[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS606118B2 - semiconductor laser equipment - Google Patents

semiconductor laser equipment

Info

Publication number
JPS606118B2
JPS606118B2 JP50029003A JP2900375A JPS606118B2 JP S606118 B2 JPS606118 B2 JP S606118B2 JP 50029003 A JP50029003 A JP 50029003A JP 2900375 A JP2900375 A JP 2900375A JP S606118 B2 JPS606118 B2 JP S606118B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
band
conductivity type
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50029003A
Other languages
Japanese (ja)
Other versions
JPS51104287A (en
Inventor
則幸 重
一敏 斉藤
一宏 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50029003A priority Critical patent/JPS606118B2/en
Publication of JPS51104287A publication Critical patent/JPS51104287A/en
Publication of JPS606118B2 publication Critical patent/JPS606118B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、室温において低電流下、低次モードで連続発
振可能な半導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device capable of continuous oscillation in a low-order mode at room temperature and under low current.

pn接合を用いた注入型半導体レーザは、接合部界面に
上記半導体層より禁制帯幅が4・さく、且つ屈折率の大
きい半導体層を設けることにより、再結合放射のために
注入されるキャリア及び放出される光の閉じ込め効果を
よくし、利得の向上を実現させうる。
An injection type semiconductor laser using a pn junction has a semiconductor layer with a forbidden band width 4 mm wider than the above semiconductor layer and a larger refractive index at the junction interface, so that carriers injected for recombination radiation and It is possible to improve the confinement effect of emitted light and realize an improvement in gain.

例えば、Ga兆‐(Ga・AI)AS系ダブルヘテロ構
造半導体レーザは上記条件を十分に満たすものであり、
且つ結晶の格子定数、熱膨張係数など物理的性質もよく
一致することから、現在室温で低電流下で連続発振が可
能となっている。従来のGaAs−(Ca・AI)As
系ダブルヘテロ構造半導体レーザ装置の一例を第1図に
示す。n型GaAs基板結晶1上にn型(GaOAI)
母層2、活性領域となるGaAs層或は(Ga・As)
As層3、p型(Ga・AI)As層4「 オーム性電
極をとり易くするためのp型Ga偽層5を順次成長し、
成長表面に化学蒸着法によりSio2膜6を形成したあ
と、この一部にスポットサイズ以下の帯状通電領域9を
設け「 p型Ga船のオーム性電極7「 n型GaAs
のオーム性電極8を被着したものである。第1図に示す
半導体レーザ装置の特徴は、スポットサィズ以下の帯状
通電領域9を設けることによりレーザ発振のしきい値電
流密度の低減を可能としたもので〜帯状通電領域9の幅
を80仏m「活性領域3の厚みを0.4払mとしたもの
で、しきし、値電流密度約2.1KA/ので室温連続発
振が可能であつた。しかし、第亀図に示す半導体レーザ
素子構造では素子の一端にのみ金属電極孔こ依る帯状通
電領域を形成するため電流の拡がりは避け難く、帯状通
電領域9の幅を狭くした場合しきい値電流密度の増加が
箸るしくなり、室温における連続発振も不可能となる。
For example, a Ga trillion-(Ga.AI) AS double heterostructure semiconductor laser fully satisfies the above conditions,
In addition, since the physical properties such as crystal lattice constants and thermal expansion coefficients match well, continuous oscillation is currently possible at room temperature and under low current. Conventional GaAs-(Ca・AI)As
An example of a double heterostructure semiconductor laser device is shown in FIG. n-type (GaOAI) on n-type GaAs substrate crystal 1
Mother layer 2, GaAs layer or (Ga.As) which becomes the active region
As layer 3, p-type (Ga/AI) As layer 4, a p-type Ga pseudo layer 5 is grown in order to make it easier to form an ohmic electrode,
After forming the Sio2 film 6 on the growth surface by chemical vapor deposition, a band-shaped conductive region 9 smaller than the spot size is formed in a part of the Sio2 film 6.
The ohmic electrode 8 is attached. The feature of the semiconductor laser device shown in FIG. 1 is that the threshold current density of laser oscillation can be reduced by providing a band-shaped current-carrying region 9 smaller than the spot size. When the thickness of the active region 3 was set to 0.4 m, continuous oscillation at room temperature was possible with a value current density of about 2.1 KA/m. However, the semiconductor laser device structure shown in Fig. In this case, since a band-shaped current-carrying region relying on the metal electrode holes is formed only at one end of the element, it is difficult to avoid the spread of the current, and if the width of the band-shaped current-carrying region 9 is narrowed, the increase in the threshold current density becomes significant, and at room temperature. Continuous oscillation is also impossible.

