[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS6066435A - Forming method of thin-film - Google Patents

Forming method of thin-film

Info

Publication number
JPS6066435A
JPS6066435A JP58175320A JP17532083A JPS6066435A JP S6066435 A JPS6066435 A JP S6066435A JP 58175320 A JP58175320 A JP 58175320A JP 17532083 A JP17532083 A JP 17532083A JP S6066435 A JPS6066435 A JP S6066435A
Authority
JP
Japan
Prior art keywords
film
etched
thin
section
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58175320A
Other languages
Japanese (ja)
Inventor
Juro Yasui
安井 十郎
Masanori Fukumoto
正紀 福本
Shozo Okada
岡田 昭三
Shohei Shinohara
篠原 昭平
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58175320A priority Critical patent/JPS6066435A/en
Publication of JPS6066435A publication Critical patent/JPS6066435A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a thin-film having excellent coverage even on the surface of a substrate with a narrow recessed section such as an undercut section by forming a thin-film on the substrate consisting of a semiconductor, etc. with the undercut section, a slender clearance, etc., repeating a process, in which the thin-film is etched through a directional etching method, plural times and forming the thin- film in desired thickness. CONSTITUTION:A CVD SiO2 film 91 is etched through a directional etching method shown by the arrows such as an RIE method in which an Si substrate is positioned between plate electrodes arranged in parallel. A flat section is etched easily through the etching, bu the CVD SiO2 film formed to an undercut section 6 under the end section of a gate electrode 4 is hardly etched because it is shaped by the gate electrode 4. When a CVD SiO2 film 92 is formed again and etched through the directional etching method such as the RIE method, a CVD SiO2 film 9 is formed to the undercut section 6, and the undercut section 6 can be buried. When the undercut section 6 is not buried, a process in which a CVD SiO2 film is shaped and etched through the directional etching method is further repeated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は表面に凹凸のある基板に薄膜を気相化゛学蒸着
(CVD )法で形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a thin film on a substrate having an uneven surface by vapor chemical deposition (CVD).

従来例の構成とその問題点 半導体装置、特にLSIが高密度化されると製造工程に
おいては半導体基板表面に微細なパターンを形成する必
要がある。しかるに表面の凹凸が大きい半導体基板表面
に微細なパターンを形成する際に、写真蝕刻法で微細な
ホトレジストパターンを形成するのが困難であり、さら
にホトレジストパターンをマスクにして半導体や金属の
薄膜を選択的にエツチングするのも困難となる0特に半
導体基板に幅の狭いすき間やくびれがある場合には特に
困難である。
Conventional Structures and Their Problems As semiconductor devices, especially LSIs, become more densely packed, it becomes necessary to form fine patterns on the surface of the semiconductor substrate in the manufacturing process. However, when forming fine patterns on the surface of a semiconductor substrate with large surface irregularities, it is difficult to form a fine photoresist pattern using photolithography, and furthermore, it is difficult to use the photoresist pattern as a mask to select thin films of semiconductors or metals. This is particularly difficult when the semiconductor substrate has narrow gaps or constrictions.

第1図にSt グ、−) MOS LS I の製造工
程における部分断面図を示し、3はゲー) S 102
膜、4はゲート電極、6は層間絶縁膜、 はAF、電極
配線である。
Fig. 1 shows a partial cross-sectional view of the manufacturing process of Stg, -) MOS LSI, and 3 shows the process of manufacturing Stg, -) MOS LSI.
4 is a gate electrode, 6 is an interlayer insulating film, and AF is an electrode wiring.

フィールド酸化膜2、ゲート酸化膜3、多結晶St よ
りなるゲート電極4を形成し低加速電圧でイオン注入す
るためにソース、ドレイン領域のS x O2膜を工・
、チングした後反対4電型不純物イオンを注入してソー
ス、ドレイン6を形成すd第1図a)。この時ゲート電
@4端部下の酸化膜が横方向にもエツチングされ庇状に
なる(アンダーカット部6が形成される)。
A field oxide film 2, a gate oxide film 3, and a gate electrode 4 made of polycrystalline St were formed, and S x O films in the source and drain regions were processed for ion implantation at a low acceleration voltage.
After etching, impurity ions of the opposite quaternary type are implanted to form the source and drain 6 (Fig. 1a). At this time, the oxide film under the end of the gate electrode @4 is also etched in the lateral direction, forming an eave-like shape (an undercut portion 6 is formed).

