JPS6069224A - Valve-timing controlling apparatus for engine - Google Patents
Valve-timing controlling apparatus for engineInfo
- Publication number
- JPS6069224A JPS6069224A JP17873183A JP17873183A JPS6069224A JP S6069224 A JPS6069224 A JP S6069224A JP 17873183 A JP17873183 A JP 17873183A JP 17873183 A JP17873183 A JP 17873183A JP S6069224 A JPS6069224 A JP S6069224A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- intake
- engine
- load
- camshaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/12—Transmitting gear between valve drive and valve
- F01L1/14—Tappets; Push rods
- F01L1/143—Tappets; Push rods for use with overhead camshafts
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 。[Detailed description of the invention] (Industrial application field).
本発明は、エンジンのバルブタイミング制御装置−1−
置に関し、詳しくは作動時期の異なる複数のタペットを
嵌装した回動部材をカムシャフトのまわりに揺動させる
ことによってバルブタイミングを制御するようにしたも
のに関する。The present invention relates to an engine valve timing control device-1, and more specifically, a valve timing control device that controls valve timing by swinging a rotating member fitted with a plurality of tappets having different operating timings around a camshaft. related to what was done.
(従来技術)
一般に、エンジンの吸、排気弁の開閉タイミングは、エ
ンジンの運転状態に応じて変えることが好ましい。たと
えば、エンジンの高負荷運転のためには、吸気弁の開弁
時間を長くして充填効率を高めることが高出力を得る上
で必要になるが、吸気弁の開弁時間を長くすることは、
高負荷低回転運転時に吸気の吹き返しの問題を生ずる。(Prior Art) Generally, it is preferable to change the opening/closing timing of the intake and exhaust valves of an engine depending on the operating state of the engine. For example, for high-load engine operation, it is necessary to increase the filling efficiency by increasing the intake valve opening time in order to obtain high output, but it is necessary to increase the intake valve opening time. ,
This causes problems with intake air blowback during high-load, low-speed operation.
したがって、吸気弁の開弁時間はエンジン負荷だけでな
くエンジン回転数に対応して考慮する必要がある。Therefore, the opening time of the intake valve must be considered in accordance with not only the engine load but also the engine speed.
また、吸、排気弁のオーバラップ期間は吸気中の残留既
燃ガス量に影響を持つものであるが、エンジンの低負荷
運転時には、このオーバラップ期間をできるだけ短くし
て残留既燃ガス量を減少させることが、燃焼の安定性を
得る上で好ましく、その結果、アイドリンク回転数を低
くでき、燃費性−2−
の向上、排気中の未燃焼有害成分の減少といった有利な
結果を19ることができる。しかし、オーバラップ期間
を短くすることは、吸気弁の開弁時間を短くすることに
なり、高負荷運転時の充填量不足を招来するものであり
、また高回転高負荷運転時には吸気流の慣性が大きくな
り充填効率が高まるので、オーバラップ期間を大きくし
ても特に悪影響は生じず、むしろ高出力を得る目的で充
填量を増加させるためにはオーバラップ期間は大ぎい方
が良い。Additionally, the overlap period between the intake and exhaust valves has an effect on the amount of residual burnt gas in the intake air, but when the engine is operating at low load, this overlap period should be shortened as much as possible to reduce the amount of residual burnt gas. It is preferable to reduce the combustion stability, and as a result, the idling speed can be lowered, resulting in advantageous results such as improving fuel efficiency and reducing unburned harmful components in the exhaust gas. be able to. However, shortening the overlap period shortens the opening time of the intake valve, which leads to insufficient filling during high-load operation, and also reduces the inertia of the intake flow during high-speed, high-load operation. Since this increases the filling efficiency, increasing the overlap period does not cause any particular adverse effects; rather, it is better to have a large overlap period in order to increase the filling amount for the purpose of obtaining high output.
このため、エンジンの開弁時期をエンジン運転状態に応
じて可変制御することは、従来から公知である。たとえ
ば、特公昭51−35819号公報には、エンジンの出
力軸とカム軸との間に遠心カバナにより制御される遊星
歯車機構を介在させ、エンジン回転数に応じてエンジン
出力軸とカム軸との間に位相変化を生じさせるようにし
た構造が開示されている。また、この他にも、軸方向に
形状の変化する立体カムをカム軸に形成し、該カム軸を
エンジン運転条件に応じて軸方向に移動させ、= 3
−
開弁時期を変えるようにした構造も知られている。For this reason, it is conventionally known to variably control the valve opening timing of the engine depending on the engine operating state. For example, in Japanese Patent Publication No. 51-35819, a planetary gear mechanism controlled by a centrifugal cabana is interposed between the engine output shaft and the camshaft, and the engine output shaft and the camshaft are adjusted according to the engine speed. A structure is disclosed in which a phase change is caused between the two. In addition to this, a three-dimensional cam whose shape changes in the axial direction is formed on the camshaft, and the camshaft is moved in the axial direction according to the engine operating conditions, = 3
- A structure in which the valve opening timing is changed is also known.
しかし、この種従来の開弁時期制御装置は、いずれも構
造が複雑であり、前者すなわち特公昭52−35819
号公報に開示された構造では、エンジン回転数に応じて
しか開弁時間の制御を行い得ないという制約があり、ま
た後者の構造では、カム軸を軸方向に動かすものである
から作動の応答性および信頼性に欠けるという問題があ
る。However, all of the conventional valve opening timing control devices of this type have complicated structures, and the former, namely the
The structure disclosed in the publication has a limitation in that the valve opening time can only be controlled according to the engine speed, and in the latter structure, the camshaft is moved in the axial direction, so the operational response is limited. There are problems with lack of reliability and reliability.
このような事情に鑑み、本出願人は先に特願昭57−1
75578月により、エンジンの動弁系において、バル
ブタイミングを可変制御するバルブタイミング制御装置
として、タペットを囲動自在に収容した嵌装孔を備えた
回動部材をカムシャフトまわりに回動自在になるように
支持し、運転状態の変化に応じて回動部材をカムシャフ
トのまわりに回動させたとき、カムがタペットに力を与
え始める点の位相が変化するようにしてタイミングを変
更することを提案じた。この装置は構造的に簡単であり
、確実な作動が期待できるものである。In view of these circumstances, the present applicant first filed a patent application in 1983-1.
According to August 7557, as a valve timing control device that variably controls valve timing in an engine valve system, a rotating member equipped with a fitting hole that accommodates a tappet in a freely movable manner can be rotated around a camshaft. When the rotating member is rotated around the camshaft in response to changes in operating conditions, the timing is changed so that the phase of the point at which the cam starts applying force to the tappet changes. I suggested. This device has a simple structure and can be expected to operate reliably.