このためしーザ発振時の横方向のモードを低次化するこ
とは困難であった。さらに室温で長時間の連続発振を試
みる場合、上記結果から通電領域が拡くなりレーザ発振
のための動作電流が大きくなる。本発明の目的は「上記
問題点を鑑みも帯状通電領域の幅を狭くした場合でもし
きし「値電流密度を低減させると同時に室温における連
続発振も可能であり、且つ基本モード(零次のモード)
でレーザ発振する半導体レーザ装置を提供することにあ
る。
For this reason, it has been difficult to reduce the order of the lateral mode during Caesar oscillation. Furthermore, when attempting continuous oscillation for a long time at room temperature, the above result shows that the current-carrying region becomes wider and the operating current for laser oscillation becomes larger. The purpose of the present invention is to ``Considering the above-mentioned problems, even if the width of the band-shaped current-carrying region is narrowed,'' it is possible to reduce the value current density and at the same time enable continuous oscillation at room temperature. )
An object of the present invention is to provide a semiconductor laser device that oscillates a laser beam.

本願発明の骨子はp導電型半導体基板結晶を用い、且こ
の半導体基板結晶に隣接する半導体層との界面に高抵抗
層か或いは当該半導体基板結晶とpn接合を形成する半
導体領域を有せしめ、前述の高抵抗層或いはこの半導体
領域の一部に帯状通電領域を設けることにある。
The gist of the present invention is to use a p-conductivity type semiconductor substrate crystal, and to have a high resistance layer or a semiconductor region forming a pn junction with the semiconductor substrate crystal at the interface with the semiconductor layer adjacent to the semiconductor substrate crystal, as described above. The purpose of the present invention is to provide a band-shaped current-carrying region in a part of the high-resistance layer or the semiconductor region.

ダブルヘテロ構造を有する半導体レーザにおいて半導体
基板結晶にp導電型を用い、p導電型領域側の半導体領
域に電流狭搾手段を設けることによって、電流狭搾能力
を十分に確保することを可能にし、従って帯状通電領域
の幅を狭まくしても、しさし・電流密度の増大を最小限
におさえることが可能になる。
In a semiconductor laser having a double heterostructure, by using a p conductivity type semiconductor substrate crystal and providing a current constriction means in the semiconductor region on the p conductivity type region side, it is possible to sufficiently ensure current constriction ability, Therefore, even if the width of the band-shaped current-carrying region is narrowed, it is possible to minimize the increase in current density.

本発明によれば活性層を内部電流狭搾手段に近づけ得る
という内部電流狭搾の利点を十分に発揮することが出来
る。以下、本発明を実施例により詳細に説明する。
According to the present invention, the advantage of internal current constriction in that the active layer can be brought close to the internal current constriction means can be fully exhibited. Hereinafter, the present invention will be explained in detail with reference to Examples.

第2図に、本発明による半導体レーザ装置の一実施例を
示す。結晶成長の問題から、本発明を満たすGaAs−
(Ga・AI)As系ダブルヘテロ構造の素子を作成し
たものであるが、(100)面を鏡面研摩したp型Ga
As基板結晶1 1上に「〔110〕方向に所望の幅を
もつ通電領域13を形成する部分のみを残し「他はプロ
トン照射により高抵抗層12を形成する。上記工程を終
了したゥヱーハを基板結晶として「 ウェーハ表面を日
2S04/日202/均○系4:1;1(体積比)混合
溶液にて軽くエッチングした後、連続液相ェピタキシャ
ル法によりp型No.3Gも。7As層4、ァンドーブ
Ga船層3、n型Mo.30体.7As層2「 n型G
aAs角 0を順次成長する。
FIG. 2 shows an embodiment of a semiconductor laser device according to the present invention. Due to crystal growth problems, GaAs-
(Ga・AI)As-based double heterostructure element was created, but it is made of p-type Ga with mirror polished (100) plane.
A high-resistance layer 12 is formed on the As substrate crystal 11 by proton irradiation, leaving only a portion where a current-carrying region 13 with a desired width in the [110] direction will be formed. As a crystal, after lightly etching the wafer surface with a 4:1:1 (volume ratio) mixed solution of 2S04/202/uniform system, p-type No. 3G was also etched using a continuous liquid phase epitaxial method.7As layer 4 , Vandove Ga vessel layer 3, n-type Mo.30 body.7As layer 2 "n-type G
The aAs angle 0 is grown sequentially.

