JPS6062515A - Radiation cooling wall and roofing material - Google Patents
Radiation cooling wall and roofing materialInfo
- Publication number
- JPS6062515A JPS6062515A JP58170313A JP17031383A JPS6062515A JP S6062515 A JPS6062515 A JP S6062515A JP 58170313 A JP58170313 A JP 58170313A JP 17031383 A JP17031383 A JP 17031383A JP S6062515 A JPS6062515 A JP S6062515A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- cooled
- heat
- cooling
- heat radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
- Other Air-Conditioning Systems (AREA)
- Building Environments (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は放射冷却壁、屋根材、特に熱の放射を利用して
壁、屋根の冷却を行なう放冷構造に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to radiation cooling walls and roofing materials, and particularly to a radiation cooling structure that cools walls and roofs using heat radiation.
従来から、建築物内の冷房は蒸気の凝縮・膨張を利用し
Tこランキンサイクル型の冷却器を利用し1こ装置が1
コ広く用いられている。Traditionally, air conditioning in buildings has been done by using the condensation and expansion of steam, and by using Rankine cycle coolers.
It is widely used.
しかし、このようなランキンサイクル型の冷却装置は装
置を作動さぜる1こめにエネルギを必要とし、このエネ
ルギを変換する際多くの損失が発生する。この1こめ、
エネルギの利用効率が悪く、冷却費が高くなる欠点があ
っfコ。特に電力エネルギを使用する冷却装置において
は、エネルギコストの上昇に伴ない冷却費は年々増加す
る傾向にある。However, such a Rankine cycle type cooling device requires energy every time it is operated, and a large amount of loss occurs when converting this energy. This one piece,
The drawback is that energy usage efficiency is poor and cooling costs are high. Especially in cooling devices that use electrical energy, cooling costs tend to increase year by year as energy costs rise.
まfこ、このようなランキンサイクル型の冷却%Mは、
エネルギの変換行程が多い1こめ、装置全体が複雑かつ
大型になり設備費用か高価になる欠点があっtこ。Mafko, such Rankine cycle type cooling %M is,
Since there are many energy conversion steps, the entire device becomes complicated and large, which has the disadvantage of increasing equipment costs.
このため、エネルギ源が安くしかも簡単かつ安価な構造
で優れ1こ冷却能力を有する冷却装置の開発が望まれて
い1こ。Therefore, it is desired to develop a cooling device that uses a cheap energy source, has a simple and inexpensive structure, and has an excellent cooling capacity.
そして、このような冷却装置の提供を可能とする理論が
、オーストラリアのA 、 K −l−1eadにより
提案されj、= 。 この理論は、熱の移動の3態様、
すなわち放射・対流・伝導のうち放射による熱の移動に
着目して放射冷却を行なうものである。そして、本発明
者はこの理論を利用して壁・屋根より冷却を行なう構造
を発明した。A theory that makes it possible to provide such a cooling device was proposed by A. K. of Australia. This theory consists of three modes of heat transfer:
In other words, radiation cooling is performed by focusing on the movement of heat by radiation among radiation, convection, and conduction. The present inventor utilized this theory to invent a structure that performs cooling from the walls and roof.
第1図にはこの理論に基づく冷却装置が示されている。FIG. 1 shows a cooling device based on this theory.
この冷却装置は、被冷却体が導入され一部を除いて被冷
却体を外部から断熱する箱状の断熱容器10と、この断
熱容器10の内部に開口部に向けて設置されtコ熱放射
体12とがら形成され断熱容器lOの開口部には放射光
を透過するカバー16が設けられ、熱放射体12には図
示しない被冷却体が伝導接触されている。This cooling device includes a box-shaped heat insulating container 10 into which an object to be cooled is introduced and which insulates the object from the outside except for a part, and a box-shaped heat insulating container 10 that is installed inside the insulating container 10 facing an opening and radiates heat. A cover 16 that transmits radiation light is provided at the opening of the heat insulating container 1O formed from the body 12, and a body to be cooled (not shown) is in conductive contact with the heat radiator 12.
そして、この冷却装置は、冷却装置内部の熱放射体12
と冷却装置外部との間でカバー16を介して行なわれる
放射光の授受により熱放射体I2が放射冷却され、この
熱放射体12に伝導接続されrコ被冷却体を冷却する。This cooling device has a heat radiator 12 inside the cooling device.
The heat radiator I2 is radiatively cooled by the exchange of radiation light between the heat radiator 12 and the outside of the cooling device through the cover 16, and is conductively connected to the heat radiator 12 to cool the object to be cooled.
ところで、冷却装置の外部から熱放射体12の放射面1
4に入射する外光には、太陽からの日射100および大
気からの熱放射200が有り、他方、冷却装置の内部か
ら外部へ放出される放射光には放射面14の温度に応じ
て放射される熱放射300がある。従って、前述し1こ
放射冷却による被冷却体の冷却を行なうfこめには、日
射lOoおよび熱放射200により冷却装置の内部に入
力される熱量より放射面14からの熱放射3oOにより
冷却装置外部に放出される熱量の万か多くなることが必
要となる。By the way, the radiation surface 1 of the heat radiator 12 from the outside of the cooling device
The external light incident on the cooling device 4 includes solar radiation 100 from the sun and thermal radiation 200 from the atmosphere, and on the other hand, the radiation emitted from the inside of the cooling device to the outside includes radiation depending on the temperature of the radiation surface 14. There is a thermal radiation 300. Therefore, when the object to be cooled is cooled by radiation cooling as described above, the amount of heat inputted into the inside of the cooling device by solar radiation 100 and thermal radiation 200 is exceeded by the amount of heat radiation 3oO from the radiation surface 14 outside the cooling device. It is necessary to increase the amount of heat released.