−4−
しかるに、上記回動部材に作動時期の異なる複数のタペ
ットを保持したものにおいては、このタペットの位相の
ずれによって回動部材に捩れ振動が生じ、このことによ
り回動部材のスラスト受は面(軸方向端面)、特にその
角部がシリンダヘッド側のガイド面に対して衝突してこ
じれ、摩耗することになり、その結果、ガタ付いて振動
騒音が発生するとともに作動信頼性が低下することにな
る。このためには、上記の如く摩耗成金の大きい回動部
材のスラスト受は面の耐摩耗性を十分に上げる必要があ
る。-4- However, in the case where the rotary member holds a plurality of tappets that operate at different times, the phase shift of the tappets causes torsional vibration in the rotary member, which causes the thrust receiver of the rotary member to The surface (end face in the axial direction), especially the corner part, collides with the guide surface on the cylinder head side, causing it to be twisted and worn, resulting in rattling, generating vibration and noise, and reducing operational reliability. It turns out. For this purpose, as mentioned above, the thrust bearing of the rotating member, which undergoes a large amount of wear, must have sufficiently high wear resistance on its surface.
(発明の目的)
本発明の目的は、上記提案のエンジンのバルブタイミン
グ制御装置を更に改良し、回動部材に作動時期の異なる
複数のタペットを保持したものにおいて、該回動部材の
スラスト受は而(軸方向端面)の耐摩耗性を上げること
により、タペットの位相ずれによる回動部材の捩れ振動
に起因して生じる。摩粁痕合の大きい回動部材のスラス
ト受は面の摩耗を有効に防止して、所要の機能を長期に
−5−
亘って安定して確実に発揮させるとともに、振動騒音の
発生を低減することにある。(Object of the Invention) An object of the present invention is to further improve the engine valve timing control device proposed above, and in which a rotary member holds a plurality of tappets with different operating timings, the thrust receiver of the rotary member is By increasing the wear resistance of the (axial end face), the vibration occurs due to torsional vibration of the rotating member due to the phase shift of the tappet. The thrust bearing, which is a rotating member with large wear marks, effectively prevents surface wear, ensures that the required function is performed stably and reliably over a long period of time, and reduces the generation of vibration noise. There is a particular thing.
(発明の構成)
上記目的の達成のため、本発明の構成は、カムシャフト
のカム面から力を受ける受圧部と上記カム面からの力を
バルブステムへ伝達する抑圧部とを有し、上記カムシャ
フトのカム面から力を受ける時期が異なる複数のタペッ
トと、該複数のタペットを摺動自在に嵌挿する嵌装孔を
有し上記カムシャフトのまわりに回動自在に支持された
回動部材と、該回動部材の軸方向の動きを規制するガイ
ド部と、上記回動部材をエンジンの運転状態に応じて回
動させる操作装置とからなるエンジンのバルブタイミン
グ制御装置であって、上記回動部材の軸方向端面に耐摩
耗層を形成したものである。(Structure of the Invention) In order to achieve the above object, the structure of the present invention includes a pressure receiving part that receives force from the cam surface of the camshaft and a suppressing part that transmits the force from the cam surface to the valve stem. A rotary device that is rotatably supported around the camshaft, having a plurality of tappets that receive force from the cam surface of the camshaft at different times, and a fitting hole into which the plurality of tappets are slidably inserted. An engine valve timing control device comprising a member, a guide portion that restricts movement of the rotary member in the axial direction, and an operating device that rotates the rotary member according to the operating state of the engine, A wear-resistant layer is formed on the axial end face of the rotating member.
このことにより、操作装置により回動部材をカムシャフ
ト回りに回動させることによって、エンジンの運転状態
に応じてカムシャフトの特定角度位置に対するカム面と
タペットの受圧部との接触位置をカムシャフト回りに変
化させてバルブタイ−6−
ミンクを可変制御するようにしたものである。そして、
その場合、上記タペットの位相ずれにより回動部材に捩
れ振動が生じても、該回動部材のスラスト受は面の摩耗
を耐摩耗層によって抑制するようにしたものである。As a result, by rotating the rotating member around the camshaft using the operating device, the contact position between the cam surface and the pressure receiving part of the tappet can be adjusted around the camshaft depending on the operating state of the engine. The valve timing is changed to variably control the valve timing. and,
In this case, even if torsional vibration occurs in the rotating member due to the phase shift of the tappet, the thrust receiver of the rotating member is designed to suppress wear on the surface by the wear-resistant layer.
(発明の効果)
したがって、本発明のエンジンのバルブタイミング制御
装置によれば、エンジンのバルブタイミングを、筒中な
構造でもって、応答性、信頼性良く確実に可変制御でき
、バルブタイミングの可変制御の容易実施化に大いに寄
与できることに加えて、回動部材の捩れ振動に起因する
。より摩耗喰合の大きい回動部材のスラスト受は面の摩
耗を有効に抑制でき、作動信頼性の一層の向上を図ると
ともに、耐久性の向上およびバルブ駆動騒音の低減化を
も図ることができるものである。(Effects of the Invention) Therefore, according to the engine valve timing control device of the present invention, the engine valve timing can be reliably and reliably controlled with good responsiveness and reliability using the in-cylinder structure. In addition to greatly contributing to ease of implementation, this is caused by torsional vibration of the rotating member. The thrust bearing of the rotating member, which has a larger amount of wear, can effectively suppress surface wear, further improving operational reliability, improving durability, and reducing valve drive noise. It is something.
(実施例)
以下、図面を参照して本発明の実施例を詳細に説明する
。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図および第2図は、1つの気筒に対して低−7−
負荷用および高負荷用の各1対の吸気ボート、排気ポー
トが設けられたデュアルインダクション方式の4気筒エ
ンジンに本発明を適用した実施例を示す。エンジン本体
1には、その中心線交に沿って直列状に第1〜第4気筒
28〜2dが形成されており、各気筒2a〜2dには各
々、低負荷用および高負荷用の1対の吸気ボート3a、
3bと、第1および第2の1対の排気ポート4a、4b
とがそれぞれ気筒列方向と略平行な方向に並列して開口
するように設けられている。第1気筒2aと第2気筒2
bの各高負荷用吸気ボート3b、31)同士、および各
第2排気ポート4b、4b同士はそれぞれ互いに背中合
せ状態に隣接するように配置され、同様に第3気筒2C
と第4気筒2dの各高負荷用吸気ボート3’b、3b同
士、および各第2排気ボート4b、4b同士も互いに隣
接するように配置されている。Figures 1 and 2 show the present invention applied to a dual induction four-cylinder engine in which each cylinder is provided with a pair of intake ports and an exhaust port for low-load and high-load applications. An example of application is shown. In the engine body 1, first to fourth cylinders 28 to 2d are formed in series along the center line intersection, and each cylinder 2a to 2d has one pair for low load and one for high load. intake boat 3a,
3b, and a pair of first and second exhaust ports 4a, 4b.
are provided so as to open in parallel in a direction substantially parallel to the direction of the cylinder row. 1st cylinder 2a and 2nd cylinder 2
The high-load intake boats 3b, 31) and the second exhaust ports 4b, 4b are arranged back-to-back and adjacent to each other, and similarly, the third cylinder 2C
The high-load intake boats 3'b and 3b of the fourth cylinder 2d and the second exhaust boats 4b and 4b of the fourth cylinder 2d are also arranged adjacent to each other.