続いて成長を終了したエビタキシャルウヱーハ表面上に
帯状通電領域13と同幅で〜且つ全く重複する位置に帯
状通電領域亀5を形成する部分のみを残し、他をZn拡
散法によりn型山o.3Gも。7As層2の一部に至る
までp型半導体層亀母を形成する。
Subsequently, on the surface of the epitaxial wafer that has finished growing, only the part where the band-shaped current-carrying region 5 is to be formed is left at a position that is the same width as the band-shaped current-carrying region 13 and completely overlaps with it, and the other parts are formed using a Zn diffusion method. Katayama o. 3G too. A p-type semiconductor layer is formed up to a part of the 7As layer 2.

しかる後に「 p型GaAsのオーム性電極7ト続いて
n型GaAsのオーム性電極8を形成したものである。
こうして得られた素子の特性は〜帯状通電領域幅が40
仏m、20仏m「loAm「 5仏mで活性領域3の厚
みが0.4ムmの時、室温におけるレーザ発振しきし、
値電流密度は、各々1.雛Aノのト1.歌Aノ鮒、2.
皿Aノ嫌、及び2.靴AノめでいずれもCW連続発振が
可能であった。第翁図に従来の半導体レーザ装置と本発
明に従がつた半導体レーザ装置のト帯状通電領域幅とし
ーザ発振しきし、値電流密度の関係を各々3亀?32の
曲線で示すが〜本発明に従がつた素子は従来の素子に杏
べふ帯状通電領域幅が狭くなってもしーザ発振しきし、
値電流密度の増加が著るしく小さいことが分る。さりこ
〜帯状通電領域幅が10仏m及び5Amのものでは〜
レーザ発振時の横方向のモードが単一(琴次のモード)
のものが再現性よく得られる。なおも第3図の比較例に
おいて従来の半導体レーザ装置は第亀図として図示した
構造のもの、本発明に従がつた半導体レーザ装置とは上
述の実施例として第2図に示した構造のものである。
After that, 7 p-type GaAs ohmic electrodes were formed, followed by an n-type GaAs ohmic electrode 8.
The characteristics of the device thus obtained are as follows: The width of the band-shaped current-carrying region is 40 mm.
French m, 20 French m "loAm" When the thickness of the active region 3 is 0.4 mm at 5 French m, the laser oscillation at room temperature is
The value current density is 1. Hina A no To 1. Song A no Carp, 2.
Dislike plate A, and 2. Continuous CW oscillation was possible in all cases with shoe A. Fig. 3 shows the relationship between the width of the band-shaped conductive region, the laser oscillation, and the value current density of the conventional semiconductor laser device and the semiconductor laser device according to the present invention. As shown by the curve No. 32, the device according to the present invention tends to oscillate in contrast to the conventional device even though the width of the band-shaped current-carrying region becomes narrower.
It can be seen that the increase in value current density is significantly smaller. Sariko ~ For those with band-shaped energized area width of 10 m and 5 Am ~
Single lateral mode during laser oscillation (Kotoji mode)
can be obtained with good reproducibility. Furthermore, in the comparative example shown in FIG. 3, the conventional semiconductor laser device has the structure shown in FIG. 3, and the semiconductor laser device according to the present invention has the structure shown in FIG. It is.

本例に示す如く、p導電型の半導体基板を用し、且高抵
抗層を用いた帯状通電領域を構成することによって、帯
状通電領域の幅を狭くしても低レベルのしきし、電流密
度を確保しつつ「 しきし、電流密度の上昇を最小限に
おさえることが出来ている。なお、p導電型半導体基板
を用いることによって、この上部に設けるクラッド層は
当然p導電型を用いることとなり、クラツド層のドーパ
ントに依る結晶性劣化などの問題を発生する恐れもない
。以上、本発明について詳しく説明してきたが、これら
は本発明の一例にすぎず、高抵抗層をェビタキシャル法
により形成しても上記同様の優れた結果が得られる。
As shown in this example, by using a p-conductivity type semiconductor substrate and configuring a band-shaped current-carrying region using a high-resistance layer, even if the width of the band-shaped current-carrying region is narrowed, the current density and current density are low. The increase in current density has been suppressed to a minimum while ensuring that the current density increases.By using a p-conductivity type semiconductor substrate, the cladding layer provided on top of this substrate must naturally be of p-conductivity type. , there is no risk of problems such as crystallinity deterioration due to dopants in the cladding layer.The present invention has been explained in detail above, but these are only examples of the present invention, and the high resistance layer is formed by the epitaxial method. However, the same excellent results as above can be obtained.