第2図には放射面14で授受される各放射光100.2
00.300の放射スペクトルが示されている。ここに
おいて、放射面14がら冷却装置外部に放出される熱放
射3ooの光エネルギは放射面14の温度により変化す
るが、冷却装置を使用する室温範囲内での変化では常に
約10μm句近の波長でビークをもっとみなしてよい。FIG. 2 shows each radiation beam 100.2 transmitted and received on the radiation surface 14.
00.300 emission spectrum is shown. Here, the optical energy of the thermal radiation 3oo emitted from the radiation surface 14 to the outside of the cooling device varies depending on the temperature of the radiation surface 14, but the wavelength always remains close to about 10 μm when the temperature changes within the room temperature range where the cooling device is used. You can see more of Beak.
他力、大気から放射面■4に入射する熱放射200の光
工不ルキは波長10μ…付近の8〜13μITIの範囲
の特定波長域で大きく落ち込んでいる。このため、放射
面14から冷却装置外部に放出される熱放射300の熱
量は冷却装置外部から放射面14に入射する熱放射20
0の熱量に比し大きい。The optical power of the thermal radiation 200 incident on the radiation surface (4) from the atmosphere is greatly reduced in a specific wavelength range of 8 to 13 μITI around the wavelength of 10 μ. Therefore, the amount of heat of the thermal radiation 300 emitted from the radiation surface 14 to the outside of the cooling device is the same as that of the thermal radiation 200 that enters the radiation surface 14 from the outside of the cooling device.
The amount of heat is larger than that of 0.
従って、第1図に示す冷却装置を日射100の無い夜間
に使用すれば、放射面14から冷却装置外部に放出され
る熱量が冷却装置外部から放射面14に入射される熱量
に比し大きくなる1こめ、熱放射体I2は放射冷却され
、この熱放射体12に伝導接触され1こ被冷却体も冷却
される。Therefore, if the cooling device shown in FIG. 1 is used at night when there is no solar radiation 100, the amount of heat released from the radiation surface 14 to the outside of the cooling device will be larger than the amount of heat incident on the radiation surface 14 from outside the cooling device. At the same time, the heat radiator I2 is radiatively cooled, and the object to be cooled that is in conductive contact with the heat radiator 12 is also cooled.
A−L・If e +l +Jの理論はこのような考え
を更に一歩進めfコものであり、反射面14で授受され
る放射光100.200.300を選択的に反射・吸収
して、昼夜にかかイつりなく優れtこ冷却能力を備え1
こ放射冷却装置を得ようとするものである。すなイつち
、第1図のような冷却装置に使用する放射面に、8〜1
3μmの特定波長域で放射率および吸収率が高く、この
特定波長域以外の波長域、すなわち、8μn1以下およ
び13μ■以りの波長範囲で反謝率の良い反射面(以後
選択放射面と記す)を使用することを内容とする。The theory of A-L If e +l +J takes this idea one step further and selectively reflects and absorbs the radiated light 100.200.300 transmitted and received by the reflective surface 14, thereby changing the time between day and night. Equipped with excellent cooling capacity without straining.
This is an attempt to obtain a radiation cooling device. In other words, on the radiation surface used in the cooling device as shown in Figure 1,
A reflective surface that has high emissivity and absorption rate in a specific wavelength range of 3 μm and a good reaction rate in a wavelength range other than this specific wavelength range, that is, a wavelength range of 8 μn1 or less and 13 μm or more (hereinafter referred to as a selective emission surface). ).
このように冷却装置の放射面14に選択放射面を使用す
れば、太陽からの日射100はすべて放射面14で反射
され、昼間でも太陽からの日射100が無い夜間の使用
と同じ条件となる。従って、昼夜を問わず冷却装置は充
分に冷却されることとなる。If a selective radiation surface is used as the radiation surface 14 of the cooling device in this way, all of the solar radiation 100 from the sun will be reflected by the radiation surface 14, and the conditions will be the same during the day as when there is no solar radiation 100 from the sun at night. Therefore, the cooling device will be sufficiently cooled regardless of day or night.
また、第2図に示す放射スペクトルから明らかな如く、
日射100のみを反射するだけであれば放射面14の選
択性(i−4μ■以下の波長範囲に限定すれば充分であ
る。にもかかわらずA、K・11(i旧1の理論では反
射面14に8〜1311I+1以外の波長範囲で反射率
の高いことを要求するのは、冷却装置の冷却能力を高め
るfコめである。Furthermore, as is clear from the radiation spectrum shown in Figure 2,
If only solar radiation 100 is reflected, it is sufficient to limit the selectivity of the radiation surface 14 to the wavelength range below (i-4μ■.However, A, K・11 (i) The reason why the surface 14 is required to have a high reflectance in a wavelength range other than 8 to 1311I+1 is to increase the cooling capacity of the cooling device.
すなイ)ち、大気から放射面14に入射される熱放射2
00の熱量と放射面14から冷却装置外部に放出される
熱放射300の熱量とを比較すると、その全総量では放
射面14から放出される熱放射300の方が勝っている
が、8μ01以下の波長範囲およびI 3 /ll11
以七の波長範囲では大気からの熱放射200の方が部分
的に勝っている。従って放射1■14で授受される放射
光200.300のスペクトルを8〜13μmに限定す
ることにより、放射向14に出入りする総熱量の差を大
きくして冷却能力を筒めることができる。Thermal radiation 2 incident on the radiation surface 14 from the atmosphere
Comparing the amount of heat 00 and the amount of heat 300 emitted from the radiation surface 14 to the outside of the cooling device, the amount of heat radiation 300 emitted from the radiation surface 14 is superior in terms of the total amount, but the Wavelength range and I 3 /ll11
In these seven wavelength ranges, thermal radiation from the atmosphere is partially superior. Therefore, by limiting the spectrum of the radiated light 200.300 transmitted and received in the radiation direction 14 to 8 to 13 μm, the difference in the total amount of heat entering and exiting the radiation direction 14 can be increased to increase the cooling capacity.
