JPS6075397A - Treatment of waste water - Google Patents
Treatment of waste waterInfo
- Publication number
- JPS6075397A JPS6075397A JP58184125A JP18412583A JPS6075397A JP S6075397 A JPS6075397 A JP S6075397A JP 58184125 A JP58184125 A JP 58184125A JP 18412583 A JP18412583 A JP 18412583A JP S6075397 A JPS6075397 A JP S6075397A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- denitrification
- water
- waterway
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
素化合物を含有する排水を充てん材を組込んだ水路に尋
人し、該排水を上記光てん利と接触させるだめの攪拌及
び酸素供給のための曝気等に動力を使用し寿いで自然流
下型接触酸化方式にて処理を行う、省資源・省エネルギ
ー型の安価で新規な排水処理方法に関するものである。[Detailed Description of the Invention] Wastewater containing elementary compounds is introduced into a waterway incorporating a filler, and power is applied to agitate the wastewater to bring it into contact with the above-mentioned light tank, aerate to supply oxygen, etc. The present invention relates to a resource-saving, energy-saving, inexpensive, and novel wastewater treatment method that uses a gravity-flow type catalytic oxidation method to treat wastewater at the end of its life.
生活系排水や産業排水あるいは河川、湖沼の水等の汚濁
源であるBOD物質及び窒素化合物を生物化学的技術を
用い除去する方法として、従来性われている活性汚泥法
による循環式硝化脱窒素法は、処理機構の複雑さ、活性
汚泥法の有する汚泥処理の必要性及O・曝気量の調整等
に伴う高度な維持管理技術が要求されること、並びに曝
気槽の攪拌や酸素供給のだめの曝気に要する動力費が過
大で設備費が高いこと等の問題点を有している。また、
従来、曝気槽内に充てん材を組込み接触曝気方式で循環
式硝化脱窒素法を行うことも試みられているが、この場
合、維持管理面では汚泥処理が容易になるものの、曝気
槽の攪拌、酸素供給のだめの曝気空気]一〇調整等の必
要があること及びこれらに要する動力量が過大で設備費
が高くなること等の欠点を併せ持つなど、多くの問題点
を有している。Circulating nitrification and denitrification method using activated sludge method is a conventional method to remove BOD substances and nitrogen compounds that are a source of pollution in domestic wastewater, industrial wastewater, river, lake water, etc. using biochemical technology. This is due to the complexity of the treatment mechanism, the need for sludge treatment in the activated sludge method, and the need for advanced maintenance and management techniques such as adjusting the amount of oxygen and aeration, as well as the agitation of the aeration tank and the aeration of the oxygen supply tank. There are problems such as excessive power costs and high equipment costs. Also,
Conventionally, attempts have been made to incorporate a filler into the aeration tank and perform a cyclic nitrification and denitrification method using a contact aeration method, but in this case, although sludge treatment is easier in terms of maintenance and management, it is difficult to agitate the aeration tank, [Aerated air in the oxygen supply tank] 10) It has many problems, such as the need for adjustments, etc., and the power required for these is excessive, resulting in high equipment costs.