さらに、高抵抗層の代わりに基板結晶とpn接合を形成
する半導体層を設け「上記帯状通電領域15を公知の技
術により形成しても上記同様の優れた結果が得られる。
この例において、これまでの実施例と同機にp導電型G
a偽基板を用い、このp導電型のGa船基板に隣接して
n導電型の半導体層を設けこの半導体層に帯状の通電領
域を形成した場合、次の如き利点を生ずる。
Furthermore, the same excellent results as described above can be obtained even if a semiconductor layer forming a pn junction with the substrate crystal is provided instead of the high-resistance layer and the band-shaped current-carrying region 15 is formed by a known technique.
In this example, p conductivity type G is used in the same machine as in the previous examples.
When a false substrate is used, an n-conductivity type semiconductor layer is provided adjacent to this p-conductivity type Ga carrier substrate, and a band-shaped conductive region is formed in this semiconductor layer, the following advantages occur.

n導電型の半導体基板を用い、且p導電型の半導体層を
用いて帯状通電領域を形成した場合に比較し本例の如き
導電型の選択によって電流の広がりをおさえる効果は極
めて十分なものとなし得る。
Compared to the case where a band-shaped current-carrying region is formed using an n-conductivity type semiconductor substrate and a p-conductivity type semiconductor layer, the effect of suppressing the spread of current by selecting the conductivity type as in this example is extremely sufficient. It can be done.

これは本例の帯状通電領域形成のための半導体層がn導
電型層のため、当該n導電型層が活性層で発生したレー
ザ光を吸収してもこの層内に発生した電子一正孔対中〜
少数キャリアである正孔は拡散長が小さいためもその両
側の層に拡散しないうちに再結合してしまう。従って「
多数キャリアの蓄積は起らない。よって本例においては
帯状通電領域の電流制限機能を十分にはたすことができ
る。これに反し「 p導電型の半導体層を用いて帯状通
電領域を形成した場合、当該半導体層における少数キャ
リアが電子である。これが正孔に比較し拡散長が大きい
ためL少数キャリアは両側の層へ拡散し多数キャリアの
蓄積が起こる。このためキャリアのブロックのため設け
た障壁が低められ、帯状通電領域の電流制限機能が大中
に低下する。以上述べてきたように、本例になる半導体
レーザ装置によれば、通電領域の幅を狭くしても電流の
拡がりや結合放射光の吸収損失等による効率の抵下を一
応解決でき、横モードの低次化も可能となる。
This is because the semiconductor layer for forming the band-shaped current-carrying region in this example is an n-conductivity type layer, so even if the n-conductivity type layer absorbs the laser light generated in the active layer, the electrons and holes generated in this layer are Against China
Since holes, which are minority carriers, have a short diffusion length, they recombine before they diffuse into the layers on both sides. Therefore, “
No accumulation of majority carriers occurs. Therefore, in this example, the current limiting function of the band-shaped current-carrying area can be fully fulfilled. On the other hand, when a band-shaped conductive region is formed using a p-conductivity type semiconductor layer, the minority carriers in the semiconductor layer are electrons.Since these have a longer diffusion length than holes, the L-minority carriers spread through the layers on both sides. This causes accumulation of majority carriers.For this reason, the barrier provided to block carriers is lowered, and the current limiting function of the band-shaped current-carrying region is significantly reduced.As described above, the semiconductor of this example According to the laser device, even if the width of the current-carrying region is narrowed, it is possible to solve the problem of decrease in efficiency due to current spread, absorption loss of coupled radiation light, etc., and it is also possible to lower the order of the transverse mode.

