(C)を中心として高及
び低空燃比側へ変動させる空燃比の片側変動幅(W)高
空燃比側保持時間(D)と低空燃比側保持時間(E)、
この両者の保持時間比(E/D)=a、及び片側振れ輸
率(W/C)=βの間には。
Center air-fuel ratio (C), one-sided variation width (W) of the air-fuel ratio that changes the center air-fuel ratio (C) to higher and lower air-fuel ratios, holding time on the high air-fuel ratio side (D) and holding time on the low air-fuel ratio side (E) ,
Between the retention time ratio (E/D) = a and the unilateral flux transfer rate (W/C) = β.

次の関係式が成立する。The following relational expression holds true.

T=C(C+W)D+(C−W)iia/(D+E)=
(C(1+ρ)D+C(1−β)E〕/(D+E )=
C((1+β)D+(1−β)E:)/(D+E ) =C((1+β)D+(1−β)Dσ:)/(D+Dα
)=C((1+β)+(l−β)a)/(l+a)上記
において、平均空紫比(T)は、上記のごとく空燃比を
変動させた場合の単位時間当りの平均の空燃比であり、
第1図に61線で示す2と3の各部分の面積が同等とな
るように設定される値である。
T=C(C+W)D+(C-W)iia/(D+E)=
(C(1+ρ)D+C(1-β)E]/(D+E)=
C((1+β)D+(1-β)E:)/(D+E) =C((1+β)D+(1-β)Dσ:)/(D+Dα
)=C((1+β)+(l-β)a)/(l+a) In the above, the average air-to-purple ratio (T) is the average air-fuel ratio per unit time when the air-fuel ratio is varied as described above. and
This value is set so that the areas of parts 2 and 3 shown by line 61 in FIG. 1 are equal.

上記の各条件を具体的数値により定めれば1例えば理論
空燃比が144のガソリンを用い、中心空燃比をC=1
4.0とし9片側変動ta+w=o、q、即ち片側振れ
輸率β−0,7/ 14. O= 0.05 、平均空
燃比fTlを理論空燃比と同じtこすれば、高及び低の
保持時間比αは次式によりめられる。即ち。
If each of the above conditions is determined by specific numerical values, it is 1. For example, using gasoline with a stoichiometric air-fuel ratio of 144, the center air-fuel ratio is C = 1.
4.0, 9 one-sided fluctuation ta + w = o, q, that is, one-sided fluctuation transport index β - 0,7/ 14. If O=0.05 and the average air-fuel ratio fTl is rubbed by the same t as the stoichiometric air-fuel ratio, the high and low retention time ratio α can be determined by the following equation. That is.

14.4=14.0((1+0.05 )+(1−0,
05)×a〕/(1+a) より、保pU間比σ=027をめることができる。しか
して、変動周期を1ヘルツにすれば、高及び低空燃比側
の保持時間はそれぞれ079秒及び0.21秒となる。
14.4=14.0((1+0.05)+(1-0,
05)×a]/(1+a), it is possible to obtain the pU ratio σ=027. Therefore, if the fluctuation period is 1 hertz, the holding times on the high and low air-fuel ratio sides will be 079 seconds and 0.21 seconds, respectively.

上記においては、前記のC及びWの値を定めて。In the above, the values of C and W are determined.

それに必要なaの値をめたが、前記したごとく。I calculated the value of a necessary for this, as mentioned above.

本発明においてはaが前記の範囲にあること、及び平均
空微比(T、 )が理論空燻比近くであることが満足さ
れれば、上記の条件は任意tこ定めることかできる。
In the present invention, the above conditions can be arbitrarily determined as long as a is within the above range and the average air-to-minimal ratio (T, ) is close to the theoretical air-to-smoking ratio.