本発明は、上記の従来技術の問題点を解決し、排水中の
BOD物質及び窒素化合物を同時に除去することができ
、しかも維持管理が容易かつ運転動力費が低廉で、従来
よりも格段に安価な省資源・省エネルギー型の排水処理
方法を提供せんとするものである。すなわち、本発明の
要旨は、BOD物質及び窒素化合物を含有する排水を充
てん材を組込んだ水路に導入し流下させた後、該水路の
末端部よりの流下水を前記排水と混合して該水路の前記
導入部に再循環させ、該水路内に脱窒工程と硝化工程を
形成して処理し、排水中のBOD物質と窒素化合物を同
時に除去するにあたり、上記処理工程内の充てん材と排
水を接触させるだめの攪拌及び酸素供給のだめの曝気等
に動力を使用しないで自然流下型接触酸化方式を用い、
自然流化型接触酸化工程内脱窒工程の流下水路内におい
ては排水中の溶存酸素がl PPm以下となる領域を設
け、自然流下型接触酸化工程内硝化工程の流下水路内に
おいては排水中の溶存酸素をI PPm以上に維持して
処理することを特徴とする排水処理方法にある。The present invention solves the above-mentioned problems of the prior art, can simultaneously remove BOD substances and nitrogen compounds from wastewater, and is easy to maintain and has low operating power costs, making it much cheaper than conventional methods. The aim is to provide a resource-saving and energy-saving wastewater treatment method. That is, the gist of the present invention is to introduce wastewater containing BOD substances and nitrogen compounds into a waterway incorporating a filler and allow it to flow down, and then mix the flowing water from the end of the waterway with the wastewater to contain the wastewater. In order to simultaneously remove BOD substances and nitrogen compounds in the wastewater by recirculating it to the introduction part of the waterway and forming a denitrification process and a nitrification process in the waterway, the filler and wastewater in the treatment process are A gravity-flow type catalytic oxidation method is used without using power for stirring the tank that contacts the water and aeration of the tank that supplies oxygen.
In the drainage waterway of the denitrification process in the gravity flow type catalytic oxidation process, an area is provided where the dissolved oxygen in the wastewater is less than 1 PPm. A wastewater treatment method is characterized in that the treatment is performed while maintaining dissolved oxygen at IPPm or higher.
本発明の排水処理方法は、第1図の本発明方法の処理工
程の一例に示す如く、下記のようにして実施する。The wastewater treatment method of the present invention is carried out as follows, as shown in an example of the treatment steps of the method of the present invention in FIG.
(1) BOD物質及び窒素化合物を含む原排水を、先
ず第1図の混合工程において、自然流下型接触酸化工程
内後段部の硝化工程から循環される循環液と混合する。(1) Raw wastewater containing BOD substances and nitrogen compounds is first mixed with circulating liquid circulated from the nitrification process in the later stage of the gravity flow type catalytic oxidation process in the mixing process shown in FIG.
(2)上記て得た混合液を、第1図の自然流下型接触酸
化工程内前段部の脱窒素工程に導入する。脱窒工程内で
は、該混合液が充てん材を組込んだ水路内を流下する間
に、充てん材の表面に付着形成された脱窒素菌の働きに
より、上記の循環液中の酸化態窒素(、主として、硝酸
性窒素)を窒素ガスに還元する。この際、還元して脱窒
系を行うに必要な有機炭素源(水素供与体)としては原
排水中のBOD物質を利用し、脱窒素と同時にBODの
除去を行う。その基本反応式は下記の(1式)に示す通
り:2No; + IOH−* N、、↑+4H20+
20H−・・・・・・(1式)(3)上記の脱窒工程の
処理水は、ついで第1図の自然流下型接触酸化工程内後
段の硝化工程に導入して、原排水中に存在するアンモニ
ア性窒素を、充てん材を組込んだ水路内に排水を流下さ
せて充てん材表面に付着形成させた硝化菌の働きにより
、酸化態窒素(主として硝酸性窒素)にまで酸化しかつ
前段の脱窒工程の処理後もなお残存しているBODをと
とて除去する。その基本反応式は下記の(2式)に示す
通り:
(4)上記の硝化工程の処理水は、ついで第1図のポン
プ工程に導き、その大部分を循環ポンプにより前記(1
)の原排水との混合工程に循環して原排水と混合する。(2) The mixed solution obtained above is introduced into the denitrification step in the first stage of the gravity flow type catalytic oxidation step shown in FIG. In the denitrification process, while the mixed liquid flows down the waterway incorporating the filler, the oxidized nitrogen ( , mainly nitrate nitrogen) to nitrogen gas. At this time, the BOD substance in the raw wastewater is used as an organic carbon source (hydrogen donor) necessary for reduction and denitrification, and BOD is removed at the same time as denitrification. The basic reaction formula is as shown in (Formula 1) below: 2No; + IOH-* N,, ↑+4H20+
20H-... (1 formula) (3) The treated water from the above denitrification process is then introduced into the latter stage nitrification process in the gravity flow type catalytic oxidation process shown in Figure 1, and is added to the raw wastewater. The existing ammonia nitrogen is oxidized to oxidized nitrogen (mainly nitrate nitrogen) by the action of nitrifying bacteria that adhere to the surface of the filler by flowing wastewater into the waterway that incorporates the filler, and then BOD that still remains after the denitrification process is removed. The basic reaction formula is shown in (2) below: (4) The treated water from the above nitrification process is then led to the pumping process shown in Figure 1, and most of it is pumped through the circulation pump (1).