以上説明したように、本発明はGaAs−(Ga・N)
船系ダブルヘテロ構造半導体レーザ装置のみならず、比
較的禁制帯幅が大きく、且つ比較的屈折率の小さい導電
性を異にする半導体層に狭まれて、活性領域となる比較
的禁制帯幅が小さく、且つ比較的屈折率の大きい半導体
層が介在する構造を有するあらゆる注入型半導体レーザ
装置においても、帯状通電領域の幅を狭くした場合、室
温で低電流下達続発振を可能にしたもので、半導体レー
ザの光特性の向上に多大な効果をもたらすものである。
As explained above, the present invention relates to GaAs-(Ga.N)
In addition to ship-type double heterostructure semiconductor laser devices, the active region has a relatively large forbidden band width narrowed by semiconductor layers of different conductivity with a relatively large forbidden band width and a relatively small refractive index. Even in any injection type semiconductor laser device having a structure in which a small semiconductor layer with a relatively high refractive index is interposed, if the width of the band-shaped conductive region is narrowed, continuous oscillation at a low current at room temperature is possible. This has a great effect on improving the optical characteristics of semiconductor lasers.

図面の簡単な説明第1図は従来のGaAs−(Ga・山
)As系ダブルヘテロ構造半導体レーザ装置の一例の斜
視図を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a perspective view of an example of a conventional GaAs-(Ga.yama)As-based double heterostructure semiconductor laser device.

第2図は本発明に従がつたGaAs−(Ga・N)船系
ダブルヘテロ構造半導体レーザ装置の一実施例の斜視図
を示す。第3図は従来構造の半導体レーザ装置と本発明
による半導体レーザ装置の帯状通電領域幅としーザ発振
しきし、値電流密度の関係を表わす曲線図で、前者を曲
線31で、後者を曲線32で示したものである。亀…n
型Ga$基板結晶、2…n型(GaOAI)船層、3・
・・活性領域となるァンドープGaAs層、4…p型(
Ga・M)As層、5…p型GaAs層、6…帯状通電
領域形成のためのSjo2膜、7…p型Ga偽オーム性
電極L 8…p型GaAsオーム性電極、9,13,1
5…帯状通電領域「 io…n型Ga船層、亀1…p型
Ga船基板結晶、亀2・・・高抵抗層、1 4…Zn拡
散層(p型半導体層)、31,32・・。
FIG. 2 shows a perspective view of an embodiment of a GaAs-(Ga.N) vessel-based double heterostructure semiconductor laser device according to the present invention. FIG. 3 is a curve diagram showing the relationship between the band-shaped current-carrying region width, laser oscillation, and value current density of a semiconductor laser device with a conventional structure and a semiconductor laser device according to the present invention. This is shown in . Turtle...n
type Ga$ substrate crystal, 2...n type (GaOAI) layer, 3.
... undoped GaAs layer which becomes the active region, 4...p type (
Ga/M)As layer, 5...p-type GaAs layer, 6...Sjo2 film for forming a band-shaped current-carrying region, 7...p-type Ga pseudo-ohmic electrode L 8...p-type GaAs ohmic electrode, 9, 13, 1
5... Band-shaped current-carrying region "io... N-type Ga carrier layer, turtle 1... p-type Ga carrier substrate crystal, turtle 2... high-resistance layer, 1 4... Zn diffusion layer (p-type semiconductor layer), 31, 32.・.

帯状通電領域幅としきし、値。努ー図 髪z図 多3図Strip current carrying area width and squeegee value. Tsutomu diagram hair z diagram Many 3 figures

Claims (1)