各気筒2a〜2dの低負荷用および高負荷用吸気ボート
3a 、 31)の気筒への開口部には該各吸気ポート
3a、3bをそれぞれ所定のタイミング−8−
で開閉する低負荷用および高負荷用の吸気弁5a。The low-load and high-load intake boats 3a, 31) of each cylinder 2a to 2d have low-load and high-load intake ports that open and close the intake ports 3a and 3b at predetermined timings, respectively. Load intake valve 5a.
5bが配設されており、一方各気筒2a〜2dの第1お
よび第2排気ボート4a、4bの気筒への間口部には該
各排気ボート4a 、4bをそれぞれ所定のタイミング
で開閉する第1および第2の排気弁5a、5bが配設さ
れている。また、各気筒2a〜2dの高負荷用吸気ポー
ト3bに接続される吸気マニホールドの高負荷用吸気通
路7bには、エンジンの高負荷運転時に開かれる開閉弁
7が配設されており、エンジンの低負荷運転時には低負
荷用吸気通路7aに連通ずる低負荷用吸気ボート3aの
みから各気筒2a〜2dに吸気を供給する一方、エンジ
ンの高負荷運転時には低負荷用および高負荷用吸気ボー
ト3a 、3bの両方から吸気を供給するようにしてい
る。一方、各気筒2a〜2dの第1.第2排気ポート4
a、4bはそれぞれ、第1.第2排気通路7c、7dに
連通されている。On the other hand, a first exhaust boat 4a, 4b of each cylinder 2a to 2d is provided with a first exhaust boat 4b, which opens and closes each exhaust boat 4a, 4b at a predetermined timing. and second exhaust valves 5a, 5b are provided. Furthermore, an on-off valve 7 that is opened during high-load operation of the engine is disposed in the high-load intake passage 7b of the intake manifold connected to the high-load intake port 3b of each cylinder 2a to 2d. During low-load operation, intake air is supplied to each cylinder 2a to 2d only from the low-load intake boat 3a communicating with the low-load intake passage 7a, while during high-load operation of the engine, the low-load and high-load intake boats 3a, Intake air is supplied from both 3b. On the other hand, the first cylinders of each cylinder 2a to 2d. 2nd exhaust port 4
a, 4b are the first. It communicates with second exhaust passages 7c and 7d.
エンジン本体1上部には、各気筒2a〜2dにおける低
負荷用および高負荷用吸気弁5a、5b−9−
を開閉制御する吸気側動弁機構88と、第1および第2
排気弁6a 、6bを開閉制御する排気Iil動弁機構
8bとが設けられている。At the top of the engine body 1, there is an intake side valve operating mechanism 88 that controls the opening and closing of the low-load and high-load intake valves 5a, 5b-9- in each cylinder 2a to 2d, and first and second
An exhaust Iil valve operating mechanism 8b is provided to control opening and closing of the exhaust valves 6a and 6b.
吸気側動弁機構8aは、エンジン本体1の吸気側にエン
ジン本体中心線9と平行に配されタイミングベルト11
0を介してエンジンのクランクシャフト(図示せず)に
よって回転駆動される吸気側カムシャフト9を有し、該
吸気側カムシャフト9には各気筒2a〜2dの低負荷用
および高負荷用吸気弁5a、5bに対応するカム面9a
、 9bが同形状に形成され、この吸気側カムシャフ
ト9の回転により低負荷用吸気弁5aと高負荷用吸気弁
5bが開閉されるようになっている。一方、排気側動弁
機構8bは、エンジン本体1の排気側にエンジン本体中
心線pと平行に配され同じくタイミングベルト110に
より回動駆動される排気側カムシャフト10を有し、該
排気側カムシャフト10には各気筒2a〜2dの第1.
第2排気弁6a、5bに対応するカム面10a、10b
が同形状に形成され、この排気側カムシャフト10の回
−10−
転ににり第1排気弁6aど第2排気弁6bが開閉させる
ようになっている。The intake side valve mechanism 8a is disposed on the intake side of the engine body 1 parallel to the engine body center line 9, and is connected to a timing belt 11.
The intake camshaft 9 has an intake camshaft 9 that is rotationally driven by the engine crankshaft (not shown) through the engine 0, and the intake camshaft 9 has low-load and high-load intake valves for each of the cylinders 2a to 2d. Cam surface 9a corresponding to 5a and 5b
, 9b are formed in the same shape, and rotation of this intake side camshaft 9 opens and closes the low load intake valve 5a and the high load intake valve 5b. On the other hand, the exhaust side valve mechanism 8b has an exhaust side camshaft 10 arranged parallel to the engine body center line p on the exhaust side of the engine main body 1 and rotationally driven by a timing belt 110. The shaft 10 has a first cylinder of each cylinder 2a to 2d.
Cam surfaces 10a, 10b corresponding to second exhaust valves 6a, 5b
are formed in the same shape, and the first exhaust valve 6a and the second exhaust valve 6b are opened and closed by rotation of the exhaust side camshaft 10.
上記吸気側動弁機構8aには、第1気筒2aと第2気筒
2bとの互いに隣接する両高角荷用吸気弁5b、5bお
よび第3気筒2Cと第4気筒2dとの互いに隣接する円
高負荷用吸気弁5b、5bのバルブタイミングをそれぞ
れ可変制御する0本発明に係る2つの第1可変機構11
.11が設けられており、また排気側動弁機構8bにも
、互いに隣接する第1.第2気筒2a、2bの第2排気
弁6b 、611と、第3.第4気筒2c、2dの第2
排気弁6b、6bのバルブタイミングをそれぞれ可変制
御する9本発明に係る2つの第2可変機構12.12が
設けられている。The intake valve mechanism 8a includes two high-angle load intake valves 5b, 5b adjacent to each other in the first cylinder 2a and second cylinder 2b, and adjacent high-angle load intake valves 5b, 5b in the third cylinder 2C and fourth cylinder 2d. Two first variable mechanisms 11 according to the present invention that variably control the valve timing of the load intake valves 5b, 5b, respectively.