そして、このA・1(・He a dの理論に基づい1
こ放射冷却装置として、A −W −Ha r r i
s o oまたはG。Then, based on the theory of this A・1(・He a d 1
As this radiation cooling device, A-W-Harri
s o o or G.
1’ r (l I S (Hにより提供され1こ放射
冷却器が知られている。A radiant cooler is known, provided by 1' r (l I S (H).
第3図には、A−W・I]+irr iso++らによ
り提案され1こ放射冷却装置か示されている。この放射
冷却装置は、熱放射体12の放射向14に前述しtコ選
択放射性をもrこせる1こめ、厚さ6朋のアルミニウム
板14+1の金属面にTiO2を35%含む白□色ペイ
ノ1−の塗膜14 bを被覆して放射面14を形成して
いる。FIG. 3 shows one radiant cooling device proposed by A-W.I.+irr.iso++ et al. This radiation cooling device includes a white colored paint 1 containing 35% TiO2 on the metal surface of an aluminum plate 14+1 with a thickness of 6 mm, which also has selective radioactivity in the radiation direction 14 of the heat radiator 12. The radiation surface 14 is formed by covering the coating film 14b.
しかし、このような放射面14では前記A、K・1(e
adの理論に示す特定波長域での選択性はほとんど期待
できず、放射冷却装置の冷却能力は極めて低いものであ
った。However, in such a radiation surface 14, the above-mentioned A, K・1(e
Selectivity in a specific wavelength range as shown in the AD theory could hardly be expected, and the cooling capacity of the radiation cooling device was extremely low.
また、G−Troiseらにより提案された放射冷却装
置は、アルミニウム板の金属面に厚さ12.5 p m
のTEI)LA几(登録商標)の薄膜を被覆して熱放射
体12の放射面14を形成し1こものである。しかし、
この冷却装置の放射面14は特定波長域に対しある程度
の選択性を発揮するが、前記A、K・[1e a dの
理論で説明しtコ選択性に比し充分な選択性を発揮する
ものではない。従って、G・i”r o i s eの
提案の冷却装置は冷却能力が低く、特に放射面14の可
視光に対する反射率が低い1こめ、放射面14に日射1
00が入射される日中の冷却能力か著しく低下する欠点
があっfコ。In addition, the radiation cooling device proposed by G-Troise et al.
The radiation surface 14 of the heat radiator 12 is formed by coating a thin film of LA (registered trademark). but,
The radiation surface 14 of this cooling device exhibits a certain degree of selectivity for a specific wavelength range, but it exhibits sufficient selectivity compared to the t-coselectivity explained by the theory of A, K, [1e and d. It's not a thing. Therefore, the cooling device proposed by G.i.
There is a drawback that the cooling capacity during the day when 00 is incident is significantly reduced.
このtこめ、A−に−Headの理論に基づき優れfコ
冷却能力を有する冷却装置の開発が望まれてい1こ。Therefore, it is desired to develop a cooling device having excellent cooling capacity based on the theory of A-Head.
本発明はこのような従来の課題に鑑みなされ1こもので
あり、その目的は、放射光に対し充分な選択性を有する
熱放射体を備え、昼夜を問わず優れfコ冷却能力を発揮
することが可能な放冷構造を持った放射冷却壁、屋根材
を提供することにある。The present invention was developed in view of these conventional problems, and its purpose is to provide a heat radiator with sufficient selectivity to synchrotron radiation and to exhibit excellent cooling ability day and night. Our goal is to provide radiant cooling walls and roofing materials with a cooling structure that allows for cooling.
この目的を達成する1こめ、本発明の放射冷却壁。To achieve this objective, the radiant cooling wall of the present invention.
屋根材は、被冷却体が導入され一部を除いて被冷却体を
外部から断熱する構造となっtこ壁材まrこは屋根材と
、前記断熱構造体枠の露出部を覆う熱放射体とを含み、
前記熱放射体は、被冷却体と伝導接触し反射率および熱
伝導率の高い金属からなる伝導層と、該伝導層に被覆さ
れ外光に含まれる光エネルギの小さい波長域にお”いて
高い放射率(吸収率)を有しかつその他の波長域におい
て高い透過率を有すルCoCr2O7/に2804,5
iBN4/に2S□、4tj、=K 2803/ K
2 S(、)4等の2層構造の無機材料若゛シ<はヒニ
ールフロライドービニリテンフロライドコボリコボリマ
等の単層構造の有機材料からなる選択放射層とから形成
さイ1、前記特定波長域においては外光の光エネルギ吸
収および被冷却体からの熱放射を行なうとともに、特定
波長域以外の波長域においては外光を反射して被冷却体
を冷却することを特徴とする。The roofing material has a structure in which the object to be cooled is introduced and insulates the object from the outside except for a part. including the body,
The thermal radiator includes a conductive layer made of a metal having high reflectance and thermal conductivity, which is in conductive contact with the object to be cooled, and is coated with the conductive layer and has a conductive layer that is in conductive contact with the object to be cooled, and is coated with the conductive layer and has a conductive layer that is in conductive contact with the object to be cooled. 2804,5 to CoCr2O7/, which has emissivity (absorption rate) and high transmittance in other wavelength ranges.
iBN4/2S□, 4tj, =K 2803/K
2 S (, ) 4 is formed from an inorganic material with a two-layer structure, and a selective emissive layer is formed from an organic material with a single-layer structure such as vinyl fluoride, vinylene fluoride, and cobolikobolima. In the specific wavelength range, the optical energy of external light is absorbed and heat is radiated from the object to be cooled, and in a wavelength range other than the specific wavelength range, external light is reflected to cool the object to be cooled. .