また、平均空数比(T)は理論空燃比の近くの値を採用
すべきであるが、その値はNOxの浄化率が最高のf(
αを示す理論空燃比付近の空燃比を採用するのが好まし
い。かかる値は通常理論空燃比の上下10%の範囲内に
存在する。また、理論空燃比とはガソリンを完全燃焼さ
せるのに要する空燃比を賢い、■j常は14〜]5の範
囲内シーある。
In addition, the average air-to-air ratio (T) should be close to the stoichiometric air-fuel ratio, but the value should be set to f(
It is preferable to employ an air-fuel ratio near the stoichiometric air-fuel ratio that represents α. Such a value usually exists within a range of 10% above and below the stoichiometric air-fuel ratio. The stoichiometric air-fuel ratio is the air-fuel ratio required to completely burn gasoline, and is usually within the range of 14 to 5.

また、高又は低空燃比側への空燃比の振れ線字(β)は
中心空燃比を中心としてその」1下に、球中心空燃比の
0.02ないし01とすることが望ましい。また、中心
空燃比はnfl記の関係式かへ定めることができるが、
135ないし15の範囲とすることが¥ましい。
Further, it is desirable that the deflection line (β) of the air-fuel ratio toward the high or low air-fuel ratio side be set at 0.02 to 0.1 1 below the center air-fuel ratio, centered on the center air-fuel ratio. In addition, the center air-fuel ratio can be determined by the relational expression in nfl,
It is preferable to set it in the range of 135 to 15.

また、上記の空燃比変動の眉波数はC5ないし2ヘルツ
とすることが好ましく、これ以外では本発明の効果を得
難い。
Further, it is preferable that the frequency of the air-fuel ratio fluctuation is between C5 and 2 Hz; otherwise, it is difficult to obtain the effects of the present invention.

なお、前記のごとき内P機関の運転制御+、1.電子燃
電子燃装制御装置等周知により行なうことができる。
In addition, the operation control of the inner P engine as described above+, 1. This can be done using a well-known electronic combustion electronic combustion control device or the like.

実施例L a−アルミナ担体1(1’にパラジウム(Pd)を00
5y担持してなるパラジウム触媒を閏9ψL7゜該軸[
194!をコンバータに充ルし、排矢夙2、 OOOc
o のガソリンエンジンの排気路に配置し、浄化率のf
f1ll定を行なった。
Example L a-Alumina carrier 1 (palladium (Pd) at 1'
The palladium catalyst supported on the 5y axis is 9ψL7° [
194! Fill the converter with 2, OOOc
o placed in the exhaust path of a gasoline engine, and the purification rate f
f1ll determination was performed.

エンジンは、第1図に示したごとく、高及び低空燃比側
に、矩形波状の空燃比運転を行なった。
As shown in FIG. 1, the engine was operated at a rectangular wave air-fuel ratio on the high and low air-fuel ratio sides.

この際、平均空燃比(T)は理論空燃比である144と
し1及動周波数は1ヘルツとした。なお。
At this time, the average air-fuel ratio (T) was the stoichiometric air-fuel ratio of 144, and the operating frequency was 1 hertz. In addition.

コンバータ内へ流入する排気の温度は、約350℃であ
った。
The temperature of the exhaust gas flowing into the converter was approximately 350°C.

第1表に、中心空飲比(C)9片側振れ線字(β)。Table 1 shows the center air-drink ratio (C) and the lateral runout line (β).

保持時間比(+zlの条件及び浄化率の測定結果を示す
The conditions for the retention time ratio (+zl) and the measurement results of the purification rate are shown.

また、同表には比較例として、保持時間比が10である
従来法の場合(C1〜C3))こついCも示した。
In addition, as a comparative example, the same table also shows difficult C in the case of the conventional method where the retention time ratio is 10 (C1 to C3).

第 1 表 第1表より知られるごとく1本発明によれば。Table 1 As can be seen from Table 1, according to the present invention.

従来法(比咬例)に比して、浄化率をかなり向上させ得
ることが分る。また、その効果は特にNOx。
It can be seen that the purification rate can be significantly improved compared to the conventional method (proximity). In addition, the effect is particularly on NOx.

COの浄化において著るしいことが分る。It can be seen that this method has a remarkable effect on purifying CO.

実施例2 実施例1と同様の触媒を用いて、保持時間比を種々に変
えて、実施例1と同様にNOx浄化率の測定を行なった
Example 2 Using the same catalyst as in Example 1, the NOx purification rate was measured in the same manner as in Example 1, with various retention time ratios.