.. 11, and the exhaust side valve mechanism 8b is also provided with first .11 adjacent to each other. second exhaust valves 6b, 611 of second cylinders 2a, 2b; 2nd of 4th cylinder 2c, 2d
Two second variable mechanisms 12, 12 according to the present invention are provided to variably control the valve timing of the exhaust valves 6b, 6b, respectively.
これら第1および第2可変機構11.12は、第3図に
拡大図示するように同じ構成によってなる。すなわち、
第1可変機構11は、一端(上端)が吸気側カムシャ7
1−〇のカム面9b 、9bと当接し該カム面9b 、
9bから力を受ける受圧部(受圧部)13aと、その反
対側で高負荷用吸気−11−
弁5b、5bのバルブステムと当接し上記カム9b、9
bからの力をバルブステムへ伝達する押圧部(押圧面)
13bと、上記受圧部13aと押圧部13bとを連結す
る円筒状の摺動部13cとを有し、相隣る気筒に対応し
て上記力ムシャフi−〇のカム面9b、9bから力を受
ける時期が異なる2つのタペット13.13と、該各タ
ペッ]〜13゜13が上下方向に摺動自在に嵌挿保持さ
れる2つの嵌挿孔14−a、llaを有するとともに上
記エンジン本体1の円弧状面1aに対応して円弧状に形
成された下面14.bを有し、上記吸気側カムシャフト
9に対して回動自在に支承されて該吸気側カムシャフト
9のまわりを回動しうる回動部材14と、該回動部材1
4をエンジンの運転状態に応じて上記吸気側力ムシャフ
1〜9の回転軸まわりに回動させる操作装置15とを備
えてなる(第2可変機構12は第1可変機構11の構成
要素に1′」(ダッシュ」を付して表わす)。These first and second variable mechanisms 11, 12 have the same configuration as shown in an enlarged view in FIG. That is,
The first variable mechanism 11 has one end (upper end) connected to the intake side camshaft 7.
The cam surfaces 9b and 9b of 1-0 come into contact with the cam surfaces 9b,
The pressure receiving part (pressure receiving part) 13a which receives force from the cam 9b and the valve stem of the high load intake valve 5b, 5b on the opposite side contact the valve stem of the cam 9b, 9.
Pressing part (pressing surface) that transmits the force from b to the valve stem
13b, and a cylindrical sliding part 13c that connects the pressure receiving part 13a and the pressing part 13b, and applies force from the cam surfaces 9b, 9b of the force mushaff i-〇 corresponding to the adjacent cylinders. The engine main body 1 has two tappets 13.13 that are received at different times, and two fitting holes 14-a and 14-13 into which the tappets 13.13 are fitted and held so as to be slidable in the vertical direction. A lower surface 14 formed in an arc shape corresponding to the arc surface 1a of the lower surface 14. b, a rotating member 14 rotatably supported on the intake-side camshaft 9 and capable of rotating around the intake-side camshaft 9, and the rotating member 1
4 and an operating device 15 for rotating the intake side force shafts 1 to 9 around the rotation axes according to the operating state of the engine (the second variable mechanism 12 is a component of the first variable mechanism 11) ′” (represented with a dash).
回動部材14は、吸気側カムシャフト9に支承される部
分において上下に分割されており、ポル−12−
ト16.16で一体に結合されている。The rotating member 14 is divided into upper and lower portions at a portion supported by the intake camshaft 9, and is integrally connected at a port 12-16.
また、第4図に示されるように回動部材の軸方向端面1
4g、14gは、エンジン本体1のガイド部に形成され
たガイド部1bにより、回転方向摺動自在に支持される
とともに、軸方向の動きが規制されている。Further, as shown in FIG. 4, the axial end surface 1 of the rotating member
4g and 14g are supported by a guide portion 1b formed in the guide portion of the engine body 1 so as to be freely slidable in the rotational direction, and their movements in the axial direction are restricted.
操作装置15は、エンジン本体中心線pに平行に配され
2つの第1可変機構11.11の各回動部材14.14
の上端部を連結する揺動軸17と、この揺動軸17に対
して直角に配され該揺動軸17の中央部に係合するとと
もに第2図中左右方向に往復動自在に形成された往復動
軸18と、例えばモータの回転運動を14−復運動に変
換して上記往復動軸18を上記方向に往復動させ、揺動
軸17を介して回動部材14を前記のように回動させる
駆動装置19とを備えてなる。この駆動装置19には、
エンジンの回転数を検出する回転数センサ20が出力す
る回転数信号S1と、エンジン負荷を検出づ−る負荷セ
ンサ21が出力する負荷信号S2とが入力され、エンジ
ンの特定運転時としての= 13 −
高負荷高回転時に該駆動装置19は、前記往復動軸18
を第2図中右方向に移動させるように駆動される。この
ような往復動軸18の移動により、揺動軸17は吸気側
カムシャフト9の回転方向Xと同方向(第2図中時組方
向)に回動し、回動部材14.14が吸気側カムシャフ
ト9を中心に上記X方向に回動される。The operating device 15 is arranged parallel to the center line p of the engine body, and is connected to each rotating member 14.14 of the two first variable mechanisms 11.11.
A swing shaft 17 connects the upper end portions, and a swing shaft 17 is disposed perpendicularly to the swing shaft 17, engages with the center portion of the swing shaft 17, and is formed to be able to reciprocate in the left-right direction in FIG. The reciprocating shaft 18 is reciprocated in the above direction by converting the rotary motion of a motor, for example, into a reciprocating motion, and the rotating member 14 is moved as described above through the swing shaft 17. It is equipped with a drive device 19 for rotating. This drive device 19 includes
The rotation speed signal S1 outputted by the rotation speed sensor 20 that detects the engine rotation speed and the load signal S2 outputted by the load sensor 21 that detects the engine load are input, and the signal at the time of specific operation of the engine is = 13. - During high load and high rotation, the drive device 19
is driven to move rightward in FIG. Due to such movement of the reciprocating shaft 18, the swinging shaft 17 rotates in the same direction as the rotational direction X of the intake side camshaft 9 (the rotating direction in FIG. It is rotated about the side camshaft 9 in the above-mentioned X direction.
高負荷用吸気弁5bは通常の吸、排気弁と同様に、バル
ブガイド32に揺動自在に支承されバルブスプリング3
1によって上方すなわち弁閉方向に付勢されているが、
第5図に示すように吸気側カムシャフト9が上記X方向
に回転してそのカム面9bがタペット13の受圧部13
aを押圧し、該タペット13が嵌挿孔14a内を押し下
げられると、上記バルブスプリング31の付勢力に抗し
て該タペット13の押圧部13bによって押し下げられ
、高負荷用吸気ポート3bを開く(勿論低負荷用吸気弁
5aも同様にして開かれる)。一方、第6図に示すよう
に、回動部材14.14が上述のようにX方向に回動さ
れると、タペット13゜−14−
13も回動部材14.14とともに移動し、吸気側カム
シャフト9の特定角喰位置に対するカム面9b 、9b
とタペット受圧部13a、13aの接触位置が吸気側カ
ムシャフト9の回転方向Xに対して遅れ側に変化して、
各高負荷用吸気弁5b。The high-load intake valve 5b is swingably supported by a valve guide 32 and has a valve spring 3, similar to a normal intake and exhaust valve.