次に層間絶縁膜であるS 102膜7をCVD法で形成
(CV D S 102膜と呼ぶ)すると、ゲート電$
i4@部上のCV D S 102膜7汀カバレツジか
悪く、くびれ7oを生じる(第1図b)。次にAjlt
薄膜を形成し写真蝕刻法により形成したホトレジストを
マスクにしてへ2薄膜を方向性エツチング法である反応
性イオンエツチング(RIE)法でエツチングするとき
ホトレジストが十分露光されないために残ったり、RI
E法が方向性エツチングであるためにカバレッジが悪い
ゲート電極4端部のQ V D S 102/+莫のく
びれy o K A p、 >19111a! 8の一
部8Aがエツチングされずに残ってし寸う。このように
して残ったAl28AはAQ配線間の短絡の原因となる
Next, when the S102 film 7, which is an interlayer insulating film, is formed by the CVD method (referred to as the CVD S102 film), the gate voltage
The coverage of the CV D S 102 film 7 on the i4@ region is poor, resulting in a constriction 7o (FIG. 1b). Next Ajlt
When a thin film is formed and etched using a photoresist formed by photolithography as a mask, the thin film is etched by reactive ion etching (RIE), which is a directional etching method.
Since the E method is a directional etching, the coverage is poor at the 4th end of the gate electrode. A portion of 8A of 8 is left unetched. The Al28A remaining in this way causes a short circuit between the AQ wirings.

このように、基板表面にアンダーカット部が形成されて
いると従来のCVD法で形成した5膜02膜等薄膜のカ
バレッジが悪くなるために陵に続くパターン形成を困難
にし、微細パターンを有するLSIの製造歩留りを下げ
る大きな原”因となっていた。
In this way, if an undercut portion is formed on the substrate surface, the coverage of thin films such as 5 films and 02 films formed by the conventional CVD method will deteriorate, making it difficult to form patterns following the ridges, making it difficult to form LSIs with fine patterns. This was a major cause of lower manufacturing yields.

発明の目的 本発明の目的はアンダーカット部など狭い凹部を有する
基板表面にもカバレッジのよい薄膜を形成する方法を提
供することである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for forming a thin film with good coverage even on the surface of a substrate having narrow recesses such as undercuts.

発明の構成 本発明の製造方法は、表面にアンダーカット部や細いす
き間などを有する半導体等の基板に8102膜等の薄膜
を形成した後、この薄膜を方向性エツチング法で表面か
ら所定の厚さだけをエツチングする工程を複数回くり返
した後、さらに所望の厚さの薄膜を形成することを特徴
とする。すなわち、本発明は従来方法の欠点であった方
向性エツチング法ではアンダーカット部や細いすき間は
エツチングが不足になるという現象を積極的に使用して
、アンダーカット部や細すき間に形成された薄膜を、広
い又は平坦な領域のそれよりも厚くしようとするもので
ある。
Structure of the Invention The manufacturing method of the present invention involves forming a thin film such as 8102 film on a semiconductor substrate having an undercut or a narrow gap on the surface, and then etching this thin film to a predetermined thickness from the surface using a directional etching method. The method is characterized in that after repeating the process of etching only a plurality of times, a thin film of a desired thickness is further formed. In other words, the present invention takes advantage of the phenomenon that directional etching, which was a drawback of conventional methods, results in insufficient etching for undercuts and narrow gaps, and effectively removes the thin film formed in undercuts and narrow gaps. is intended to be thicker than that of a wide or flat area.

実施例の説明 第2図はSi ゲー)MO3LSI製造工程においてソ
ース、ドレイン形成後のMO3F’ET部の部分工程断
面図である。
DESCRIPTION OF THE EMBODIMENTS FIG. 2 is a partial process sectional view of the MO3F'ET section after the source and drain are formed in the Si (Si) MO3LSI manufacturing process.