) is circulated to the mixing process with raw wastewater and mixed with raw wastewater.
すなわち、該硝化工程処理水中の酸化態窒素は、その大
部分を上記循環液と共に混合槽を経て前記(2)の脱窒
工程に導入する。残りはポンプ工程から流出する。That is, most of the oxidized nitrogen in the water treated in the nitrification process is introduced into the denitrification process (2) through the mixing tank together with the circulating liquid. The remainder flows out from the pumping process.
(5)上記のポンプ工程からの流出水は、第1図の最終
沈殿工程に導入し、浮遊物質を沈降させ、上澄水を処理
水として放流する。(5) The effluent from the above pumping step is introduced into the final settling step shown in FIG. 1, where suspended solids are settled and the supernatant water is discharged as treated water.
すなわち、本発明の排水処理方法は、原排水中のBOD
物質及び窒素化合物の除去では原排水中のBODを水素
供与体として利用し脱窒系処理を行って窒素化合物を多
量に除去する方法であるから、脱窒系処理に従来法では
必要であったアルカリ剤は不要とな9、さらに、自然流
下型接触酸化工程内の脱窒工程及び硝化工程では攪拌と
酸素供給等のための動力が不要となるので、維持管理が
容易で設備費、運転費の低廉なシステムとなる。That is, the wastewater treatment method of the present invention reduces BOD in raw wastewater.
For the removal of substances and nitrogen compounds, this method uses BOD in the raw wastewater as a hydrogen donor and performs denitrification treatment to remove a large amount of nitrogen compounds, which was not necessary in conventional methods for denitrification treatment. There is no need for an alkaline agent9.Furthermore, the denitrification and nitrification processes in the gravity flow catalytic oxidation process do not require power for stirring and oxygen supply, making maintenance easy and reducing equipment and operating costs. It becomes an inexpensive system.
本発明の処理方法における原排水と自然流下型接触酸化
工程内の脱窒工程及び硝化工程につき、さらに詳しく説
明する0
第1図の脱窒工程において、g排水中のBODの除去と
第1図の硝化工程からの流出水が循環されることによる
循譲水中の酸化態窒素を窒素ガスに還元する窒素化合物
の除去とを併せて行うにあたり、原料水中のBODと窒
素化合物との含柚条件としては両者の含有北軍は少なく
ともBOD/N==2(重量比)以上であることが必要
である。含有比率がこの値より小さい場合は、脱窒工程
での酸化態窒素の窒素ガスへの還元反応の効率が低下し
好ましくない。従って、含有比率が2より小さい場合は
、脱窒素の効4を上げるだめに、別に有機炭素源(水素
供与体)として有機化合物、例えはメタノール等を添加
することが必要である。捷だ、他の含有成分としては、
微生物処理を行う上でBODに対してリンを1濠前後含
有していることが必要である。The raw wastewater and the denitrification process and nitrification process in the gravity flow type catalytic oxidation process in the treatment method of the present invention will be explained in more detail. When the effluent water from the nitrification process is recycled, the oxidized nitrogen in the recycled water is reduced to nitrogen gas, and the nitrogen compounds are removed. The content of both must be at least BOD/N==2 (weight ratio) or higher. If the content ratio is smaller than this value, the efficiency of the reduction reaction of oxidized nitrogen to nitrogen gas in the denitrification step decreases, which is not preferable. Therefore, when the content ratio is less than 2, it is necessary to separately add an organic compound such as methanol as an organic carbon source (hydrogen donor) in order to increase the denitrification effect 4. Other ingredients include:
When carrying out microbial treatment, it is necessary to contain approximately 1 moat of phosphorus per BOD.