1 in the upward direction, that is, in the valve closing direction,
As shown in FIG.
When the tappet 13 is pushed down in the insertion hole 14a by pressing the tappet 13, it is pushed down by the pressing portion 13b of the tappet 13 against the biasing force of the valve spring 31, opening the high-load intake port 3b ( Of course, the low-load intake valve 5a is also opened in the same manner). On the other hand, as shown in FIG. 6, when the rotating member 14.14 is rotated in the X direction as described above, the tappet 13°-14-13 also moves together with the rotating member 14.14, and the intake side Cam surfaces 9b, 9b for a specific corner position of the camshaft 9
and the contact position of the tappet pressure receiving parts 13a, 13a changes to the delayed side with respect to the rotational direction X of the intake side camshaft 9,
Each high load intake valve 5b.
5bのバルブタイミングが遅れ側にずらされる。The valve timing of valve 5b is shifted to the delayed side.
以上の動作は第2可変機構12により、同時に第2排気
バルブ6bに対しても行われる。The above operation is simultaneously performed on the second exhaust valve 6b by the second variable mechanism 12.
ここで、上記タペット13に潤滑油を供給する油圧系統
について詳しく説明する。第3図に示すように吸気側カ
ムシャフト9の回動部材支承部9Cの外周面には環状の
オイル通路9dが刻設され、該オイル通路9dは、吸気
側カムシャフト9の中心部を延びるオイル通路9eと、
半径方向に延びるオイル通路9fを介して連通されてい
る。オイル通路9eは通常のカムシャフトに設けられて
いるものと同様のもので、オイルポンプ(図示せず)に
連通され、オイル通路9gによってカム面9bとタペッ
ト13との間を、また図示していない別の通路によって
カムシャフト軸受部等に潤滑用の−15=
オイルを導く。排気側のタペット13′へのオイル供給
通路も吸気側と同様に構成されており、排気側カムシャ
フト10は吸気弁側カムシャフト9の各オイル通路に対
応するオイル通路10d、10e 、10f 、1(l
を有する。Here, the hydraulic system that supplies lubricating oil to the tappet 13 will be explained in detail. As shown in FIG. 3, an annular oil passage 9d is carved on the outer peripheral surface of the rotating member support portion 9C of the intake camshaft 9, and the oil passage 9d extends through the center of the intake camshaft 9. oil passage 9e,
They are communicated via an oil passage 9f extending in the radial direction. The oil passage 9e is similar to that provided in a normal camshaft, and is communicated with an oil pump (not shown), and the oil passage 9g connects the cam surface 9b and the tappet 13. Lubricating oil is introduced to the camshaft bearings, etc. through a separate passage. The oil supply passage to the tappet 13' on the exhaust side is configured similarly to the intake side, and the exhaust side camshaft 10 has oil passages 10d, 10e, 10f, 1 corresponding to each oil passage of the intake valve side camshaft 9. (l
has.
一方、回動部材14には、前記環状のオイル通路9dに
対向するオイル通路14.dと、このオイル通路14d
に連通して嵌挿孔14a、14a並置方向に延びるオイ
ル通路14.8と、このオイル通路14eに連通し嵌挿
孔14a、14aの内周壁に開口するオイル通路14.
f、14.fが穿設されている。オイル通路14eの両
端は回動部材14の軸方向端面14g、14gに通じて
いる。なお、第3図においては、以上説明した各オイル
通路に斜線を付しである。On the other hand, the rotary member 14 includes an oil passage 14 facing the annular oil passage 9d. d and this oil passage 14d
An oil passage 14.8 that communicates with the insertion holes 14a and extends in the juxtaposed direction of the insertion holes 14a and 14a, and an oil passage 14.8 that communicates with the oil passage 14e and opens on the inner peripheral wall of the insertion holes 14a and 14a.
f, 14. f is drilled. Both ends of the oil passage 14e communicate with axial end faces 14g, 14g of the rotating member 14. In FIG. 3, each of the oil passages described above is shaded.
しかして、オイルポンプによりオイル通路9eに圧送さ
れる潤滑用オイルは、該オイル通路9eに連通しカム面
9bに開口する小孔9gから少量ずつ吐出されて、カム
面9bとタペット13の受圧部13aとの間を潤滑し、
またカムシャフト軸−16−
受部30を潤滑する。それとともに、このオイルは上記
オイル通路9eからオイル通路9f 、 9d 。The lubricating oil that is force-fed to the oil passage 9e by the oil pump is discharged little by little from the small hole 9g that communicates with the oil passage 9e and opens on the cam surface 9b. 13a,
It also lubricates the camshaft shaft-16-receiving portion 30. At the same time, this oil flows from the oil passage 9e to the oil passages 9f and 9d.
14d、14eを介して回動部材14の軸方向端面14
gに供給され、エンジン本体1のガイド面1bとの摺動
部を潤滑する。さらにオイルは、14fを介して、上記
タペット13の摺動部13Cと嵌挿孔14aとの摺動部
に供給され潤滑するようになされている。The axial end surface 14 of the rotating member 14 via 14d and 14e.
g, and lubricates the sliding parts of the engine body 1 with the guide surface 1b. Further, oil is supplied to the sliding portion between the sliding portion 13C of the tappet 13 and the fitting hole 14a through 14f to lubricate the sliding portion.
加えて、第3図および第4図に示すように、上記回動部
材14の軸方向端面14(1,14(]には耐摩耗層2
3.’23が形成されており、また該軸方向端面14q
、14gが摺接するエンジン本体1のガイド面1b、1
bにも耐摩耗層24.24が形成されている。これら耐
摩耗層23.24は、母材(回動部材14、エンジン本
体1)に対し熱処理することにより、あるいは耐摩耗鋼
を接合するなどの方法によって形成される。In addition, as shown in FIG. 3 and FIG.
3. '23 is formed, and the axial end face 14q
, 14g slidingly contact the guide surfaces 1b, 1 of the engine body 1.
Wear-resistant layers 24 and 24 are also formed on portions b. These wear-resistant layers 23 and 24 are formed by heat-treating the base material (rotating member 14, engine body 1) or by joining wear-resistant steel.
次に上記実施例の作用について説明するに、エンジンの
低負荷運転時には、第1および第2可変機構11.12
が非作動状態にあり、各気筒2a−17−
〜2dにおける低負荷用、高負荷用吸気弁5a。Next, to explain the operation of the above embodiment, during low load operation of the engine, the first and second variable mechanisms 11, 12
is in a non-operating state, and the low-load and high-load intake valves 5a in each cylinder 2a-17- to 2d.