比抵抗10Ω・aのP形Si基板10表面にフィールド
酸化膜2、ゲート酸化膜3を形成し、多結晶Ni より
なるゲート電極4を形成した後ンース、ドレイン領域の
酸化膜を除去してから40KVの加速電圧で加速した八
8 イオンを注入し、ソース、ドレイン6を形成する(
第2図a)。ゲート電極4端部下にはアンダーカット部
6が形成されている。
After forming a field oxide film 2 and a gate oxide film 3 on the surface of a P-type Si substrate 10 with a specific resistance of 10 Ω·a and forming a gate electrode 4 made of polycrystalline Ni, the oxide film in the drain region is removed. 88 ions accelerated with an acceleration voltage of 40 KV are implanted to form the source and drain 6 (
Figure 2 a). An undercut portion 6 is formed below the end of the gate electrode 4 .

このSi基板1表面にCVD法で平坦な部分の厚さが約
0.1 μm ノCV D Sl 021FJ 91を
形成する(第2図b)。この時の膜形成メバ常圧(1気
旧でかつ460℃前後の低温でb I H4ガスと02
ガスの反応により行われる場合(低温常圧CVD法)に
は、アンダーカット部6に形成さJLるC V D S
 i02膜は薄くなり、0.05μm しか形成されな
いこともある。一方膜形成が800’C程度の高温でS
 iH2Cfl 2 カスとN20 ガスを反応させた
り(高温常圧CVD法)、数mb程度に減圧した容器内
で同様の反応ガスを反応させて(減圧CVD法)CV 
D S 102膜を形成する場合にはアンダーカット部
6にも平坦部に近い厚さの膜を形成することができる。
On the surface of this Si substrate 1, CVD Sl 021FJ 91 having a thickness of about 0.1 μm at the flat portion is formed by CVD (FIG. 2b). At this time, the film was formed under normal pressure (1 atmosphere and at a low temperature of around 460℃).
When carried out by gas reaction (low-temperature normal pressure CVD method), CVD is formed in the undercut portion 6.
The i02 film is thin, sometimes only 0.05 μm thick. On the other hand, film formation occurs at a high temperature of about 800'C.
CV is performed by reacting iH2Cfl 2 scum with N20 gas (high temperature normal pressure CVD method) or reacting a similar reaction gas in a container with a reduced pressure of several mb (low pressure CVD method).
When forming the D S 102 film, it is possible to form a film with a thickness close to that of the flat part also in the undercut part 6 .

次に、平行に配置された平板電極間にsi基板を置<R
IE法のような矢印に示す方向性上ツチング法テCV 
D S z 02膜91を平坦部が約0.087膜mエ
ツチングされる時間だけエツチングする(第2図C)。
Next, a Si substrate is placed between the flat plate electrodes arranged in parallel.
Directional top-touching method CV as shown by arrows like IE method
The D S z 02 film 91 is etched for a time that the flat portion is etched by about 0.087 m (FIG. 2C).

このエツチングにより平坦部は容易にエツチングされる
が、ゲート電極4端部下のアンダーカット部6に形成さ
れているC V D S 102膜はゲート電極4のか
げになるために殆んどエツチングされることがない。
Although the flat portion is easily etched by this etching, most of the C V D S 102 film formed in the undercut portion 6 below the end of the gate electrode 4 is etched because it is in the shadow of the gate electrode 4. There is no.

次に再度厚す0.11tm (D CV D S 1o
2)ljJ 92 f形成しRIE法などの方向性エツ
チング法で0.08μmノ1 だけエツチングする(第
2図d)と、アンダーカット部6には2図のCVD法で
形成された膜厚0.1 μnt t7) CV D S
 i O2膜9が形成されアンダーカット部6を埋める
ことができる。寸だアンダーカット部6が埋められない
場合にはさらにCV D S 102膜を形成し方向性
エツチング法でエツチングするという工程をくシ返す。
Next, the thickness is 0.11tm (D CV D S 1o
2) When ljJ 92f is formed and etched by 0.08 μm by a directional etching method such as RIE method (Fig. 2d), the undercut portion 6 has a film thickness of 0. .1 μnt t7) CV D S
An iO2 film 9 is formed to fill the undercut portion 6. If the undercut portion 6 cannot be filled, the steps of forming a further CV D S 102 film and etching using a directional etching method are repeated.