脱窒工程の水路内に組込む充てん材としては、基本要件
として生物膜の形成保持能力か高くかつ水の泥れを妨げ
ない構造の化学的に不活性な材質のものが望ましいが、
本発明にあっては、特にプラスチ、り製の狭面に波形の
凹凸模様を有する板を一定間隔で平行に複数枚重ね合せ
、比表面積30〜200 rr? / rri’、空間
率95〜99%程度になるように構成したものが好まし
く、効率のよい安定しだBOD除去及び脱窒素処理を行
うのに適している。すなわち、30 m”/ z以下で
はBOD除去及び脱窒に関与する生物膜面積が不十分で
処理効率が悪くなり、200 m / m以上では生物
膜面積は十分であるが、充てん材がその構造上、生物膜
の付着形成によって水の流れを妨げる恐れがあり、いず
れも安定したBOD除去及び脱窒素処理を行うには問題
があって好捷しくない。The basic requirements for the filler to be incorporated into waterways during the denitrification process are chemically inert materials that have a high ability to maintain biofilm formation and do not prevent water from becoming muddy.
In the present invention, in particular, a plurality of plates made of plastic and having a corrugated pattern on the narrow side are stacked in parallel at regular intervals to obtain a specific surface area of 30 to 200 rr. /rri', a space ratio of about 95 to 99% is preferable, and is suitable for efficient and stable BOD removal and denitrification treatment. In other words, below 30 m"/z, the biofilm area involved in BOD removal and denitrification is insufficient, resulting in poor treatment efficiency; while above 200 m"/m, the biofilm area is sufficient, but the structure of the filler In addition, there is a risk that the flow of water may be obstructed by the formation of biofilm, which is problematic and undesirable for stable BOD removal and denitrification treatment.
丑だ、水路内において、充てん材上の生物膜と接触する
排水の水流速は01〜30m/分の範囲に設定する。す
なわち、水流速が0.1 m 7分以下では水の流れが
悪くなり排水と生物膜の接触効率が低下してBOD除去
並びに脱窒素処理に関して十分な性能が得られないし、
水流の生物膜への剪断力が小さいために生物膜が肥厚し
て水の流れを妨げる恐れがあり好ましくない。一方、水
流速が30m/分以上では生物膜への剪断力が大きくな
り、十分な生物膜の付着形成が行われ難くなって、BO
D除去及び脱窒素処理の性能が低下する。In the waterway, the water flow velocity of the wastewater that comes into contact with the biofilm on the filler is set in the range of 0.1 to 30 m/min. In other words, if the water flow rate is less than 0.1 m 7 minutes, the water flow will be poor and the contact efficiency between wastewater and biofilm will be reduced, making it impossible to obtain sufficient performance for BOD removal and denitrification treatment.
Since the shearing force of the water flow on the biofilm is small, the biofilm may thicken and impede the flow of water, which is undesirable. On the other hand, if the water flow rate is 30 m/min or more, the shearing force on the biofilm becomes large, making it difficult to form a sufficient biofilm and reducing the BO
The performance of D removal and denitrification treatment deteriorates.
また、脱窒工程において使用する充てん材量については
、通常、脱窒工程に流入する酸化態窒素量と酸化態窒素
量てん材表面積負荷(充てん材の表面積1m?に対し、
1日当り流入する排水中の酸化態窒素量)との関係から
設定する。In addition, regarding the amount of filler used in the denitrification process, the amount of oxidized nitrogen flowing into the denitrification process, the amount of oxidized nitrogen, the surface area load of the filler (per 1 m2 of surface area of the filler),
It is set based on the relationship with the amount of oxidized nitrogen in wastewater that flows in per day.