5bおよび第1.第2排気弁(3a 、611はそれぞ
れ吸気側および排気側動弁機構8a 、8bによって各
々所定のバルブタイミングで開閉制御される。5b and 1st. The second exhaust valves (3a, 611) are controlled to open and close at predetermined valve timings by intake-side and exhaust-side valve operating mechanisms 8a, 8b, respectively.
すなわち、第7図実線で示すように、第1および第2排
気弁(3a、6bのバルブタイミングは共に、ピストン
の下死点付近で開いたのち上死点付近で閉じるように制
御され、また低負荷用おにび高負荷用吸気弁5a、5b
のバルブタイミングは共に排気弁6a、6t]とのオー
バラップ期間を短くしてピストン上死点付近で開いたの
ち下死点付近で閉じるように制御される。また、各気筒
2a〜2dにおける高負荷用吸気通路7bは開閉弁7の
閉作動によって閉塞されており、低負荷用吸気ポート3
aのみから吸気がなされる。That is, as shown by the solid line in FIG. 7, the valve timings of the first and second exhaust valves (3a, 6b) are both controlled to open near the bottom dead center of the piston and close near the top dead center, and Intake valves 5a and 5b for low load and high load
The valve timings of both the exhaust valves 6a and 6t are controlled to shorten the overlap period with the exhaust valves 6a and 6t so that they open near the top dead center of the piston and then close near the bottom dead center of the piston. In addition, the high-load intake passage 7b in each cylinder 2a to 2d is closed by the closing operation of the on-off valve 7, and the low-load intake port 3
Air is taken only from a.
一方、エンジンの高負荷低回転運転時には、高負荷用吸
気通路7bの開閉弁7が開かれ、低負荷用吸気ポート3
aに加えて高負荷用吸気ボート3hからも吸気が行われ
るが、第1および第2可変機構11.12は共に非作動
の状態に設定され、−18−
吸、排気弁5a、5bと6a、6bのオーバラップ期間
を短くし、吸気の吹き返しを防止して充填効率が高めら
れる。しかも、この場合、各気筒2a〜2dの排気行程
において第1および第2の排気ボート4a、4bをそれ
ぞれ排気弁6a、61)で開閉するので、排気のための
有効開口面積が単一排気ポートのエンジンに比べて増大
して掃気効率が向上し、ひいては上記充填効率の向上を
一層図ることができる。On the other hand, when the engine is operating at high load and low speed, the on-off valve 7 of the high load intake passage 7b is opened, and the low load intake port 3 is opened.
In addition to a, intake is also performed from the high-load intake boat 3h, but both the first and second variable mechanisms 11.12 are set to a non-operating state, and -18- intake and exhaust valves 5a, 5b and 6a , 6b is shortened to prevent intake air from blowing back, thereby increasing filling efficiency. Moreover, in this case, the first and second exhaust boats 4a, 4b are opened and closed by the exhaust valves 6a, 61), respectively, during the exhaust stroke of each cylinder 2a to 2d, so that the effective opening area for exhaust is limited to a single exhaust port. This increases the scavenging efficiency compared to the engine described above, and further improves the above-mentioned charging efficiency.
これに対し、エンジンの高負荷高回転運転時には、第1
および第2可変機構11.12が共に作動され、第7図
仮想線で示すように、各気筒2a〜2dにおける1対の
排気弁6a、(3bのうち第2排気弁611のバルブタ
イミングが第2可変機構12によって遅れ側に、また1
対の吸気弁5a。On the other hand, when the engine is operating under high load and high speed, the first
and the second variable mechanism 11.12 are operated together, and the valve timing of the second exhaust valve 611 of the pair of exhaust valves 6a, (3b) in each cylinder 2a to 2d is set to 2 to the delay side by the variable mechanism 12, and 1
A pair of intake valves 5a.
5bのうち高負荷用吸気弁5bのバルブタイミングが第
1可変機構11によって遅れ側にずれるように制御され
る。また、各気筒2a〜2dの高負荷用吸気通路7bは
開閉弁7の開作動により開かれており、前述した高負荷
低回転運転時と同様に−19−
高負荷用吸気ポート3bからも吸気がなされる。Among the intake valves 5b, the valve timing of the high-load intake valve 5b is controlled by the first variable mechanism 11 to be delayed. In addition, the high-load intake passages 7b of each cylinder 2a to 2d are opened by the opening operation of the on-off valve 7, and similarly to the above-mentioned high-load, low-speed operation, air is also taken in from the high-load intake port 3b. will be done.
したがって、このように両吸気弁5a、5bの全体とし
ての総開弁期間を長くし、しかも吸気の慣性作用の大き
い遅れ側に開弁期間を延ばしたことにより、吸気の充填
効率が著しく向上され、高負荷高回転時の出力性能が大
幅に向上される。また、両排気弁6a、6bの全体とし
ての総開弁期間を良くしたことにより、掃気効率が著し
く向上され、上記充填効率がさらに向上される。Therefore, by increasing the total opening period of both intake valves 5a and 5b as a whole, and extending the opening period to the lag side where the inertial action of the intake air is large, the filling efficiency of the intake air is significantly improved. , the output performance under high loads and high rotations is greatly improved. Further, by improving the total opening period of both exhaust valves 6a and 6b as a whole, the scavenging efficiency is significantly improved, and the above-mentioned filling efficiency is further improved.
また、上記各可変機構11.12は、一般の動弁機構(
直接駆動方式オーバーへラドカム機構)に、タペット1
3(13’)を嵌挿保持する回動部材14(14’)お
よび該回動部材14(14′)をカムシャフト9(10
)まわりに回動させる操作装置15(15’)を設ける
だけで構成されるので、構造が簡単であり、+S造容易
かつ安価なものとなる。さらに、上記回動部材14の軸
方向端面14g、および該回動部材14の軸方向の動き
を規制し且つ上述の回動部材14の回動の際に軸方向端
面14(]が摺接するエンジン本体1の−20−。In addition, each of the variable mechanisms 11 and 12 described above is a general valve mechanism (
Direct drive type overdrive cam mechanism), tappet 1
The rotating member 14 (14') is inserted into and holds the rotating member 14 (14') on the camshaft 9 (10).
), the structure is simple, and the +S construction is easy and inexpensive. Further, an axial end surface 14g of the rotating member 14, and an engine that restricts the axial movement of the rotating member 14 and that the axial end surface 14 ( ) comes into sliding contact with when the rotating member 14 rotates. -20- of main body 1.
ガイド面1bにはそれぞれ耐摩耗層23.24を形成し
たことにより、作動時期の異なる2つのタペット13.