次に本発明の好適な実施例を図面に基づき説明する。Next, preferred embodiments of the present invention will be described based on the drawings.
第4図には本発明の好適な実施例が示されている。本発
明の放射冷却壁は、図示しない被冷却体が導入され一部
を除いてこの被冷却体を外部から断熱する構造となった
壁枠20と、この断熱壁枠20内部で被冷却体と伝導接
触し断熱壁枠20の露出部を覆う熱放射体22と、から
形成されている。実施例において、断熱壁枠20は一面
を開口する箱状に形成され、熱放射体22は板状に形成
され、断熱壁枠20の内部で断熱壁体20の開口部を覆
うように設けられている。FIG. 4 shows a preferred embodiment of the invention. The radiation cooling wall of the present invention includes a wall frame 20 that has a structure in which a body to be cooled (not shown) is introduced and insulates the body from the outside except for a part, and a body to be cooled inside the heat insulating wall frame 20. and a heat radiator 22 that is in conductive contact and covers the exposed portion of the heat insulating wall frame 20. In the embodiment, the heat insulating wall frame 20 is formed in a box shape with an opening on one side, and the heat radiator 22 is formed in a plate shape and is provided inside the heat insulating wall frame 20 to cover the opening of the heat insulating wall body 20. ing.
本発明の特徴的小項は、前記熱放射体22に前記A−に
−1(cadの理論で説明しtコ特定波長域における選
択性、すなわち外光100.200に含まれる光エネル
ギの低い8〜13μ…の特定波長範囲で放射率が高く、
外光100.200に含まれる光エネルギの高い8μI
TI以下および13μm以上の波長範囲で反射率の良い
選択性を与えることにある。そのtこめ、本発明は、第
5図に示すように、被冷却体と伝導接触し熱伝導率およ
び反射率の高い金属力らなる伝導R22aと、CoCr
2O7/に2804゜S夏3N4/に2SO4まtこは
に2SO8/に2SO4等の2層構造の無機材料若しく
はビニールフロライドービニリデノフロライトコボリマ
、ポリオキシプロピレン。A characteristic feature of the present invention is that the thermal radiator 22 has selectivity in a specific wavelength range, which is explained by the theory of CAD, that is, low light energy contained in external light 100.200. High emissivity in a specific wavelength range of 8 to 13 μ...
8 μI of high optical energy contained in external light 100.200
The objective is to provide good selectivity in reflectance in the wavelength range below TI and above 13 μm. Therefore, as shown in FIG.
Inorganic materials with a two-layer structure such as 2O7/2804°S summer 3N4/2SO4 and 2SO8/2SO4, vinyl fluoride, vinylidenofluorite cobolima, polyoxypropylene.
材料からなり前記伝導1m’22 aに被覆さgる選択
放射11!! 22 bとから熱放射体22を形成しf
こことを特徴とする。これは次のような理由による。Selective radiation 11 made of material and coated on said conductive 1m'22a! ! The heat radiator 22 is formed from 22 b and f
It is characterized by: This is due to the following reasons.
すなわち、伝導層22aを形成する金属の反射率はすべ
ての波長範囲の光に対して制<、まfこ、選択放射層2
211を形成する前記2層構造の無機材料および単層構
造の有機材料は8−〜13μI11の波長範囲の光に対
し高い放射率を示しそれ以外の波長範囲の光に対し冒い
透過率を示す。従って、この熱放射体22は、8〜13
μIl+の特定波長域の光を選択放射層22bで吸収し
、これ以外の波長範囲の光を熱伝導層22aの金属面で
全反射してしまうため、8〜13μrrlの特定波長域
で高い放射率を示し、これ以外の波長域、すなわち8μ
m以下および13μm以上の波長範囲の光に対して高い
反射率を示すことになる。That is, the reflectance of the metal forming the conductive layer 22a is controlled for light in all wavelength ranges, and the selective emission layer 22a has a low reflectance.
The inorganic material with a two-layer structure and the organic material with a single-layer structure forming 211 have a high emissivity for light in the wavelength range of 8-13μI11 and a low transmittance for light in the other wavelength range. . Therefore, this heat radiator 22 has 8 to 13
Since light in a specific wavelength range of μIl+ is absorbed by the selective emission layer 22b, and light in other wavelength ranges is totally reflected by the metal surface of the thermally conductive layer 22a, the emissivity is high in the specific wavelength range of 8 to 13 μrrl. , and other wavelength ranges, i.e. 8μ
It exhibits high reflectance for light in the wavelength range of 13 μm or less and 13 μm or more.
なお、本実施例においては、熱伝導層22aを、厚す0
.8闘、縦1m、横9.5 mの鏡面アルミニラ25μ
mのアフレックスフィルム(M 録商標)を用いて形成
している。このアフレックスフィルムのアルミニウム板
上への被覆は静電力を利用して行なわれる。Note that in this embodiment, the thickness of the thermally conductive layer 22a is 0.
.. 8 fights, 1m long and 9.5m wide mirror aluminum 25μ
It is formed using M Afflex Film (M registered trademark). This Afflex film is coated onto the aluminum plate using electrostatic force.
第6図にはアルミニウム板およびアフレックスフイルム
を用いて形成されtコ本実施例の熱放射体22の分光反
射率の特性が示されており、前記A −K’−He a
dの理論で説明した特定波長域における選択性が優れ
ていることが理解される。FIG. 6 shows the spectral reflectance characteristics of the thermal radiator 22 of this embodiment, which is formed using an aluminum plate and an AFLEX film.
It is understood that the selectivity in the specific wavelength range explained in the theory of d is excellent.