一方、酸化態窒素量てん材表面積負荷は、通常、0.0
2〜10グr/rl?・日の範囲に設定する。すなわち
、酸化態窒素量てん材表面積負荷については、0、02
flr//rl?・日以下では脱窒素処理性能は十分
に得られるが設備が過大となって全体として効率が悪く
なり、L Ofr/n?・日取上では脱窒素処理性能が
低下し、いずれも問題があって好ましくない。なお、上
記の酸化態窒素負荷量は、原排水中の窒素化合物がすべ
て酸化態窒素に酸化されたとして次式により計算する。On the other hand, the surface area loading of the oxidized nitrogen content is usually 0.0
2-10g r/rl? - Set to day range. In other words, for the oxidized nitrogen content and surface area load, 0.02
flr//rl?・Denitrification treatment performance can be obtained sufficiently at less than 1 day, but the equipment becomes too large and the overall efficiency deteriorates, resulting in L Ofr/n?・Denitrification performance deteriorates on Nitori, and both are problematic and undesirable. The above oxidized nitrogen load is calculated using the following formula assuming that all nitrogen compounds in the raw wastewater are oxidized to oxidized nitrogen.
敵化悪窒素負荷量=原排水中の窒素濃度×原排水量さら
に、効率よく脱窒素処理を行うにあたって、脱窒工程の
排水の流下水路内において排水中の溶存酸素がI PP
m以下となる領域を設ける(即ち存在する)ことが肝要
である。又、PHは大略6〜9で処理を行う方が好まし
い。Enemy nitrogen load = Nitrogen concentration in raw wastewater x raw wastewater volume Furthermore, in order to perform denitrification treatment efficiently, dissolved oxygen in the wastewater in the drainage waterway of the denitrification process is IPP.
It is important to provide (that is, exist) a region where the number is less than or equal to m. Further, it is preferable to carry out the treatment at a pH of about 6 to 9.
次に、第1図の硝化工程において、原排水中に存在する
アンモニア性窒素を酸化1ポ窒素にまで酸化しかつ前段
の脱窒工程の処理でなお残存しているBODを除去する
にあたり、硝化工程の水路内に組込む充てん材は、基本
要件に関しては、前記の脱窒工程に組込む充てん材とほ
ぼ同じである。但し、比表面積は50〜300 rn’
/+rI″、空間率は95〜99%程度になるように構
成したものが好ましく、効率のよい安定したアンモニア
性窒素の酸化及びBODの除去を行うのに適している。Next, in the nitrification process shown in Figure 1, the ammonia nitrogen present in the raw wastewater is oxidized to 1 point nitrogen oxide, and the BOD still remaining from the previous denitrification process is removed. The filler incorporated into the process channel is substantially the same in terms of basic requirements as the filler incorporated into the denitrification process described above. However, the specific surface area is 50 to 300 rn'
/+rI'', and the void ratio is preferably about 95 to 99%, which is suitable for efficient and stable oxidation of ammonia nitrogen and removal of BOD.
また、水路内における充てん材上の生物膜と接触する排
水の水流速に関しては、前記の脱窒工程に示した水流速
と同様でよい。Furthermore, the water flow rate of the wastewater that comes into contact with the biofilm on the filler in the water channel may be the same as the water flow rate shown in the denitrification step described above.