その後は所望の厚さ、例えば0.37zη2 の厚さの
CV D S i02膜1oを形成するとアンダーカッ
ト部6が埋められているためゲート電極4端部でもCV
 D S 102膜6のカバレッジが良くなる(第2図
e)。
Thereafter, when a CVD Si02 film 1o with a desired thickness, for example, 0.37zη2, is formed, the undercut portion 6 is filled, so that the CVD Si02 film 1o is formed even at the end of the gate electrode 4.
The coverage of the D S 102 film 6 is improved (FIG. 2e).

そして熱処理を施しだ後人2配線8を形成すると(第2
図f)、エツチング残シのない微細なへ!配線8を形成
することができる。
After heat treatment, the second wiring 8 is formed (second
Figure f), fine print with no etching residue! Wiring 8 can be formed.

上記の本実施例でCV D S z 02膜を形成する
方法としてはアンダーカット部6にも十分に形成できる
前述の高温常圧CVD法や減圧CVD法が望ましいが、
アンダーカット部6のCV D S i02 膜厚が平
坦部に比べて薄くなる低温常圧CVD法でも同様の効果
を得ることかできる。
In this embodiment, the CVD Sz 02 film is preferably formed by the above-mentioned high temperature normal pressure CVD method or low pressure CVD method, which can sufficiently form the undercut portion 6.
A similar effect can be obtained by low-temperature normal pressure CVD in which the thickness of the CV D S i02 film on the undercut portion 6 is thinner than that on the flat portion.

またCVD法として反応ガスであるS I H4ガスや
N20ガスをプラズマで励起し反応を起させるプラズマ
CVD法を選んでも良く、との」弱含には平行に対向し
て配置された平板電極間にSi基板を置き、反応ガスを
導入して平板電極に高周波電力、を供給するが、同一の
装置で反応ガスを03F8等のエツチングガスに変える
ことで同一装置内で続いてエツチング(RIE)を行な
うこともできる。
In addition, as a CVD method, a plasma CVD method in which a reaction gas such as S I H4 gas or N20 gas is excited by plasma to cause a reaction may be selected. A Si substrate is placed on the substrate, a reactive gas is introduced, and high-frequency power is supplied to the flat electrode.However, etching (RIE) is subsequently performed in the same equipment by changing the reactive gas to an etching gas such as 03F8 in the same equipment. You can also do it.

今まではゲート電極端部下にアンダーカット部が形成さ
れている場合について述べたが、これに限らずたとえば
ゲート電極として多結晶Si にモリブデンシリサイド
など高融点金属シリケイトを重ねて(ポリサイド)用い
る場合にもエツチングによるゲー:・パターン形成時に
下層の多結晶Stのエツチング速度の方が大のためアン
ダーカット部が形成される。このようにエツチング速度
の異なる多層膜をエツチングすることによってできるア
ンダーカット部が問題になることが多いがこれも本発明
の製造方法により解決することができる。
Up to now, we have described the case where an undercut part is formed under the end of the gate electrode, but this is not limited to this case. For example, when using a high melting point metal silicate such as molybdenum silicide on polycrystalline Si as a gate electrode (polycide). Ge by etching: - During pattern formation, the etching speed of the underlying polycrystalline St is higher, so an undercut portion is formed. Undercuts, which are often caused by etching multilayer films with different etching speeds, often pose a problem, but this problem can also be solved by the manufacturing method of the present invention.

ッジの良いCVD膜を形成することができ、その上の微
細パターン形成を容易にすることができる。
A CVD film with good edge can be formed, and fine pattern formation thereon can be facilitated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜Cは従来のMO8LsIの製造方法の部分工
程断面図、第2図はa −fは本発明の一実施例のMO
8LSIの製造方法の部分工程断面図である。
1A to 1C are partial process cross-sectional views of a conventional method for manufacturing MO8LsI, and FIGS.
FIG. 8 is a partial process cross-sectional view of a method for manufacturing an 8LSI.