13の位相ずれによってこれを保持する回動部材14に
捩れ振動が生じても、上記軸方向端面14gおよびガイ
ド面1bの摺動部分の摩耗が極力抑制され、しかも上述
の如く回動部材14の摺動部材への潤滑油供給による潤
滑作用と相俟って、可変機構11.12の信頼性ある作
動を長期に亘って確保することができるとともに、摩耗
による振動騒音の発生をも抑制してバルブ駆動騒音の低
減化を図ることができる。By forming wear-resistant layers 23 and 24 on each guide surface 1b, two tappets 13.
Even if torsional vibration occurs in the rotating member 14 that holds it due to the phase shift of the rotating member 13, wear of the sliding portions of the axial end face 14g and the guide surface 1b is suppressed as much as possible. Coupled with the lubrication effect by supplying lubricating oil to the sliding members, reliable operation of the variable mechanism 11, 12 can be ensured over a long period of time, and the generation of vibration noise due to wear can also be suppressed. Valve drive noise can be reduced.
尚、上記実施例は、低負荷用と高負荷用の吸気ポートを
有するデュアルインダクション方式の4バルブエンジン
に本発明が適用されたものであるが、本発明はその他の
エンジンに対しても勿論適用可能である。例えば本発明
は第8図に示すように、1つの気筒102a〜102d
に対して単一の吸気ポート103と単一の排気ポート1
04とを有する通常の4気筒エンジンに対しても適用で
き、この場合、互いに隣り合う第1気筒102a21
と第2気筒102b、および第3気筒102cと第4気
筒102dにおいて吸気ポート103.103(または
排気ポート104.104>を隣接配置し、動弁系のカ
ムシャフト中心Sにおいてその吸気弁同士(または排気
弁同士)間に跨って前述の可変機構11.12と同様の
可変機構111(112)を配設すればよい。このよう
にして吸気弁のバルブタイミングを可変とした場合には
バルブタイミングは第9図に示されるように設定される
。すなわちエンジンの高負荷高回転運転時には、回動部
材が回動して第9図仮想線で示すように吸気弁のバルブ
タイミングが遅れ側にずらされる。この場合も、上述の
実施例の場合と同様に回動部材の摺動部分の摩耗が抑制
されるので、装置の作動を円滑かつ確実に行うことがで
きる。従って、高負荷高回転時において吸気の慣性作用
の大きい遅れ側に開弁期間が確実に設定されることによ
り吸気の充填効率が向上され、出力性能が向上する。In the above embodiment, the present invention is applied to a dual induction 4-valve engine having intake ports for low load and high load, but the present invention can of course be applied to other engines as well. It is possible. For example, in the present invention, as shown in FIG.
Single intake port 103 and single exhaust port 1 for
04, and in this case, the intake ports 103, 103 (or A variable mechanism 111 (112) similar to the above-mentioned variable mechanism 11.12 is arranged adjacent to the exhaust ports 104, 104> and straddled between the intake valves (or between the exhaust valves) at the camshaft center S of the valve train. When the valve timing of the intake valve is made variable in this way, the valve timing is set as shown in Fig. 9.In other words, when the engine is operated at high load and high speed, the rotation As the member rotates, the valve timing of the intake valve is shifted to the retarded side as shown by the imaginary line in Figure 9. In this case, as in the case of the above-mentioned embodiment, the sliding portion of the rotating member is prevented from wearing out. As a result, the device can operate smoothly and reliably. Therefore, during high load and high rotation, the valve opening period is reliably set on the lag side where the inertia of the intake air is large, thereby improving the filling efficiency of the intake air. is improved, resulting in improved output performance.
また、上記第1図の実施例においては、吸、排−22−
気弁5b、6bのバルブタイミングを可変制御するエン
ジンの特定運転時をエンジンの高負荷^回転時としたが
、その他の運転時においても必要に応じてバルブタイミ
ングを可変制御してもよい。In addition, in the embodiment shown in FIG. 1 above, the specific operation of the engine in which the valve timing of the intake and exhaust valves 5b and 6b is variably controlled was defined as the high load rotation of the engine, but other operations Valve timing may be variably controlled as needed.
さらにまた、上記第1図の実施例においては、各気筒2
a〜2dにおける1対の吸気ボート3a。Furthermore, in the embodiment shown in FIG.
A pair of intake boats 3a in a to 2d.
3bおよび1対の吸気弁5a、5bと、1対の排気ポー
ト4a、4bおよび1対の排気弁6a、6bとを、それ
ぞれエンジン本体1の吸気側と排気側とに分けて中心線
交方向に平行に配置し、かつ高負荷用吸気弁5a、5b
同士および第2排気弁6b、6b同士を隣接配置したが
、その他の配置構成にしてもよいことは勿論である。し
かし、前記第1図の実施例におけるような配置構成は、
各カムシャフト9.10の軸受部30.30の配置を簡
素化し、隣り合う気筒(2aと2b 、2Cと2d>間
の高負荷用吸気弁5b、5b同士および第2排気弁6b
、6b同士をそれぞれ1つの可変機構11.12で制
御できるので有利である。3b, a pair of intake valves 5a, 5b, a pair of exhaust ports 4a, 4b, and a pair of exhaust valves 6a, 6b, respectively, are divided into an intake side and an exhaust side of the engine body 1, and are arranged in a direction crossing the center line. and high load intake valves 5a, 5b.
Although the second exhaust valves 6b and 6b are arranged adjacent to each other, it goes without saying that other arrangement configurations may be used. However, the arrangement as in the embodiment of FIG.
The arrangement of the bearing parts 30.30 of each camshaft 9.10 is simplified, and the high-load intake valves 5b, 5b between adjacent cylinders (2a and 2b, 2C and 2d) and the second exhaust valve 6b are simplified.
, 6b can each be controlled by one variable mechanism 11, 12, which is advantageous.
また、上記実施例では、摺動部分である回動部−23−
材14の軸方向端面14gとエンジン本体1のガイド面
111との両方に耐摩耗1!123.24を設けたが、
より摩耗成金の大きい回動部材14の軸方向端面149
のみに耐摩耗層23を設【プるだけでも十分であり、そ
の摩耗を有効に抑制できる。Further, in the above embodiment, both the axial end face 14g of the rotating part 23- material 14, which is a sliding part, and the guide surface 111 of the engine body 1 are provided with a wear resistance of 1!123.24.
Axial end surface 149 of the rotating member 14 which has more wear and tear
It is sufficient to provide the abrasion resistant layer 23 only on the base plate, and the wear can be effectively suppressed.
さらに、上記実施例では回動部材14をイの中央でカム
シャフト9(10)に回動自在に支持したものについて
述べたが、その両端で支持したものについても適用でき
同様の作用効果を奏する。Further, in the above embodiment, the rotary member 14 is rotatably supported on the camshaft 9 (10) at the center of the figure, but it can also be applied to a rotary member supported at both ends, and the same effect can be obtained. .