エンジンの運転は、平均空燃比(T)を14.4として
、空燃比変動の振れ輸率(β)が0.04 、0.06
゜0.08の各場合について行なった。なお、変動周波
数は1ヘルツIとした。
The engine is operated with an average air-fuel ratio (T) of 14.4, and a swing coefficient (β) of air-fuel ratio fluctuations of 0.04 and 0.06.
The test was carried out for each case of 0.08°. Note that the fluctuating frequency was 1 hertz I.

測定の結果を、振れ輸率(β)が0.04,0.06お
よび008の各場合につき、それぞれ第2.3およびp
A4図トこ示した。
The measurement results are calculated as 2.3 and p for each case where the transfer coefficient (β) is 0.04, 0.06 and 008
I have shown an A4 diagram.

第2ないし4図より知られるごとく、保持時間比(a)
が10の付近、及び0.05以下または10以上では、
浄化率が低いことが分る。
As known from Figures 2 to 4, retention time ratio (a)
is around 10, and below 0.05 or above 10,
It can be seen that the purification rate is low.

実施例3 a−アA/ミナ担体leに、 Pdを0.05 f/ 
、ワンタン(La)を0. l mole担持して成る
触媒を調製し、実施例1と同様に浄化率の測定を行なっ
た。
Example 3 Pd was added at 0.05 f/ to a-a A/Mina carrier le.
, wonton (La) to 0. A catalyst supporting 1 mole was prepared, and the purification rate was measured in the same manner as in Example 1.

第2表に、中心空燃比(C)1片側振れ輸率(β)。Table 2 shows the center air-fuel ratio (C) and the one-sided flux transfer coefficient (β).

保持時間比(σ)の条件及び浄化率の測定結果を示す。The conditions for the retention time ratio (σ) and the measurement results for the purification rate are shown.

第 2 表 第2表より知られるごとく、本発明によれば。Table 2 According to the invention, as can be seen from Table 2.

従来法(比較例)に比して、浄化出をかなり向上させ得
ることが分る。
It can be seen that the purification efficiency can be considerably improved compared to the conventional method (comparative example).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の排慨浄化法における空燃比変動の状
態を示す説明図、第2ないし4図は実施例2における保
持時間比ffflとNOx浄化率との関係を示す図であ
る。
FIG. 1 is an explanatory diagram showing the state of air-fuel ratio fluctuation in the exhaust gas purification method of the present invention, and FIGS. 2 to 4 are diagrams showing the relationship between the holding time ratio fffl and the NOx purification rate in Example 2.

Claims (1)

【特許請求の範囲】 (1)内燃機関からの排気を触媒に接触させて排気中の
窒素酸化物、−酸化炭素及び炭化水素を浄化する方法に
おいて、上記触媒はパラジウム系触媒を用い、内燃機関
の運転は、その空燃比を高空燃比側と低空燃比側とに変
動させると共に、該高空燃比側に対する低空燃比側の空
燃比保持の時間比を0.05ないし08又はL5ないし
1.0の範囲とし、かつ平均空燃比を理論空燃比付近と
することを特徴とする排気浄化方法。 +21 パラジウム系触媒は、バヲジウム、パラジウム
ー白金、バワジウムーランタン、パラジウム−セリア、
バヲジウムー白金−セリアである特許請求の範囲第(り
項に記載の排気浄化方法。 (8)空燃費の変動は、高空燃比側、低空燃比側ともに
、変動中心の空燃比の0.02ないし0.1の範囲にお
いて、それぞれ振幅させる特許請求の範囲第(1)項に
記載の排気浄化方法 (4)空燃比変動の周波数は、0.2ないし3ペルツで
ある特許請求の範囲第(11項に記載の排気浄化方法。
[Claims] (1) A method for purifying nitrogen oxides, -carbon oxides, and hydrocarbons in the exhaust gas by bringing exhaust gas from an internal combustion engine into contact with a catalyst, in which the catalyst uses a palladium-based catalyst, and In this operation, the air-fuel ratio is varied between a high air-fuel ratio side and a low air-fuel ratio side, and the time ratio of maintaining the air-fuel ratio on the low air-fuel ratio side with respect to the high air-fuel ratio side is set in the range of 0.05 to 08 or L5 to 1.0. and an average air-fuel ratio near the stoichiometric air-fuel ratio. +21 Palladium-based catalysts include bawodium, palladium-platinum, bawodium-lanthanum, palladium-ceria,
The exhaust gas purification method according to claim 1, which is vaodium-platinum-ceria. (8) The fluctuation in air fuel efficiency is 0.02 to 0. (4) The frequency of the air-fuel ratio fluctuation is 0.2 to 3 Peltz. Claim (11) Exhaust purification method described in.
JP58190176A 1983-10-12 1983-10-12 Purifying method of exhaust Granted JPS6081419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190176A JPS6081419A (en) 1983-10-12 1983-10-12 Purifying method of exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190176A JPS6081419A (en) 1983-10-12 1983-10-12 Purifying method of exhaust