Claims (1)

【特許請求の範囲】[Claims] 表面に凹凸のあるパターンが形成された基板に、薄膜を
形成し、方向性エツチング法で平坦部の前記ん膜の一部
ちるいは全てをエツチングする工程を複数回くり返しだ
後、所望の厚さの薄膜を形成することを特徴とする薄膜
形成方法。
A thin film is formed on a substrate with an uneven pattern formed on the surface, and after repeating the process of etching some or all of the film on the flat areas using a directional etching method several times, the desired thickness is achieved. A method for forming a thin film, characterized by forming a thin film of 300 mL.
JP58175320A 1983-09-22 1983-09-22 Forming method of thin-film Pending JPS6066435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175320A JPS6066435A (en) 1983-09-22 1983-09-22 Forming method of thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175320A JPS6066435A (en) 1983-09-22 1983-09-22 Forming method of thin-film

Publications (1)

Publication Number Publication Date
JPS6066435A true JPS6066435A (en) 1985-04-16

Family

ID=15994020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175320A Pending JPS6066435A (en) 1983-09-22 1983-09-22 Forming method of thin-film

Country Status (1)

Country Link
JP (1) JPS6066435A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635570A (en) * 1986-06-25 1988-01-11 Seiko Instr & Electronics Ltd Semiconductor non-volatile memory
JPS6317544A (en) * 1986-07-10 1988-01-25 Seiko Instr & Electronics Ltd Semiconductor device
JP2007243046A (en) * 2006-03-10 2007-09-20 Disco Abrasive Syst Ltd Grinding machine
JP2008012639A (en) * 2006-07-07 2008-01-24 Naberu:Kk Bellows

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143845A (en) * 1981-02-27 1982-09-06 Fujitsu Ltd Formation of multi-layer wiring composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143845A (en) * 1981-02-27 1982-09-06 Fujitsu Ltd Formation of multi-layer wiring composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635570A (en) * 1986-06-25 1988-01-11 Seiko Instr & Electronics Ltd Semiconductor non-volatile memory
JPS6317544A (en) * 1986-07-10 1988-01-25 Seiko Instr & Electronics Ltd Semiconductor device
JP2007243046A (en) * 2006-03-10 2007-09-20 Disco Abrasive Syst Ltd Grinding machine
JP2008012639A (en) * 2006-07-07 2008-01-24 Naberu:Kk Bellows

Similar Documents

Publication Publication Date Title
JPH0358173B2 (en)
JPH0360055A (en) Manufacturing method of integrated circuit
JPS6066435A (en) Forming method of thin-film
JP2001257155A (en) Method of manufacturing semiconductor device
JP3191896B2 (en) Method for manufacturing semiconductor device
JPS6042868A (en) Manufacture of amorphous silicon thin film fet
US5466640A (en) Method for forming a metal wire of a semiconductor device
JPH05275549A (en) Manufacture of semiconductor device
JPS59175124A (en) Manufacture of semiconductor device
JP2000260864A (en) Semiconductor device and manufacture thereof
JP3021711B2 (en) Manufacturing method of semiconductor integrated circuit
JPS6149473A (en) Manufacture of polycide gate mos ic
TW440911B (en) Method for breaking the geometrical limitation in the semiconductor photolithography process
JPS6230330A (en) Dry etching method
JPH07135198A (en) Etching
JPH0334319A (en) Manufacture of semiconductor device
JP2699498B2 (en) Method for manufacturing semiconductor device
JPS61198627A (en) Manufacture of semiconductor device
JPH0484422A (en) Formation of fine metal wiring
JPS61288445A (en) Manufacture of semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JPH01115137A (en) Formation of wiring
JPS61292916A (en) Forming method for contact hole
JPH01181449A (en) Manufacture of semiconductor device
JPS62241380A (en) Manufacture of semiconductor device