また、本実施例の放射冷却壁は、断熱壁枠2゜による断
熱効果を充分なものにするため、断熱壁枠20を厚さ3
0闘の発泡ウレタンで形成し、その内面に壁枠2oから
熱放射体22への輻射熱の伝達を防止する厚さ0,1酊
のアルミ箔24を貼着している。そして熱放射体22と
アルミ箔24の内側には冷却効果を利用するように水を
満たしておく。In addition, in the radiation cooling wall of this embodiment, in order to obtain a sufficient heat insulation effect by the heat insulating wall frame 20, the heat insulating wall frame 20 has a thickness of 3°.
It is made of foamed urethane with a thickness of 0.1 mm, and an aluminum foil 24 with a thickness of 0.1 mm is attached to the inner surface of the wall frame 2o to prevent the transfer of radiant heat from the wall frame 2o to the heat radiator 22. The inside of the heat radiator 22 and aluminum foil 24 is filled with water to utilize the cooling effect.
そしてま1こ、冷却器の開口部には、外気を遮蔽し冷却
効果を良くするtこめ、カバー押え26によりカバー2
8が取付けられている。このカバー28はすべての波長
域の光に対して透明であるよう厚さ201111−のポ
リエチレンフィルムで形成されている。Also, the opening of the cooler is covered with a cover holder 26, which shields the outside air and improves the cooling effect.
8 is installed. This cover 28 is made of a polyethylene film having a thickness of 201111 mm so that it is transparent to light in all wavelength ranges.
本発明は以上の構成からなり次にその作用を説明する。The present invention has the above configuration, and its operation will be explained next.
本発明の放射冷却壁を実際に使用した場合、冷却壁の内
部と外部との間における熱の移動は、第7図に示す如く
、放射による熱の移動の他に、断熱壁枠20を介しての
熱伝導および空気の対流による熱の移動が考えられる。When the radiation cooling wall of the present invention is actually used, as shown in FIG. Heat transfer due to heat conduction and air convection is considered.
ところが、実施例においては、断熱壁枠20が優れた断
熱性を有するとともにその内面に熱放射体22からの輻
射熱の伝達を防止するアルミニウム箔24が貼着されて
いるrコめ、断熱壁枠2oを介しての熱伝導はほとんど
無視できる値となる。また、カバー28により冷却壁内
部は外気と遮蔽されていることとあいまって、熱放射体
22の表面温度が外気温度より低い場合には空気の対流
による熱の移動も無視できる値となる。However, in the embodiment, the insulating wall frame 20 has excellent heat insulating properties and has an aluminum foil 24 attached to its inner surface to prevent the transfer of radiant heat from the heat radiator 22. The heat conduction through 2o becomes almost negligible. Furthermore, since the inside of the cooling wall is shielded from the outside air by the cover 28, when the surface temperature of the heat radiator 22 is lower than the outside air temperature, the movement of heat due to air convection becomes negligible.
従って、本発明の放射冷却壁を壁材として使用しfコ場
合、熱放射体22においては前述しf、:A 、 K・
)1 e a dの理論に基づく放射光の授受が行なわ
れ、昼夜を問わず優れrコ冷却能力が発揮される。Therefore, when the radiation cooling wall of the present invention is used as a wall material, the heat radiator 22 has the above-mentioned f, :A, K.
) 1 e a d theory, synchrotron radiation is transmitted and received, and excellent cooling ability is exhibited day and night.
すなわち、本発明の放射冷却壁はその熱放射体22が第
6図に示す如き分光反射率特性を示し、8μIn以下お
よび13μm以上の波長範囲で100%に近い反射率、
8〜13μn)の波長範囲で高い放射率を有する。That is, in the radiation cooling wall of the present invention, the thermal radiator 22 exhibits spectral reflectance characteristics as shown in FIG.
It has a high emissivity in the wavelength range of 8 to 13 μn).
このtこめ、冷却壁の外部からカバー28を介して熱放
射体22に向けて入射される太陽からの日射100は、
その波長が4 lt m以下であるため、その大部分が
熱放射体22で反射されてしまう。After this time, the solar radiation 100 from the sun entering from the outside of the cooling wall through the cover 28 toward the heat radiator 22 is:
Since its wavelength is 4 lt m or less, most of it is reflected by the heat radiator 22.
従って、太陽1からの日射100による冷却壁内部への
熱の移動は無視される。Therefore, heat transfer into the cooling wall due to solar radiation 100 from the sun 1 is ignored.
ま1こ、冷却壁の外部からカバー28を介して熱放射体
22に入射される大気からの熱放射200も、その大部
分が熱放射体22で反射されてしまい、光エネルギの小
さい8〜l 3 It +nの波長範囲の熱放射のみが
熱放射体22で吸収される。Also, most of the heat radiation 200 from the atmosphere that enters the heat radiator 22 from the outside of the cooling wall through the cover 28 is reflected by the heat radiator 22, and the light energy is small. Only thermal radiation in the wavelength range l 3 It +n is absorbed by the thermal radiator 22 .
ま1こ、冷却壁の熱放射体22からは熱放射体22の表
面温度に応じた熱放射800が有り、カバー28を介し
て冷却壁の外部に射出される。ここにおいて、熱放射体
22は8〜13μ■1の範囲で放射率が置い1こめ、熱
放射体22からの熱放射300は光エネルギの大きい8
〜13μ01の波長範囲で行なわれる。First, there is heat radiation 800 from the heat radiator 22 of the cooling wall, which corresponds to the surface temperature of the heat radiator 22, and is emitted to the outside of the cooling wall via the cover 28. Here, the heat radiator 22 has an emissivity in the range of 8 to 13μ1, and the heat radiation 300 from the heat radiator 22 has a large optical energy.
It is carried out in the wavelength range of ~13μ01.