また、硝化工程において使用する充てん材量については
、原排水中のアンモニア性窒素量とアンモニア性窒素充
てん材表面積負荷(充てん材1rn”に対し1日当り流
入する原排水中のアンモニア性窒素量)との関係から設
定する。一方、アンモニア性窒素充てん材表面積負荷は
、通常、001〜5 far/rr?′・日のiJiα
囲に設定する。すなわち、アンモニア性窒素充てん材表
面積負荷については、0.01 tr/rrI″・日以
下では硝化性能は十分に得られるが設備が過大となって
全体として効率が悪くなり、5 f r/= 11日以
上では硝化性能が低下し、いずれも問題があって好甘し
くない。In addition, regarding the amount of filler used in the nitrification process, the amount of ammonia nitrogen in the raw wastewater and the surface area load of the ammonia nitrogen filler (the amount of ammonia nitrogen in the raw wastewater that flows per day per 1 rn of filler material) On the other hand, the ammonia nitrogen filler surface area load is usually 001 to 5 far/rr?'day iJiα
Set within the range. In other words, with respect to the surface area load of the ammonia nitrogen filler, if it is less than 0.01 tr/rrI''·day, sufficient nitrification performance can be obtained, but the equipment becomes too large and the overall efficiency deteriorates, so that 5 f r/= 11 If the temperature exceeds 1 day, the nitrification performance decreases, and both are problematic and undesirable.
さらに、効率よく硝化処理を行うにあたっては、硝化工
程のIj+水の流下水路内において排水中の溶存酸素を
11 PP+n以上に維持することが肝要である。又、
PHは大略6〜9の範囲で処理を行う方が好丑しい。Furthermore, in order to perform the nitrification process efficiently, it is important to maintain the dissolved oxygen in the waste water at 11 PP+n or higher in the drainage channel of the Ij+ water in the nitrification process. or,
It is preferable to perform the treatment at a pH of about 6 to 9.
次に、硝化工程流出水の混合工程への循環水量について
は、所望する窒素除去率に応じて下記(3式)により決
定する。Next, the amount of circulating water of the nitrification process effluent to the mixing process is determined by the following (3 equations) depending on the desired nitrogen removal rate.
循環水量:nQM/日=、。。−□×Q・・・・・・(
3式)%式%)
()
次に、本発明を実施例により更に具体的に説明する。Circulating water amount: nQM/day =. . −□×Q・・・・・・(
3 formula) % formula %) () Next, the present invention will be explained in more detail with reference to Examples.
実施例1゜
家庭雑排水を主とする排水をスクリーンにて異物を除去
した後、第1図の工程図に示す本発明にもとつく処理方
法の一例により、該排水中のBOD及び窒素化合物の処
理を下記のようにして行い、後記表−1の結果を得た。Example 1 After removing foreign substances from wastewater, mainly gray water, using a screen, BOD and nitrogen compounds in the wastewater were removed using an example of the treatment method based on the present invention shown in the process diagram of Fig. 1. The treatment was carried out as follows, and the results shown in Table 1 below were obtained.
すなわち、上記の本発明の方法にもとづく処理方法にお
いて、自然流下型接触酸化工程内前段部の脱窒工程につ
いては、水流速を2〜3m/分程度に設定し、水路内の
充てん材の総長さは約150mとした。充てん材として
は、比表面積71 rn’/ to’で梁間率95〜9
9%の表面に波形の凹凸模様を有するポリ塩化ビニル製
パッキン板を充てんした。That is, in the treatment method based on the method of the present invention described above, for the denitrification step in the first stage of the gravity flow type catalytic oxidation step, the water flow rate is set to about 2 to 3 m/min, and the total length of the filler in the waterway is The height was approximately 150m. As a filler, it has a specific surface area of 71 rn'/to' and a beam-to-beam ratio of 95 to 9.
A polyvinyl chloride packing plate having a corrugated pattern on 9% of the surface was filled.
自然流下型接触酸化工程内後段部の硝化工程については
、水流速を脱窒工程と同様に2〜3m/分程度に設定し
、水路内の充てん材の総長さは約420mとした。充て
ん材としては、比表面積129m/nrとした以外は上
記脱窒工程における場合と同様のポリ塩化ビニル製ノく
ツキン板を充てんした。尚、硝化工程内の水路の途中に
は、酸素の補給の目的から段差を設けて、IJト水の落
下により十分に気液接触が行われるようにした。丑だ、
硝化工程からの循環水量は、ポンプ工程の循環ポンプに
より、原排水量に対し約800〜000%程度になるよ
うに調整した。Regarding the nitrification process at the latter stage of the gravity flow type catalytic oxidation process, the water flow rate was set at about 2 to 3 m/min, similar to the denitrification process, and the total length of the filler in the waterway was about 420 m. As the filling material, a polyvinyl chloride plug plate similar to that used in the denitrification process was used, except that the specific surface area was 129 m/nr. In addition, a step was provided in the middle of the water channel in the nitrification process for the purpose of oxygen replenishment, so that sufficient gas-liquid contact could be carried out by the falling of IJ water. It's ox.