Publications (2)

Publication Number Publication Date
JPS6081419A true JPS6081419A (en) 1985-05-09
JPH0465206B2 JPH0465206B2 (en) 1992-10-19

Family

ID=16253703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190176A Granted JPS6081419A (en) 1983-10-12 1983-10-12 Purifying method of exhaust

Country Status (1)

Country Link
JP (1) JPS6081419A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393219A (en) * 1977-01-28 1978-08-16 Nippon Soken Inc Exhaust gas cleaner of internal engine
JPS5395420A (en) * 1977-01-29 1978-08-21 Toyota Motor Corp Purification method and device for exhaust gas from internal combustion engine
JPS53100317A (en) * 1977-02-15 1978-09-01 Toyota Motor Corp Exhaust purifying process and system in internal combustion engine
JPS55125309A (en) * 1979-03-20 1980-09-27 Toyota Motor Corp Exhaust gas cleaning device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393219A (en) * 1977-01-28 1978-08-16 Nippon Soken Inc Exhaust gas cleaner of internal engine
JPS5395420A (en) * 1977-01-29 1978-08-21 Toyota Motor Corp Purification method and device for exhaust gas from internal combustion engine
JPS53100317A (en) * 1977-02-15 1978-09-01 Toyota Motor Corp Exhaust purifying process and system in internal combustion engine
JPS55125309A (en) * 1979-03-20 1980-09-27 Toyota Motor Corp Exhaust gas cleaning device for internal combustion engine

Also Published As

Publication number Publication date
JPH0465206B2 (en) 1992-10-19

Similar Documents

Publication Publication Date Title
JP5035704B2 (en) System for improved exhaust control of internal combustion engines
US5947063A (en) Stoichiometric synthesis, exhaust, and natural-gas combustion engine
JP3702924B2 (en) Exhaust purification device
JP2004066230A (en) Method of regenerating nitrogen oxide storage catalyst
GB0620883D0 (en) Exhaust system for a lean-burn internal combustion engine
JPS63283727A (en) Method and apparatus for reducing nitrogen oxide
TW348199B (en) Method and device for purifying exhaust gas of engine
JPH09133032A (en) Exhaust emission control system for internal combustion engine
US7644578B2 (en) Vehicle exhaust aftertreatment system
JPH04365920A (en) Exhaust purifying method
WO2000053903A1 (en) Improvements in catalyst systems
JP4244648B2 (en) Exhaust gas purification device
US7162863B2 (en) Exhaust gas purifying apparatus for internal combustion engine
WO2005103461A1 (en) Exhaust purifying device for internal combustion engine
JPS6081419A (en) Purifying method of exhaust
JP6988648B2 (en) Exhaust purification device for internal combustion engine
GB2355944A (en) An exhaust gas purification device for an internal combustion engine
JPS598412B2 (en) Exhaust gas purification method
JPS6357810A (en) Method for eliminating nox of diesel engine
JP2004028049A (en) Exhaust emission control system
JPH0519554Y2 (en)
JPH08114116A (en) Three way exhaust emission control method, catalytic converter and manufacture thereof
JPS6361708A (en) Exhaust gas purifying device for engine
Genslak et al. Dual Catalytic Converters
JP5347996B2 (en) Exhaust gas purification device