従って、この熱り又封体22で授受される放射光による
熱の移動は、光エネルギの小さい8〜1377 Il+
の波長範囲における大気からの熱放射200および光エ
ネルギの大きい8〜13μITIの波長範囲における熱
放射体22からの熱放射300による熱の移動を考慮す
ればよい。8〜13μI11の波長範囲におけるこれら
各熱放射200.300による熱の移動は、第2図から
も明らかな如く、熱放射体22からの熱放射300によ
る方が圧倒的に多い。Therefore, the transfer of heat due to the radiation light transmitted and received by the heat envelope 22 is caused by 8 to 1377 Il+, which has a small light energy.
It is sufficient to consider heat transfer due to thermal radiation 200 from the atmosphere in the wavelength range of 200 and thermal radiation 300 from the thermal radiator 22 in the wavelength range of 8 to 13 μITI, which has large optical energy. As is clear from FIG. 2, the heat transfer due to each of these thermal radiations 200 and 300 in the wavelength range of 8 to 13 μI11 is overwhelmingly due to the thermal radiation 300 from the thermal radiator 22.
故に、本発明の放射冷却壁では冷却壁外部から入る熱量
より冷却壁外部へ出て行く熱量の方が多くなり、昼夜を
問わずに優れ1こ冷却能力が発揮される。すなわち、こ
のようにして熱放射体22が冷却されると、この熱放射
体22に伝導接触している被冷却体も冷却されることに
なる。Therefore, in the radiation cooling wall of the present invention, the amount of heat that goes out from the outside of the cooling wall is greater than the amount of heat that comes in from outside the cooling wall, and an excellent cooling capacity is exhibited regardless of day or night. That is, when the heat radiator 22 is cooled in this way, the object to be cooled that is in conductive contact with the heat radiator 22 is also cooled.
第8図には本実施例の放射冷却壁の冷却能力の実測デー
タが示されている。 この実測データは熱放射体22温
度の経時変化を夜間と日中とに分けて測定している。曲
線aは夜間における冷却能力を示すものであり、外気温
が25°Cの時に約3時間で熱放射体22の温度を7°
Cまで冷却できることが確認される。曲線すは日中にお
ける冷却能力を示すものであり、外気温が30°Cの時
に約2時間で熱放射体22の温度を15°Cまで冷却で
きることが確認される。FIG. 8 shows measured data of the cooling capacity of the radiation cooling wall of this example. In this actual measurement data, changes over time in the temperature of the heat radiator 22 are measured separately during the night and during the day. Curve a shows the cooling capacity at night, and it increases the temperature of the heat radiator 22 by 7° in about 3 hours when the outside temperature is 25°C.
It is confirmed that the temperature can be cooled down to C. The curve shows the cooling capacity during the day, and it is confirmed that the temperature of the heat radiator 22 can be cooled down to 15°C in about 2 hours when the outside temperature is 30°C.
このように、本発明の放射冷却壁は実測データからも昼
夜を問わず優れtこ冷却能力を発揮することがわかる。As described above, it can be seen from the actual measurement data that the radiation cooling wall of the present invention exhibits excellent cooling ability both day and night.
従って、本発明の放射冷却壁は、例えば実施例1のよう
に、放射面22の裏面に被冷却体として水を直接貯蔵し
てもよいし、その放射面22の裏面に被冷却体として水
の流路を設ければ簡単に冷水が街られ、その冷水を室内
のファンコイルユニット等に導びけば充分な冷房を行な
うことが可能である。この1こめ、住宅用ま1こはヒニ
ールハウス等の冷房には最適である。ま1こ、本発明の
放射冷却壁は単に冷房にとどまらず、その優れtコ冷却
能力から他の[1]広い分野への応用も可能である。Therefore, the radiation cooling wall of the present invention may store water directly as a body to be cooled on the back surface of the radiation surface 22 as in the first embodiment, or may store water as a body to be cooled on the back surface of the radiation surface 22. If a flow path is provided, cold water can be easily circulated, and sufficient cooling can be achieved by guiding the cold water to a fan coil unit or the like in the room. This 1-piece, residential-use 1-piece is ideal for cooling houses, etc. First, the radiation cooling wall of the present invention is not limited to just cooling, but can also be applied to other wide fields due to its excellent cooling ability.
なお、本実施例においては、鏡面アルミニウム板の表面
に厚さ25μmのアフレックスフーイルムを被覆して熱
放射体22の選択放射)FjAJ 221)を形成しf
こが、アフレノクスフィルムの厚さはこれに限られない
。しかし、鏡面アルミニウム板の表面に被覆するアフレ
ックスフィルムの厚さが40/1111以上になると、
8〜13μmの波長範囲の放射率は上昇するが、それ以
外の波長範囲での反射率が低下してしまい、有効な冷却
ができないという問題が生じる。ま1こ、アフレックス
フイルムの厚さがlOμI11以下になると、8〜13
μ田の波長範囲での反射率が上昇し放射率が大l]に低
下してしまう1こめ、冷却能力が悪くなる。従って、鏡
面アルミニウム板の表面に被りするアフレーツクスフイ
ルムの厚さは10〜40μmが適当である。In this example, the selective radiation of the heat radiator 22 is formed by coating the surface of the mirror-finished aluminum plate with a 25 μm thick Afflex film.
However, the thickness of the Afrenox film is not limited to this. However, when the thickness of the Afflex film coated on the surface of the mirror-finished aluminum plate becomes 40/1111 or more,
Although the emissivity in the wavelength range of 8 to 13 μm increases, the reflectance in other wavelength ranges decreases, causing the problem that effective cooling cannot be achieved. Well, if the thickness of the Afflex film is less than lOμI11, it will be 8 to 13.
As the reflectance in the wavelength range increases and the emissivity decreases by a large amount, the cooling ability deteriorates. Therefore, the appropriate thickness of the affix film covering the surface of the mirror-finished aluminum plate is 10 to 40 .mu.m.