また、回動部材14に保持するタペット13の数は上記
実施例の如く2つの他に3つ以上であってもよい。Further, the number of tappets 13 held by the rotating member 14 may be three or more, instead of two as in the above embodiment.
第1図は本発明をデュアルインダクション方式の4気筒
エンジンに適用した実施例を示す一部破断乎面図、第2
図は第1図の実施例の縦断面図、第3図は第1図の実施
例の可変機構部分の拡大斜視図、第4図は回動部材の摺
動部分を示す横断面図、第5図および第6図はそれぞれ
第1図の実施例の可変機構の非作動時および作動時の状
態を示−24−
ず縦断面図、第7図は第1図の実施例にお・プる吸。
排気弁のバルブタイミングを示す説明図、第8図は本発
明を通常の4気筒エンジンに適用した実施例を示す概略
図、第9図は第8図の実施例における吸、排気弁のバル
ブタイミングを示す説明図である。
1b・・・ガイド面、5a、5b・・・吸気弁、5S・
・・バルブステム、6a 、(3b・・・排気弁、9.
10・・・カムシv 71−19a 、9b 、10a
、10b −・・カム面、11・・・第1可変機構、
12・・・第2可変機構、13.13’ ・・・タペッ
ト、138.13’ a・・・タペット受圧部、13b
、13’ b・・・タペット抑圧部、14.14’・
・・回動部材、148.14’ a・・・嵌挿孔、14
0・・・軸方向端面、15.15’・・・操作装置、2
3・・・耐摩耗層。
−25−
誕口に震
区口旧=Fig. 1 is a partially cutaway view showing an embodiment in which the present invention is applied to a dual induction four-cylinder engine;
The figures are a longitudinal sectional view of the embodiment shown in Fig. 1, Fig. 3 is an enlarged perspective view of the variable mechanism portion of the embodiment shown in Fig. 5 and 6 are longitudinal sectional views showing the non-operating and operating states of the variable mechanism of the embodiment of FIG. 1, respectively, and FIG. 7 is a cross-sectional view of the embodiment of FIG. Suction. An explanatory diagram showing the valve timing of the exhaust valve, Fig. 8 is a schematic diagram showing an embodiment in which the present invention is applied to a normal four-cylinder engine, and Fig. 9 shows the valve timing of the intake and exhaust valves in the embodiment of Fig. 8. FIG. 1b...Guide surface, 5a, 5b...Intake valve, 5S.
...Valve stem, 6a, (3b...exhaust valve, 9.
10... Kamushi v 71-19a, 9b, 10a
, 10b--cam surface, 11--first variable mechanism,
12... Second variable mechanism, 13.13'... Tappet, 138.13' a... Tappet pressure receiving part, 13b
, 13' b... Tappet suppression section, 14.14'.
... Rotating member, 148.14' a... Fitting hole, 14
0... Axial end surface, 15.15'... Operating device, 2
3...Abrasion resistant layer. -25- Old entrance to the birth entrance=
Claims (1)
上記カム面からの力をバルブステムへ伝達する押圧部と
を有し、上記カムシャフトのカム面から力を受ける時期
が異なる複数のタペットと、該複数のタペットを摺動自
在に嵌挿する嵌装孔を有し上記カムシャフトのまわりに
回動自在に支持された回動部材と、該回動部材の軸方向
の動きを規制するガイド部と、上記回動部材をエンジン
の運転状態に応じて回動させる操作IImとからなるエ
ンジンのバルブタイミング制n装置であって、上記回動
部材の軸方向端面に耐摩耗層を形成したことを特徴とす
るエンジンのバルブタイミング制御装置。(1) A plurality of tappets that have a pressure receiving part that receives force from the cam surface of the camshaft and a pressing part that transmits the force from the cam surface to the valve stem, and that receive force from the cam surface of the camshaft at different times. a rotating member rotatably supported around the camshaft and having a fitting hole into which the plurality of tappets are slidably inserted; and a rotating member that restricts axial movement of the rotating member. An engine valve timing control device comprising a guide portion and an operation IIm for rotating the rotary member according to the operating state of the engine, wherein a wear-resistant layer is formed on an axial end surface of the rotary member. An engine valve timing control device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17873183A JPS6069224A (en) | 1983-09-26 | 1983-09-26 | Valve-timing controlling apparatus for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17873183A JPS6069224A (en) | 1983-09-26 | 1983-09-26 | Valve-timing controlling apparatus for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6069224A true JPS6069224A (en) | 1985-04-19 |
Family
ID=16053589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17873183A Pending JPS6069224A (en) | 1983-09-26 | 1983-09-26 | Valve-timing controlling apparatus for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6069224A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61250316A (en) * | 1985-04-26 | 1986-11-07 | Mazda Motor Corp | Valve tappet device for engine |
-
1983
- 1983-09-26 JP JP17873183A patent/JPS6069224A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61250316A (en) * | 1985-04-26 | 1986-11-07 | Mazda Motor Corp | Valve tappet device for engine |
JPH0613842B2 (en) * | 1985-04-26 | 1994-02-23 | マツダ株式会社 | Engine valve gear |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4651684A (en) | Valve timing control system for internal combustion engine | |
JPH0953427A (en) | Valve system of side-valve overhead camshaft type engine | |
JPH0456123B2 (en) | ||
US7588003B2 (en) | Valve train for internal combustion engine | |
US8127739B2 (en) | Variable stroke engine | |
US5893345A (en) | Valve control apparatus for an internal combustion engine | |
US20070125328A1 (en) | Valve train for internal combustion engine | |
JPS6069224A (en) | Valve-timing controlling apparatus for engine | |
JPS5946308A (en) | Valve timing control device of engine | |
JP4474058B2 (en) | Variable valve operating device for internal combustion engine | |
JP2827426B2 (en) | Valve system for 4-cycle engine | |
JPH0220406Y2 (en) | ||
JP2002089215A (en) | Variable valve system for internal combustion engine | |
JPH0125881B2 (en) | ||
JP5020339B2 (en) | Variable valve operating device for internal combustion engine | |
Martins et al. | Analysis of a New VVT Trapezoidal Rotary Valve | |
JPH0355643B2 (en) | ||
JPS59188007A (en) | Valve timing control device for engine | |
JP2008095672A (en) | Valve system for engine | |
JPS5965510A (en) | Valve timing control device for engine | |
JPH0232447B2 (en) | ||
JPS59188008A (en) | Valve timing control device for engine | |
JPS5946309A (en) | Valve timing control device of engine | |
JPH0160650B2 (en) | ||
JP2755025B2 (en) | Valve train for internal combustion engine |