【特許請求の範囲】 1 半導体基板結晶上部に第1のクラツド層、活性層お
よび第2のクラツド層を少なくとも有し、且レーザ光の
帰還手段、活性層に帯状に電流を注入する手段、および
前記半導体基板結晶に隣接する半導体層との界面に高抵
抗層を少なくとも有し、該高抵抗層の一部に前記電流注
入手段の帯状通電領域に対応して当該レーザ光の進行方
向に帯状通電領域を形成した構成を有する半導体レーザ
装置であって、前記半導体基体結晶がp導電型、前記第
1のクラツド層がp導電型、前記第2のクラツド層がn
導電型なることを特徴とする半導体レーザ装置。 2 半導体基板結晶上部に第1のクラツド層、活性層お
よび第2のクラツド層を少なくとも有し、且レーザ光の
帰還手段、活性層に帯状に電流を注入する手段、および
前記半導体基板結晶に隣接する半導体層との界面に該半
導体基板結晶とpn接合を形成する半導体領域を少なく
とも有し、該半導体領域の一部に前記電流注入手段の帯
状通電領域に対応して当該レーザ光の進行方向に帯状通
電領域を有する構成を有する半導体レーザ装置であつて
、半導体基板結晶とpn接合を形成する前記半導体領域
の禁制帯幅が前記活性層の禁制帯幅より小さく、前記半
導体基板結晶がp導電型、前記第1のクラツド層がp導
電型、前記第2のクラツド層がn導電型、且半導体基板
結晶とpn接合を形成する前記半導体領域がn導電型な
ることを特徴とする半導体レーザ装置。
[Scope of Claims] 1. A semiconductor substrate having at least a first cladding layer, an active layer, and a second cladding layer above the crystal, a laser beam feedback means, a means for injecting current into the active layer in a band shape, and It has at least a high resistance layer at the interface with the semiconductor layer adjacent to the semiconductor substrate crystal, and a part of the high resistance layer is energized in a band shape in the traveling direction of the laser beam corresponding to the band-shaped energization area of the current injection means. A semiconductor laser device having a structure in which regions are formed, wherein the semiconductor base crystal is of p conductivity type, the first cladding layer is of p conductivity type, and the second cladding layer is of n conductivity type.
A semiconductor laser device characterized by being of a conductive type. 2. At least a first cladding layer, an active layer, and a second cladding layer above the semiconductor substrate crystal, and a laser beam feedback means, a means for injecting current into the active layer in a band shape, and a layer adjacent to the semiconductor substrate crystal. at least a semiconductor region forming a pn junction with the semiconductor substrate crystal at the interface with the semiconductor layer, and a part of the semiconductor region has a conductive region extending in the direction of propagation of the laser beam corresponding to the band-shaped current-carrying region of the current injection means. A semiconductor laser device having a configuration having a band-shaped conductive region, wherein a forbidden band width of the semiconductor region forming a pn junction with a semiconductor substrate crystal is smaller than a forbidden band width of the active layer, and the semiconductor substrate crystal is of p-conductivity type. . A semiconductor laser device, wherein the first cladding layer is of a p-conductivity type, the second cladding layer is of an n-conductivity type, and the semiconductor region forming a pn junction with a semiconductor substrate crystal is of an n-conductivity type.
JP50029003A 1975-03-12 1975-03-12 semiconductor laser equipment Expired JPS606118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50029003A JPS606118B2 (en) 1975-03-12 1975-03-12 semiconductor laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50029003A JPS606118B2 (en) 1975-03-12 1975-03-12 semiconductor laser equipment

Publications (2)

Publication Number Publication Date
JPS51104287A JPS51104287A (en) 1976-09-14
JPS606118B2 true JPS606118B2 (en) 1985-02-15

Family

ID=12264211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50029003A Expired JPS606118B2 (en) 1975-03-12 1975-03-12 semiconductor laser equipment

Country Status (1)

Country Link
JP (1) JPS606118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152877A (en) * 1978-05-23 1979-12-01 Sharp Corp Semiconductor laser element and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894378A (en) * 1972-03-13 1973-12-05
JPS4946878A (en) * 1972-09-08 1974-05-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894378A (en) * 1972-03-13 1973-12-05
JPS4946878A (en) * 1972-09-08 1974-05-07

Also Published As

Publication number Publication date
JPS51104287A (en) 1976-09-14

Similar Documents

Publication Publication Date Title
US6258614B1 (en) Method for manufacturing a semiconductor light-emitting device
CA1152623A (en) Semiconductor laser device
JPS63318195A (en) Transverse buried type surface emitting laser
US4124826A (en) Current confinement in semiconductor lasers
JPH069282B2 (en) Semiconductor laser device
JP3206555B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
US5144633A (en) Semiconductor laser and manufacturing method thereof
US4868838A (en) Semiconductor laser device
JPS5811111B2 (en) Manufacturing method of semiconductor laser device
JPS6218783A (en) Semiconductor laser element
JPS606118B2 (en) semiconductor laser equipment
Kirkby et al. High peak power from (GaAl) As–GaAs double‐heterostructure injection lasers
JPS63178574A (en) Manufacture of semiconductor laser device
JPS6174382A (en) Semiconductor laser device and manufacture thereof
EP0432843B1 (en) Semiconductor diode laser and method of manufacturing such a laser
JPH0945999A (en) Semiconductor device and manufacture thereof
JPH01227485A (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH0414277A (en) Semiconductor laser and its manufacture
JPS5839085A (en) Semiconductor laser device
JPH0430758B2 (en)
JP2878709B2 (en) Semiconductor laser device
JPH0734493B2 (en) Semiconductor laser device and method of manufacturing the same
CA1203611A (en) Laser with mode control and pump current confinement
JPS6167285A (en) Semiconductor laser device