ま1こ、本実施例においては、熱放射体22の選択放射
層221ノを二卵化ビニリテノの一柿であるアフレック
スフイルムで形成し1こか、これに限らず、CoCr2
O7/に2804.5iBN4/ K2SO4またはに
280,1/に2S04等の種類の2層構造の無機材料
や、ヒニールフロライドービニリテンフロライドコポリ
マ、ポリオキシプロピレン、ポリプロピレノまfコは二
沸化ヒニリデノ等の種類の単層構造の有機材料を用いて
選択放射層22bを形成しfコ場合にも、熱放射体22
の分光反射率は第6図に近い特性を示すことが実験によ
り確認されている。In this embodiment, the selective radiation layer 221 of the heat radiator 22 is formed of an Aflex film, which is a persimmon of dimorphic vinylite, and is not limited to this, but is made of CoCr2.
Two-layer inorganic materials such as O7/2804.5iBN4/K2SO4 or 280,1/2S04, vinyl fluoride-vinyritene fluoride copolymer, polyoxypropylene, polypropylene maf co are diboiling Even in the case where the selective emissive layer 22b is formed using a single-layer organic material such as chloride, the thermal radiator 22
It has been confirmed through experiments that the spectral reflectance of 200 nm exhibits characteristics close to those shown in FIG.
ム板を用いて伝導層22&を形成し、この鏡面アルミニ
ウム板の表面に1沸化ビニリデンの一種では厚すぎても
薄すぎても冷却器の冷却能力を悪化させるfこめ、5〜
20μIII程度の厚さに設定するのか適当である。実
施例においては9μmnの厚さに形成されている。The conductive layer 22 is formed using a aluminum plate, and a type of vinylidene monofluoride is applied to the surface of the mirror aluminum plate, since if it is too thick or too thin, it will deteriorate the cooling ability of the cooler.
It is appropriate to set the thickness to about 20μIII. In the example, it is formed to have a thickness of 9 μm.
そして、本実施例においては、アルミニウム板で形成さ
れfコ伝導1122 ;Lの裏面に、被冷却体として内
径10 wmφ、外径12闘φのアルミニウム製チュー
ブからなる流路30を複数本溶接固定している。In this embodiment, a plurality of channels 30 made of aluminum tubes with an inner diameter of 10 mmφ and an outer diameter of 12 mmφ are fixed by welding as objects to be cooled to the back surface of the fcoconductor 1122;L formed of an aluminum plate. are doing.
従って、この放射冷却壁を屋外壁として使用し流路30
に通水することにより、冷水を1m単に得ることができ
る。これは、流路30を流れる水の熱が伝導層22+l
を介して選択放射@ 22 bに迄されるからである。Therefore, this radiation cooling wall is used as an outdoor wall and the flow path 30
By passing water through the pipe, you can easily obtain 1 m of cold water. This means that the heat of the water flowing through the flow path 30 is transferred to the conductive layer 22+l.
This is because the radiation is transmitted to the selective radiation @ 22 b via .
実験によれば、第9図の放射冷却壁を600X900×
90の大きさで作成し、南面向きに設置し動作さられt
こ。According to experiments, the radiation cooling wall in Figure 9 is 600x900x
I made it with a size of 90mm, installed it facing south, and it worked.
child.
ま1こ、本実施例の如く、伝導層22aの裏面に脚壁全
体の耐久性の向上が図ら第1る。そして、本実施例では
壁材として使用し1こか屋根拐としても使用できる。First, as in this embodiment, the durability of the entire leg wall is improved on the back surface of the conductive layer 22a. In this embodiment, it can be used not only as a wall material but also as a roof covering.
以上説明し1こように、本発明によれは、熱放射体が8
μI11以下および13μm以上の波長範囲で高い反射
率を示し8〜13μI11の波長範囲で高い放射率を示
すfコめ、A、K・Headの理論に基づく放射冷却を
充分に行ない、昼夜を問わずに優れ1こ冷却能力を発揮
する放射冷却壁、゛屋根材を提供するこ−とができる。As explained above, 1 As described above, according to the present invention, the heat radiator is 8
High reflectance in the wavelength range of μI11 or less and 13μm or more, and high emissivity in the wavelength range of 8 to 13μI11. It is possible to provide radiation cooling walls and roofing materials that exhibit excellent cooling capacity.
【図面の簡単な説明】
第1図はA、K・)l c a dの理論の説明図第2
図は放射]h口こ授受される放射光の放射スペクトルの
特性図
第3図は従来の放射冷却装置の説明断面図第4図は本発
明の放射冷却壁の好適な実施例の斜視図
第5図は第4図の放射冷却壁の熱放射体の拡大断面図
。
第6図は第5図に示す熱放射体の分光反射率の特性図
第7図は放射l<ン却壁における熱の移動の説明図第8
図は81″i4図に示す放射冷却壁の冷却能力測定テー
クを示す特性図
第9図は本発明の他の実施例の断面図である。
20・・断熱壁枠 22・・・熱放射体22・l・・・
伝導層 221J・・選択放射J−30・・−被h)神
体
第 1 図
00
第 2 図
波長(l1m)
第 3 図
第 4 図
第 5 図
第 6 図
波長(μnl)
第 7 図
□時間
第 9 図[Brief explanation of the drawings] Figure 1 is an explanatory diagram of the theory of A, K.) l c a d.
Figure 3 is a characteristic diagram of the radiation spectrum of the synchrotron radiation transmitted and received. Figure 3 is an explanatory sectional view of a conventional radiation cooling device. Figure 4 is a perspective view of a preferred embodiment of the radiation cooling wall of the present invention. Figure 5 is an enlarged cross-sectional view of the heat radiator of the radiation cooling wall in Figure 4.
. Fig. 6 is a characteristic diagram of the spectral reflectance of the thermal radiator shown in Fig. 5. Fig. 7 is an explanatory diagram of the movement of heat in the wall when the radiation l<n>.