The amount of circulating water from the nitrification step was adjusted to about 800-000% of the original drainage amount using a circulation pump in the pumping step.
表−1=第1図の本発明の処理方法による処理結果[
石
[
表−1の結果から明らかなように、本発明の処理方法に
よれば、脱窒工程及び硝化工程において、曝気及び攪拌
のだめの動力を使用せずに、排水を充てん材を組込んだ
水路に流下させ、その際、脱窒工程の流下水路内におい
て排水中の溶存酸素が1.、 PPm以下となる領域を
設け、かつ、硝化工程の流下水路内の排水中の溶存酸素
をIPPm以上に維持することにより、自然流下型接触
酸化方式で効率よく排水中のBODと窒素化合物を同時
に除去することができる、という省資源・省エネルギー
型の顕著に優れた効果を奏することができる。Table 1 = Treatment results according to the treatment method of the present invention shown in Figure 1 Stone The wastewater is allowed to flow down into a waterway with a built-in filler without using the power of the Nodam, and at that time, dissolved oxygen in the wastewater is reduced to 1. By creating an area where the concentration is below PPm and maintaining the dissolved oxygen in the wastewater in the nitrification process above IPPm, the gravity flow type catalytic oxidation method efficiently removes BOD and nitrogen compounds from the wastewater at the same time. It is possible to achieve remarkable resource-saving and energy-saving effects.
尚、本実施例では循環ポンプ取鋼の動力は一切使用して
いないが、場合によっては、硝化工程内において備助的
に曝気を行う等の動力を使用しても、本発明の特徴、効
果が損なわれるものではない。In this example, no power is used for the circulation pump, but in some cases, even if power is used for supplementary aeration during the nitrification process, the features and effects of the present invention can still be achieved. is not impaired.
第1図は本発明の処理方法の一例の工程図である。
Qml/日・・・・・原排水量、処理水量、n・・・・
・・・・・・・・循環比、nQffl/[E]−・・・
・・循環水量。
特許出願人 三菱樹脂株式会社
代理人 弁理士 小 川 恒 部FIG. 1 is a process diagram of an example of the treatment method of the present invention. Qml/day...Raw wastewater volume, treated water volume, n...
......Circulation ratio, nQffl/[E]-...
... Circulating water volume. Patent applicant Mitsubishi Plastics Co., Ltd. Agent Patent attorney Tsunebe Ogawa
Claims (1)
組込んだ水路に導入し流下させた後、−該水路の末端部
よりの流下水を前記排水と混合して該水路の前記導入部
に再循環させ、該水路内に脱窒工程と硝化工程を形成し
て処理し、排水中のB’OD物質と窒素化合物を同時に
除去するにあたり、上記処理工程内の充てん材と排水を
接触さぜるだめの攪拌及び酸素供給のだめの曝気等に動
力を使用しないで自然流下型接触酸化方式を用い、自然
流下型接触酸化工程内脱窒工程の流下水路内においては
排水中の溶存酸素が1、 PPm以下となる領域を設け
、自然流下型接触順化工程内硝化工程の流下水路内にお
いては排水中の溶存酸素をL PPm以上に維持して処
理することを特徴とする排水処理方法。After introducing wastewater containing BOD substances and nitrogen compounds into a waterway incorporating a filler and allowing it to flow down, - the effluent from the end of the waterway is mixed with said wastewater and returned to said introduction part of said waterway; When circulating and forming a denitrification process and a nitrification process in the waterway to simultaneously remove B'OD substances and nitrogen compounds in the wastewater, the filler in the treatment process and the wastewater are brought into contact with each other. Using a gravity flow type catalytic oxidation method without using power for stirring and aeration of the oxygen supply tank, the dissolved oxygen in the wastewater in the drainage waterway of the denitrification process in the gravity flow type catalytic oxidation process is 1.PPm or less. 1. A wastewater treatment method, comprising: providing a region where the water is concentrated, and maintaining dissolved oxygen in wastewater at a level equal to or higher than L PPm in a drainage waterway of a nitrification step in a gravity contact acclimatization step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58184125A JPS6075397A (en) | 1983-09-30 | 1983-09-30 | Treatment of waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58184125A JPS6075397A (en) | 1983-09-30 | 1983-09-30 | Treatment of waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6075397A true JPS6075397A (en) | 1985-04-27 |