The figure is a characteristic diagram showing the cooling capacity measurement of the radiation cooling wall shown in Figure 81''i4. Figure 9 is a cross-sectional view of another embodiment of the present invention. 20...Insulating wall frame 22...Thermal radiator 22・l...
Conductive layer 221J...Selective radiation J-30...-Subject h) Divine body No. 1 Fig. 00 Fig. 2 Wavelength (l1m) Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 6 Wavelength (μnl) Fig. 7 □ Time No. 9 Figure
Claims (1)
部から断熱する構造となっrこ壁材または屋根材と、前
記断熱容器の窯出部を覆う熱放射体とを含み、前記熱放
射体は、被冷却体と伝導接触し反射率および熱伝導率の
高い金属からなる伝導層と該伝導層に被覆され外光に含
まれる光エネルギの小さい波長域において高い放射率(
吸収率)を有しかつその他の波、長域において高い透過
率を有するCoCr2O4/に2SO4’、S+gN4
/に2SO4まtこはに2SO3/1り2SO4等の2
層構造の無機材料若しくはヒニールフロライドーヒニリ
デンフロライドコポリマ、ポマ等の単ハ4構造の有機材
料からなる選択放射層とから形成され、iiJ記特定波
長域においては外光の光エネルギ吸収および被冷却体か
らの熱放射を行なうとともに、特定波長域以外の波長域
においては外光を反射して被冷却体を冷却することを特
徴とする放射冷却壁、屋根材。(1) The object to be cooled is introduced and has a structure that insulates the object from the outside except for a part, including wall material or roof material, and a heat radiator that covers the kiln exit part of the heat insulating container, The thermal radiator includes a conductive layer made of a metal with high reflectance and thermal conductivity, which is in conductive contact with the object to be cooled, and is coated with the conductive layer and has a high emissivity (
CoCr2O4/2SO4', S+gN4, which has high transmittance in other wavelengths and long ranges
/ni2SO4matkohani2SO3/1ri2SO4 etc.2
It is formed from a selective radiation layer made of an inorganic material with a layered structure or an organic material with a monocrystalline structure such as a hinyl fluoride-hinylidene fluoride copolymer or Poma, and absorbs the optical energy of external light and A radiation cooling wall or roof material characterized by radiating heat from an object to be cooled and cooling the object by reflecting external light in a wavelength range other than a specific wavelength range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58170313A JPS6062515A (en) | 1983-09-14 | 1983-09-14 | Radiation cooling wall and roofing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58170313A JPS6062515A (en) | 1983-09-14 | 1983-09-14 | Radiation cooling wall and roofing material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6062515A true JPS6062515A (en) | 1985-04-10 |
JPS6342055B2 JPS6342055B2 (en) | 1988-08-19 |
Family
ID=15902651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58170313A Granted JPS6062515A (en) | 1983-09-14 | 1983-09-14 | Radiation cooling wall and roofing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6062515A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062011A1 (en) * | 2016-09-30 | 2018-04-05 | 富士フイルム株式会社 | Radiant cooling device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020090037A1 (en) * | 2018-10-31 | 2020-05-07 | 中島 健一 | Tire-cleaning mat |
WO2020090130A1 (en) * | 2018-10-31 | 2020-05-07 | 中島 健一 | Moving body cleaning mat |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53114885A (en) * | 1977-01-17 | 1978-10-06 | Montedison Spa | Covering material which insulates sunlight for cooling due to radiation |
-
1983
- 1983-09-14 JP JP58170313A patent/JPS6062515A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53114885A (en) * | 1977-01-17 | 1978-10-06 | Montedison Spa | Covering material which insulates sunlight for cooling due to radiation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062011A1 (en) * | 2016-09-30 | 2018-04-05 | 富士フイルム株式会社 | Radiant cooling device |
JPWO2018062011A1 (en) * | 2016-09-30 | 2019-02-07 | 富士フイルム株式会社 | Radiant cooling device |
US10591190B2 (en) | 2016-09-30 | 2020-03-17 | Fujifilm Corporation | Radiative cooling device |
Also Published As
Publication number | Publication date |
---|---|
JPS6342055B2 (en) | 1988-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12061056B2 (en) | Radiative cooling with solar spectrum reflection | |
US3982527A (en) | Method and apparatus for concentrating, harvesting and storing of solar energy | |
US9404675B2 (en) | Cavity receivers for parabolic solar troughs | |
US3310102A (en) | Devices for lowering the temperature of a body by heat radiation therefrom | |
CA1082543A (en) | Radiant energy collector panel and system | |
US4064868A (en) | Solar heat collector | |
KR20100062993A (en) | An element for emission of thermal radiation | |
JPS5952339B2 (en) | photothermal converter | |
US4340035A (en) | Solar collector | |
US8656906B2 (en) | High-yield thermal solar panel | |
JPS6016266A (en) | Solar energy collector constituted as front surface of wall or one part of wall | |
JPH0262794B2 (en) | ||
US4716882A (en) | Solar heat collector | |
WO2012073664A1 (en) | Solar thermal collector tube | |
US20030230300A1 (en) | Solar energy collecting device with a thermal conductor, and water heating apparatus using the solar energy collecting device | |
JPS6062515A (en) | Radiation cooling wall and roofing material | |
KR102427068B1 (en) | Passive radiant cooling panel with different top and bottom thermal radiation characteristics | |
JPS5844959B2 (en) | radiation cooling device | |
JPS61223468A (en) | Radiational cooler | |
US4530348A (en) | Solar collector system for heating fluids | |
US4556047A (en) | Solar furnace | |
JP4743365B2 (en) | Wall structure | |
JPH03267655A (en) | Solar energy collector | |
JPH0566500B2 (en) | ||
CN110769102A (en) | Double-layer film structure, shell assembly and electronic device |