JPH0378158B2 JPH0378158B2 (en) | 1991-12-12 |
Family
ID=16147808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58184125A Granted JPS6075397A (en) | 1983-09-30 | 1983-09-30 | Treatment of waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6075397A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05138186A (en) * | 1991-11-13 | 1993-06-01 | B Bai B:Kk | Treatment of drainage discharged from purification tank |
CN103524000A (en) * | 2013-10-27 | 2014-01-22 | 新疆中泰化学股份有限公司 | Advanced treatment recycling method of polyvinyl chloride centrifuge mother liquor wastewater |
-
1983
- 1983-09-30 JP JP58184125A patent/JPS6075397A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05138186A (en) * | 1991-11-13 | 1993-06-01 | B Bai B:Kk | Treatment of drainage discharged from purification tank |
CN103524000A (en) * | 2013-10-27 | 2014-01-22 | 新疆中泰化学股份有限公司 | Advanced treatment recycling method of polyvinyl chloride centrifuge mother liquor wastewater |
Also Published As
Publication number | Publication date |
---|---|
JPH0378158B2 (en) | 1991-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4508694B2 (en) | Water treatment method and apparatus | |
US6592762B2 (en) | Process for treating BOD-containing wastewater | |
KR100767724B1 (en) | A method and an apparatus for waste water treatment through biological system combined with flotation separation of activated sluge | |
CN1229403A (en) | Multi-phase dual cycle sewage treatment process | |
CN1318324C (en) | Sewage treatment appts. using self-granulating active sludge and sewage treatment process | |
CN102115296A (en) | Novel multi-cell denitrifying membrane bioreactor | |
WO1997032820A1 (en) | System for removing nutrients from wastewater | |
CN101565238A (en) | Novel internal circulation moving bed biological film reactor | |
CN106946420A (en) | A kind of integrated conduct method of high-concentration ammonia nitrogenous wastewater | |
JP4409532B2 (en) | Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method | |
US7056438B2 (en) | Flood and drain wastewater treatment system and associated methods | |
JPS6075397A (en) | Treatment of waste water | |
JPH05337492A (en) | Biological treatment of sewage | |
JPH1110193A (en) | Method and apparatus for shared carrier nitrification denitrification reaction | |
RU2225366C2 (en) | Transition biological-abiotic waste treatment | |
JP2587726B2 (en) | Sewage treatment method | |
KR100195903B1 (en) | Nitrogen and phosphor removal method and device of organic wastewater | |
JPH10277543A (en) | Method for nitrification and denitrification of nitrogen-containing waste water | |
JP2673488B2 (en) | Method and apparatus for treating organic wastewater | |
KR100403288B1 (en) | A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification | |
CN114380389B (en) | Device and method for treating rural sewage with ultralow energy consumption | |
KR100358962B1 (en) | Processing unit of soil and waste water using u-type aeration tank | |
JPH0437760B2 (en) | ||
KR100357771B1 (en) | The advanced wastewater treatment method and equipment using the circular oxidation ditch of intermittent aeration method to improve the removal of nitrogen and phosphorus | |
KR20070014857A (en) | System and method for biological treatment of wastewater using mbr and zeolite powder |